线代习题
线性代数习题集带答案

线性代数习题集带答案第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是().(A ) 24315 (B ) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D )k n n --2)1(3。
n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A ) 0 (B)1- (C) 1 (D ) 25. =0001100000100100()。
(A ) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是()。
(A ) 0 (B)1- (C ) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D (). (A ) 4 (B) 4- (C) 2 (D ) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B )ka - (C)a k 2 (D)a k 2- 9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-,则=x ( )。
(A) 0 (B )3- (C) 3 (D ) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A)1- (B )2- (C )3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为().(A)1- (B )2- (C )3- (D )012。
最全线性代数习题及参考答案

第一章:一、填空题:1、若a a D ij n ==||,则=-=||ij a D ;解:a a a a a D aa a a a D n nnn nnnn nn )1(11111111-=----=∴==2、设321,,x x x 是方程03=++q px x 的三个根,则行列式132213321x x x x x x x x x = ; 解:方程023=+++d cx bx ax 的三个根与系数之间的关系为:a d x x x a c x x x x x x ab x x x ///321133221321-==++-=++所以方程03=++q px x 的三个根与系数之间的关系为:q x x x p x x x x x x x x x -==++=++3211332213210033)(3321221321333231132213321=--++-=-++=x x x q x x x p x x x x x x x x x x x x x x x3、行列式1000000019980001997002001000= ;解:原式按第1999行展开:原式=!19981998199721)1(0001998001997002001000219981999-=⨯⨯⨯-=+++4、四阶行列式4433221100000a b a b b a b a = ; 解:原式按第一行展开:原式=))(()()(000004141323243243214324321433221433221b b a a b b a a b b b b a a b a b b a a a a b a b b a b a a b b a a --=---=-5、设四阶行列式cdb a a cbda dbcd c ba D =4,则44342414A A A A +++= ;解:44342414A A A A +++是D 4第4列的代数余子式,44342414A A A A +++=0111111111111==d a c d d c c a bd b a c bdd b c c ba6、在五阶行列式中3524415312a a a a a 的符号为 ;解:n 阶行列式可写成∑-=n np p p ta a aD 2211)1(,其中t 为p 1p 2…p n 的逆序数所以五阶行列式中3524415312a a a a a 的符号为5341352412a a a a a 的符号,为1)1()1(5)3,1,5,4,2(-=-=-t7、在函数xx x xxx f 21112)(---=中3x 的系数是 ; 解:根据行列式结构,可知3x 须由a 11=2x ,a 33=x 和第二行的一个元素构成,但此时第三个元素只能取a 22(行、列数均不可重复),所以此式为3332211)3,2,1(2)1(x a a a t -=-,系数为-2。
线性代数习题集(带答案)

. .. . ..第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题. .. . ..1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .. .. . ..16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.. .. . ..四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略). .. . ..第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
(完整版)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
07线性代数练习题(含答案)

习题线性代数练习题一、单项选择题111011011.行列式 ( )10110111A. 1B. 3C. -1D. -3a102.行列式b40a2b300b2a30b10() 0a4A. a1a2a3a4 b1b2b3b4B.a1a2a3a4 b1b2b3b4C. (a1a2 b1b2)(a3a4 b3b4)D. (a1a4 b1b4)(a2a3 b2b3) 3、在下列矩阵中,可逆的是()000 A. 010 001 110 011C. 121110B. 220 001 100 111D. 1014、A是n阶方阵,且A 0,则A中()A.必有一列元素全为0 B.必有两列元素成比例C.必有一列向量是其余列向量的线性组合D.任一列向量是其余列向量的线性组合5.对任意n阶方阵A、B总有()A.AB=BAB.|AB|=|BA|TTT222C.(AB)=ABD.(AB)=AB 6、设n阶方阵A、B、C满足关系式ABC=En,则必有()(A)ACB=En (B)BCA=En (C)CBA=En (D)BAC=En 7、设有m维向量组(I): 1, 2, , n,则()A.当m<n时,(I)一定线性相关B.当m>n时,(I)一定线性相关C.当m<n时,(I)一定线性无关D.当m>n时,(I)一定线性相关8.设A是m n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是()A.A的行向量组线性无关 B.A的行向量组线性相关 C.A的列向量组线性无关 D.A的列向量组线性相关-19.设A是3阶方阵,且|A|=-2,则|A|等于()习题A.-2B.11C. 22D.2* 110.设A,B均是n阶方阵, 2,B 3,则2AB ()2n 122n 12n 12nn2 (A)(B)( 1) (C)(D) 333 3(A是A的伴随矩阵)*1 111 的秩为2,则 =()11.设矩阵A= 1223 1A.2C.0B.1 D.-112.设A是三阶矩阵,有特征值1,-1,2,则下列矩阵中可逆矩阵是() A. E-A B. E+A C. 2E-A D. 2E+A22213.二次型f(x1,x2,x3) x1 3x2 4x3 6x1x2 10x2x3的矩阵是( C )A. 330 50 4 130C. 335 05 4160B. 0310 00 4 0 16 D. 6310 010 4二、填空题(每小题4分,共20分)0121.行列式123的值为 .2342、=x+1 -1 1 -13.设A 022x123 4 1,已知矩阵A的秩r(A)=2,则x4.已知A 2A 2E 0,则(A E) (其中E是n阶单位阵)习题1 1 0 15、初等矩阵A 0 1 0 ,A0 0 100F6.设 A G13G24H2I, 则 A0JJ0K等于1 1 1 11 1 1 1 ,A的非零特征值为7、A1 1 1 1 1 1 1 1T8、向量组 1 1 -1 2 4 , 2 (0 3 1 2),T3 (3 0 7 14)T,4 (1 -1 2 0)T,5 (2 1 5 6)T的秩为。
线代习题及答案

1.设B A ,均为三阶矩阵,2,3A B =-=,则*2T A B = . 2.设A 是4阶矩阵,伴随矩阵*A 的特征值是1,2,4,8--,则矩阵A 的全部特征值是 . 3. 若向量组1(1,3,6,2)T α=,2(2,1,2,1)T α=-,3(1,1,,2)T a α=--的秩为2,则a = .4.若矩阵111111t A t t ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭为正定的,则t 满足的条件为 .. .5 若⎪⎪⎪⎭⎫ ⎝⎛-==301020201,2)(B A R ,则=)(AB R6 设A 是n 阶方阵,21,x x 均为方程组b AX =的解,且21x x ≠,则=A ___________7 已知(1,1)T x =是⎪⎪⎭⎫ ⎝⎛=a A 011的一个特征向量,则=a .8 设⎪⎪⎭⎫ ⎝⎛=521a A 是正定矩阵,则a 的取值为_____________.1写出四阶行列式中含有因子2311a a 的项.2求 排列1 3 … )12(-n 2 4 … )2(n 逆序数;2试计算行列式3112513420111533------.3 设γβααα,,,,321都是4维列向量,且4阶行列式a =βααα,,,321,b =321,, ,αααγ,求4阶行列式γβααα+,,,321。
4.设矩阵A=423110123-⎛⎝ ⎫⎭⎪⎪⎪,求矩阵B 使其满足矩阵方程 1、AB=A+2B.2、BA=A+2B.5设向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=23102α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=1410233a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=52114a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+-=10612b β,问:b a ,取何值时,向量β可由向量组4321,,,αααα线性表示?并在可以线性表示时求出此线性表示式-7 求下列矩阵的秩,并指出该矩阵的一个最高阶非零子式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------11011111100222021110解1011111002202110,4.2----秩为 8.给定向量组α1=-⎛⎝ ⎫⎭⎪⎪⎪⎪2103,α2=1324-⎛⎝ ⎫⎭⎪⎪⎪⎪,α3=3021-⎛⎝ ⎫⎭⎪⎪⎪⎪,α4=0149-⎛⎝ ⎫⎭⎪⎪⎪⎪. 试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。
线性代数习题及解答完整版

线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 4 3
2 0 1
E(1,
2)
2
0
1
E
(2,
3)
r1 r
2
1
4
3
E(2,
3)
1 2 0
1 2 0
2 1 0
c
2c3
1
3
4
1 0 2
11. 设AB=A+2B,求B,其中
4 2 3
A=
1
1
0
-1 2 3
解:AB=A+2B
AB 2B=A
(A-2E)B=A
2 2 3 -1 4 2 3
n
rn rn1
rn1 rn2
L
0
解法2:D
r2 r1
(1)n1 M
0 L 00
n0
rn rn1
0
L
0 1 rn1 rn2 L
0 n 1
M
M
M
M
r3 r2
(1)n1 (1)n2
M
M
LL LL ML
0 0 M
0 0 L 00
0 0 0 L0
0 n 1 L 0 0
0 0 n2 L 0
n 0 000
0 n 1 0 0 0
L
a1n a11 a21 L
a2n
a12
a22
L
M M M L
ann
a1n
a2n
L
an1
an2
AA
(det
A)E
M
ann
a112
a122 L M
a1n2
M
L
L
L
M
L
M
ai12
ai
2 2
L
ain2
L
L
L det A
M M
M M
L
L
LL ML M det A LL
L
M
M
n ( n 1)
L =(1)(n1)(n2)L 21 M M M M M (1) 2 n!
0 0 020
0 0 001
1 2L 2 2
2 2L 2 2 3.(4) 计算行列式D M M M M M
2 2 L n 1 2
2 2L 2 n
1 r2r1 2 L 2 2
2 2L 2 2
r 3 r1
L1
0
)
det(A11A22
A A 21 12 )
B=(A-2E)-1A = 1
-1
0
1
1
0
L
-1 2 1 -1 2 3
13. 设A是n阶矩阵,证明:det(A* ) (det A)n1 证:
由于A* A (det A)E det A* det A det(A* A) det((det A)E) (det A)n det E (det A)n
a1 M
a2
M
L M
an1 M
(ai
1 jin1
aj)
n1
(ai
i1
x)
xn1
an1 1
an1 2
L
an1 n1
令C
(ai aj ),则C是不为0的常数,
1 jin1
n1
D(x) C (ai x)是n 1次多项式。 i 1
n1
令: (ai x) 0,得到根x a1, a2 , a3 ,L , an1 i 1
按第n-1列展开 0 1 2 L 0 0
Dn
MMM M MM
1 21L 00 01 2L 0 0 2 MMM M MM
0 0 0L 21
0 0 0L 21
0 0 0L 1 2 n2
0 0 0L 1 2 n1
Dn2 2Dn1 则 Dn Dn1 Dn1 Dn2
21
Dn Dn1 Dn1 Dn2 Dn2 Dn3 L L D2 D1 1
L
0
0
01L 0 0
解:D
rn r1
1
0
1
M
0
(1)21 M M M
M
M
MM M M M
0 0 L n3 0
1 0 L 0 n2
0 0 L 0 n2
2 (n 2)!
21 0L 0 0
1 21L 00
3.(5)计算行列式Dn
0 M
1 M
2L MM
00 MM
000L 21
解:
000L 1 2
21 0L 00
21 11 12
)
若 A11与A22同阶,且A A 21 11 A11A21
det
A11 A 21
A12 A 22
det
A11 0
A 22
A12
A
A A 1
21 11 12
det
A11
det(A22
A
A A 1
21 11 12
)
det(A11A22
A11A
A A 1
21 11 12
10(2) 解矩阵方程
1 1 1 1 1 1
0
2
2
X
1
1
0
1 -1 0 2 1 1
解:
1
1
1
1
1
1 1
X
0 1
2 -1
2 0
1 2
1 1
10 L
10(3) 解矩阵方程:
0 1 0 1 0 0 1 4 3
1
0
0
X
0
0
1
2
0
1
0 0 1 0 1 0 1 2 0
L
det
A
a
2 i1
ai22
L
ain2 (i
1, 2,..., n)
Q A 0, aij 0,
detA>0
又 AAT =(detA)E,
det(AAT )=det((detA)E) detA det AT =(detA)ndetE=(detA)n (detA)2 = (detA)n
(detA)2 ( (detA)n-2 1) 0 (detA)n-2 1 0,则 (detA)n-2 1
余子式Aij ,求detA.
A11 A21 L
解:A
A12
A22 L
M M L
A1n A2n L
An1 a11 a21 L
An2
a12
a22
L
M M M L
Ann a1n a2n L
an1
an2
AT
M
ann
a11 a12 L
AAT
a21
a22
L
M M L
an1
an2
11
1L 1L MM
1 a1 0 1 1 1 a2 M M M
MM M M M
1 L 1 an 1 1
0L 0 1 1 1 L
1 L 1 0 a2 0 L M M M M M M M
M M M 0 0 0 an1 1 L 1 an 0 0 0 L
1 0 M a1Dn1 0 an
a1(a2 L an a2 L an1 a2 L an2an L a3L an ) a2 L an a1a2 L an a1a2 L an1 a1a2 L an2an L a2 L an
n2 L 0 0
(1)n(n1)L 2(11L 1) n(n 1)L
(n1)(n2) (n1)
n2 3n4
3 2 1 (1) 2
n! (1) 2 n!
n2 n
(1) 2 n!
0 0 L 01 0 0 L 20 3.(3) 计算行列式 D M M M M M 0 n 1 L 0 0 n 0 L 00
解:原式 2 3 1 3 9 12 4
27
4 3 2 5
8 6 42 32 22 ( 5)2
1 5 25 125
43 33 23 ( 5)3
6 (3 4)(2 4)(5 4)(2 3)(5 3)(5 2) 6048
5(1) 证明:
1 a1 1
Dn M
M
1 1 a2
M M
2 3 2 1 2
Dn 1 Dn1 1 1 Dn2 2 Dn2 = 2 1 Dn3 3 Dn3 L L n 1 D1 n 1 2 n 1
4.(1) 计算行列式:
1 4 16 64 2 6 18 54 3 6 12 24 1 5 25 125
1 4 16 64
111 1
11
证:用归纳法。
1L 1
1L 1
M M M a1a2 L an a1a2 L an1 a1a2 L an2an L a2 L an
MM M
1 L 1 an
n=2:
1+a1 1
1 1 a2 (1 a1 )(1 a2 ) 1 a1a2 a1 a2
假设n-1阶时算式成立。
11 1 1 a2 Dn M M MM
由于 detA>0, 所以 detA=1
16.
A11
A
21
A12 r2(A21A111)r1 A11
A
22
0
A12
A 22
A
A A 1
21 11 12
Er
A
A 1
21 11
0 A11
E n-r
A21
A12 A22
A11 0
A12
A22
A 21A111A12
det
E(2, 3)1
E (2, 3)
0
0
1
0 1 0
0 1 0
0 1 0 1 1 4 3 1 0 0 1