2017年10月全国自考线性代数真题
线性代数自考题-2_真题(含答案与解析)-交互

线性代数自考题-2(总分100, 做题时间90分钟)第一部分选择题一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的。
1.设,当x与y满足______时,有AB=BA.• A. 2x=7• B. 2y=x• C. y=x+1• D. y=x-1SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 由于,,∵解得y=x+1.答案为C.2.如果n阶方阵A满足A T·A=A·A T=I,则A的行列式|A|为______ • A.|A|=1• B.|A|=-1• C.|A|=1或-1• D.|A|=0SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] |A·A T|=|A|·|A T|=|A|2=|I|=1,所以|A|=±1.答案为C.3.设A是n阶方阵,已知A2-2A-2I=0,则(A+I)-1=______A.3I-A B.3I+AC.A-3I D.SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] 把已知关系式A2-2A-2I=O写成(A+I)M=I的形式,则M是(A+I)的逆方阵,由题设关系式A2-2A-2I=O,可得A(A+I)-3(A+I)=-I,即(A+I)(3I-A)=I,故(A+I)-1=3I-A.答案为A.4.已知是齐次线性方程组Ax=0的两个解,则矩阵A可为______ A.(5,-3,-1) B.C. D.SSS_SIMPLE_SINA B C D分值: 2答案:A[解析] 将四个选项代入验证Ax=0是否成立即可.答案为A.5.齐次线性方程组的自由未知量是______•**,x2•**,x3•**,x4**,x4SSS_SIMPLE_SINA B C D分值: 2答案:C[解析] 对系数矩阵作初等变换得:,即故.所以x2,x4为自由未知量.答案为C.第二部分非选择题二、填空题1.行列式=______.SSS_FILL分值: 2答案:0[解析] 按定义计算,可得结果为0.2.设A为n阶方阵,且|A|=2,则=______.SSS_FILL分值: 2答案:[解析] .3.设矩阵,则A T·A______.SSS_FILL分值: 2答案:[解析] .4.分块矩阵,则A T=______.SSS_FILL分值: 2答案:[解析] 由转置矩阵的定义知.5.已知α1,α2线性无关而α1,α2,α3线性相关,则向量组α1,3α2,7α3的极大无关组为______.SSS_FILL分值: 2答案:α1,3α2[解析] 分析:由于α1与3α2线性无关,并且7α3可由α1,3α2线性表示.6.设矩阵A为4×6矩阵,如果秩A=3,则齐次线性方程组AX=0的基础解系含有解向量的个数为______.SSS_FILL分值: 2答案:3[解析] 由于AX=0是6个未知量的齐次线性方程组.6-r(A)=6-3=3,所以基础解系中含有3个解向量.7.设λ=2是n阶方阵A的一个特征且|A|≠0,则n阶方阵B=A3-3E+A-1必有特征值______.SSS_FILL分值: 2答案:[解析] |A|≠0,因此A可逆,又λ=2是A的特征值,因此存在非零向量α使得Aα=2α,所以A3α=A2(Aα)=α2(2α)=2A(Aα)=4Aα=8α,α,所以,所以B有特征值.8.设3阶方阵A的特征值为λ1=-1,λ2=1,λ3=2,则|A|=______.SSS_FILL分值: 2答案:-2[解析] |A|=λ1·λ2·λ3=-2.9.已知三阶矩阵有一个特征向量p=,则x=______,y=______,p所对应的特征值λ=______.SSS_FILL分值: 2答案:x=-2,y=6,λ=-4[解析] 设矩阵A的特征向量p所对应的特征值为λ,则有(λI-A)p=0,即或解得x=-2,y=6,λ=-4.10.已知,二次型f(x)=x T Ax的矩阵为______.SSS_FILL分值: 2答案:[解析] 因为二次型f(x1,x2,x3)=+,故由二次型矩阵的定义知矩阵为.三、计算题1.计算.SSS_TEXT_QUSTI分值: 9答案:2.设f(x)是二次多项式,已知f(1)=1,f(-1)=9,f(2)=-3,求出f(3).SSS_TEXT_QUSTI分值: 9答案:设f(x)=ax2+bx+c,则有解得a=0,b=-4,c=5,从而f(x)=-4x+5,f(3)=-7.3.设A、B为两个三阶矩阵,且|A|=-1,|B|=5.求|2(A T B-1)2|.SSS_TEXT_QUSTI分值: 9答案:.4.设向量α,β,γ满足5(α-γ)+3(β+γ)=0,其中,求α+β+γ.SSS_TEXT_QUSTI分值: 9答案:由于5α-5γ+3β+3γ=0,所以所以.5.设向量都是方阵A的属于特征值λ=2的特征向量,又向量β=α1+2α2,求A2β.SSS_TEXT_QUSTI分值: 9答案:因此r(A)=3.6.将线性无关向量组,化为单位正交向量组.SSS_TEXT_QUSTI分值: 9答案:用施密特正交化方法,有则β1,β2,β3是正交向量组,再单位化,有,则γ1,γ2,γ3是单位正交向量组.7.用正交变换将二次型f(x1,x2,x3)=-2x1x2-2x1x3-2x2x3化为标准型并写出正交变换.SSS_TEXT_QUSTI分值: 9答案:首先写出二次型的系数矩阵为A的特征多项式|λE-A|=λ(λ-3)2,所以A的特征值为λ1=λ2=3,λ3=0.对于λ1=λ2=3解齐次线性方程组(3E-A)X=0,求出基础解系α1=将α1,α2标准正交化得,β2对于λ3=0,解齐次线性方程组(-A)X=0,求出基础解系将α3标准化得令,则P为正交矩阵,经过正交变换X=PY,二次型化为标准型.四、证明题1.已知向量β=(-1,2,s)可由α1=(1,-1,2),α2=(0,1,-1),α3=(2,-3,t)惟一地线性表示,求证:t≠5.SSS_TEXT_QUSTI分值: 7答案:[证明] α1,α2,α3是3个3维向量,如果它们线性无关,则任意一个3维向量均可惟一地由它们线性表示.反之,若它们线性相关,则或者不能表示,或者表示不惟一,而α1,α2,α3要线性无关,由它们组成的矩阵必须是非奇异矩阵,即通过计算得t≠5.1。
2017考研数学线性代数部分真题解析

21题给了⼀个⼆次⾏,还有⼀个未知参数a,和2010年⼀个题很类似,把10倍矩阵变成对⾓矩阵。
这个叫反求问题,以前考察当中出现次数⽐较多,将⼀个⼆次⾏通过正⾓变换变成标准⾏。
然后求a,求正⾓变化矩阵q。
这是⽐较常规的变化。
⼀旦通过正⾓变换变成标准,前⽅系数是特征值,通过这种系数得到特征值是0,通过这个我们可以把a算出来。
因为特征只有0,对应矩阵⾏列是0的。
算出a。
接下来就正⾓矩阵q的时候,就把特征向量,单位化就完事。
这道题拿到11分问题不⼤。
在真题解析⾥,我们讲历年真题⾥练得⽐较熟。
第20题,这个题从计算量来讲,今年线性代数计算量,21题要算⼀下,还得把它进⾏单位化、正⾓化。
没有算具体值是什么。
20题计算量⽐较⼩,但是涉及到证明问题。
20题说了这么⼀件事,数⼀和数三线性代数⼤题是⼀样的。
给了⼀个矩阵A,是三阶矩阵,有三个不同特征值,⼤部分同学应该还是能反应过来,有三个不同特征值。
然后给了阿尔法3,以及就⼀个抽象的⽅程,AX等于β。
这块涉及到抽像⽅程求解的例⼦。
第⼀问解决了第⼆问⾮常容易。
要指明质为2,如何证明。
有三个不同特征值,这⾥涉及到特征值问题,我们说如果抽象矩阵涉及到特征值问题,你当然要从定义出发去处理它。
这⾥只有这么⼀个条件,这个条件怎么去⽤,⽤好了这件事就搞定了。
在我们讲抽样⽅程求解⾥这类问题写过的,⽽且这个东西处理起来和咱们讲的题差不多,移过来阿尔法1+阿尔法2-阿尔法3等于0。
是A乘上它,得到其次线性⽅程解,A×它等等0×它,0是它的特征值,说明0这个特征值是它的单根。
三阶矩阵有三个不同特征值,可以对⾓化,跟对⾓矩阵相似。
有⼀个特征值是0,还有两个特征值不是0,说明对⾓矩阵值是2,A也得是2。
第⼀问就这么证完了。
还是考了对⾓化问题。
第⼆求⽅程⾮其次通解,加上⾮其次可解就可以了。
我们证明了A是2,⽆关个数只有⼀个,就可以作⽤基础解析,K×它,再加上⾮其次特解,有⼀个条件叫,⾮其次⽅程叫做β等于α1+α2+α3。
2017年10月高等教育自学考试《线性代数》试题02198

2017年10月高等教育自学考试《线性代数》试题课程代码:02198一、单项选择题1.设n 阶可逆矩阵C B A ,,满足E ABC =,则=C (D )A .AB B .BAC .A -1B -1D .B -1A -12.设A 为3阶矩阵且r(A )=1,⎪⎪⎪⎭⎫⎝⎛=100610321B ,则r(BA )=(A ) A .0 B .1 C .2 D .33.设向量组)3,2,1(1=α,)2,1,0(2=α,)1,0,0(3=α,)6,3,1(=β,则(C )A .βααα,,,321线性无关B .β不能由321,,ααα线性表示C .β可由321,,ααα线性表示,且表示法惟一D .β可由321,,ααα线性表示,且表示法不惟一4.设A 为2阶矩阵,且053=-E A T ,且A 必有一个特征值为(A )A .35B .53C .53-D .35- 5.二次型212322213212),,(x x x x x x x x f +++=的秩为(C )A .0B .1C .2D .3二、填空题6.行列式103102101100的值为 -2 。
7.设A 为3阶矩阵,1=A ,则A 2-= -8 。
8.设n 阶矩阵A 的所有元素都是1,则r(A )= 1 。
9.设A 为2阶矩阵,将A 的第1行与第2行交换得到矩阵B ,则=+B A 0 。
10.设3维向量T )2,1,3(-=α,T )4,1,3(=β,若向量γ满足βγα32=+,则=γ (3,5,8)T 。
11.设非齐次线性方程组⎪⎩⎪⎨⎧=++=--=+-321321321321x x x x x x x x x λ有惟一解,则数λ的取值范围为1-≠λ。
12.设矩阵⎪⎪⎪⎭⎫⎝⎛=32020001x A 的特征值为1,1,5,则数=x 3 。
13.已知3阶矩阵A 的特征值为1,2,3,且矩阵B 与A 相似,则=+E B 2 100 。
14.已知向量组)3,2,1(1=α,),2,2(2k =α正交,则数=k -2 。
自考本科_线性代数_历年真题[1]
![自考本科_线性代数_历年真题[1]](https://img.taocdn.com/s3/m/83927d3b43323968011c926a.png)
第 1 页全国2010年1月自考线性代数(经管类)试题课程代码:04184说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式==1111034222,1111304z y x zy x则行列式( ) A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥n B.Ax =b (其中b 是m 维实向量)必有唯一解 C.r (A )=mD.Ax =0存在基础解系第 2 页8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2017线性代数试题及答案

(试卷一)一、 填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是 15_______。
2. 若122211211=a aa a ,则=16030322211211a aa a 33. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 R(A)=R(A,b)=n_5.设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是R (A ) < n 8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 09. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k 1 1-2k+1=0二、选择题(本题总计10分,每小题2分) 1. 向量组rααα,,,21 线性相关且秩为s ,则(D)A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶 方阵,且043,02,02=-=+=+E A E A E A ,则=A (A )A.8 B.8-C.34 D.34- 3.设向量组A 能由向量组B 线性表示,则( D )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
C)(A *kA )(B *A k n)(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是B _____。
最新10月自考线性代数(经管类)试题答案

精品文档全国2010年10月自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩A 的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为3阶矩阵,|A|=1,则|-2A T |=( ) A.-8 B.-2 C.2D.82.设矩阵A=⎪⎪⎭⎫⎝⎛-11,B=(1,1),则AB=( )A.0B.(1,-1)C. ⎪⎪⎭⎫ ⎝⎛-11D. ⎪⎪⎭⎫ ⎝⎛--11113.设A 为n 阶对称矩阵,B 为n 阶反对称矩阵,则下列矩阵中为反对称矩阵的是( ) A.AB-BA B.AB+BA C.ABD.BA4.设矩阵A 的伴随矩阵A *=⎪⎪⎭⎫ ⎝⎛4321,则A -1= ( ) A.21-⎪⎪⎭⎫ ⎝⎛--1234 B. 21-⎪⎪⎭⎫ ⎝⎛--4321 C. 21-⎪⎪⎭⎫ ⎝⎛4321 D. 21-⎪⎪⎭⎫ ⎝⎛1324 5.下列矩阵中不是..初等矩阵的是( )精品文档A.⎪⎪⎪⎭⎫ ⎝⎛000010101B. ⎪⎪⎪⎭⎫⎝⎛001010100C. ⎪⎪⎪⎭⎫ ⎝⎛100030001D. ⎪⎪⎪⎭⎫ ⎝⎛1020100016.设A,B 均为n 阶可逆矩阵,则必有( ) A.A+B 可逆 B.AB 可逆 C.A-B 可逆D.AB+BA 可逆7.设向量组α1=(1,2), α2=(0,2),β=(4,2),则 ( ) A. α1, α2,β线性无关 B. β不能由α1, α2线性表示C. β可由α1, α2线性表示,但表示法不惟一D. β可由α1, α2线性表示,且表示法惟一8.设A 为3阶实对称矩阵,A 的全部特征值为0,1,1,则齐次线性方程组(E-A)x=0的基础解系所含解向量的个数为( ) A.0 B.1 C.2D.39.设齐次线性方程组⎪⎩⎪⎨⎧=++λ=--=+-0x x x 0x x x 0x x x 2321321321有非零解,则λ为( )A.-1B.0C.1D.210.设二次型f(x)=x T Ax 正定,则下列结论中正确的是( )A.对任意n 维列向量x,x T Ax 都大于零B.f 的标准形的系数都大于或等于零C.A 的特征值都大于零D.A 的所有子式都大于零二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2017年自考线性代数历年考试试题及答案解析

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
学历类《自考》自考公共课《工程数学-线性代数》考试试题及答案解析

学历类《自考》自考公共课《工程数学-线性代数》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、设v(x,y)在区域D内为u(x,y)的共轭调和函数,则下列函数中为内解析函数的是A、v(x,y)+iu(x,y)B、v(x,y)-iu(x,y)C、u(x,y)-iv(x,y)D、正确答案:B答案解析:暂无解析2、下列命题中,正确的是A、设v1,v2在区域D内均为u的共轭调和函数,则必有v1v2B、解析函数的实部是虚部的共轭调和函数C、若f(z)=u+iv在区域D内解析,则xu为D内的调和函数D、以调和函数为实部与虚部的函数是解析函数正确答案:C答案解析:暂无解析3、设c为任意实常数,那么由调和函数u=x²-y²确定的解析函数f(z)=u+iv是A、iz²+cB、iz²+icC、z²+cD、z²+ic正确答案:D答案解析:暂无解析4、设f(z)在单连通域B内处处解析且不为零,c为B内任何一条简单闭曲线,则积分A、等于2πiB、等于-2πiC、等于0D、不能确定正确答案:C答案解析:暂无解析5、设c为正向圆周|z|1/2,则A、2π(3cos1-sin1)B、0C、6πicos1D、-2πsin1正确答案:B答案解析:暂无解析6、设c为正向圆周|z|=1/2,则A、2π(3cos-sin1)B、0C、6paiicos1D、-2πsin1正确答案:B答案解析:暂无解析7、设c为正向圆周|z|=2,则A、-sin1B、sin1C、-2πisin1D、2πisin1正确答案:C答案解析:暂无解析8、设:c1:|z|为负向,c2:|z|3正向,则A、-2πiB、0C、2πiD、4πi正确答案:B答案解析:暂无解析9、设c为不经过点1与1的正向简单闭曲线,则A、B、C、0D、(A)(B)(C)都有可能正确答案:D答案解析:暂无解析10、设c为从原点沿y²=x至1+i的弧段,则A、B、C、D、正确答案:D答案解析:暂无解析11、设X为随机变量,其方差存在,c为任意非零常数,则下列等式中正确的是A、D(X+c)=D(X)B、D(X+c)=D(X)+cC、D(X-c)=D(X)-cD、D(cX)=cD(X)正确答案:A答案解析:暂无解析12、设随机变量X~N(u,4²),Y~N(u,5²),P1=P{X≤u-4},P2=P{Y≥u+5},则有A、对于任意的u,P1=P2B、对于任意的u,P1P2正确答案:A答案解析:暂无解析13、下列各函数中可以作为某个随机变量的概率密度函数的是A、B、C、D、正确答案:D答案解析:暂无解析14、对于任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则有A、X和Y独立B、X和Y不独立C、D(X+Y)=D(X)+D(Y)D、D(XY)=D(X)D(Y)正确答案:C答案解析:暂无解析15、某人打靶3发,事件Ai表示“击中i发”,i=0,1,2,3.那么事件A=A1∪A2∪A3表示A、全部击中B、至少有一发击中C、必然击中D、击中3发正确答案:B答案解析:暂无解析16、某人打靶3发,事件Ai表示“击中i发”,i=0,1,2,3.那么事件A=A1∪A2∪A3表示A、全部击中B、至少有一发击中C、必然击中D、击中3发正确答案:B答案解析:暂无解析17、对于任意两个随机变量X和Y,若E(XY)=E(X)E(Y),则有A、X和Y独立B、X和Y不独立C、D(X+Y)=D(X)+D(Y)D、D(XY)=D(X)D(Y)正确答案:C答案解析:暂无解析18、下列各函数中可以作为某个随机变量的概率密度函数的是A、B、C、D、正确答案:D答案解析:暂无解析19、设随机变量X~N(u,4²),Y~N(u,5²),P1=P{X≤u-4},P2=P{Y≥u+5},则有A、对于任意的u,P1=P2B、对于任意的u,P1P2正确答案:A答案解析:暂无解析20、设X为随机变量,其方差存在,c为任意非零常数,则下列等式中正确的是A、D(X+c)=D(X)B、D(X+c)=D(X)+cC、D(X-c)=D(X)-cD、D(cX)=cD(X)正确答案:A答案解析:暂无解析21、设3阶矩阵A的特征值为-1,1,2,它的伴随矩阵记为A*,则|A*+3A–2E|=正确答案:9答案解析:暂无解析22、设有3个元件并联,已知每个元件正常工作的概率为P,则该系统正常工作的概率为正确答案:1–(1–P)³答案解析:暂无解析23、设随机变量X的概率密度函数为f(x)=2x0xA,f(x)=0, 则概率正确答案:3/4答案解析:暂无解析24、设二维连续型随机变量(X,Y)的联合概率密度函数为,则系数k=正确答案:12答案解析:暂无解析25、设c为正向圆周|z|=3,则正确答案:6πi答案解析:暂无解析26、解析函数在圆心处的值等于它在圆周上的正确答案:平均值答案解析:暂无解析27、设u(x,y)的共轭调和函数为v(x,y),那么v(x,y)的共轭调和函数为正确答案:-u(x,y)答案解析:暂无解析28、发报台分别以概率0.6和0.4发出信号“1”和“0”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年10月高等教育自学考试全国统一命题考试
线性代数(经管类)试卷
(课程代码04184)
本试卷共4页,满分100分,考试时间150分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B 铅笔将“答题卡”的相应代码涂黑
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
说明:在本卷中,T A 表示矩阵A 的转置矩阵,*
A 表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式,r(A)表示矩阵A 的秩。
第一部分选择题
一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.设B A ,是n 阶可逆矩阵,下列等式中正确的是
A.()
111---+=+B A B A B.()111---=B A AB C.()111----=-B A B A D.()111
---=A B AB 2.设A 为3阶矩阵且⎪⎪⎪⎭
⎫ ⎝⎛==100610321,1)(B A r 则=)(BA r A.0 B.1 C.2 D.3
3.设向量组),6,3,1(),1,0,0(),2,1,0(),3,2,1(321====βa a a 则
A.β,,,321a a a 线性无关
B.β不能由321,,a a a 线性表示
C.β可由321,,a a a 线性表示,且表示法惟一
22.已知()31212322213212224,,x x x tx x x x x x x f -+++=为正定二次型,(1)确定t 的取值范围;(2)写出二次型()321,,x x x f 的规范形。
四、证明题:本题7分。
23.证明矩阵⎪⎪⎪⎭⎫ ⎝⎛=111011001
A 不能对角化。