历年考研数学线代真题1987-201X(最新最全)

合集下载

1987-2017近二十年考研数学一真题

1987-2017近二十年考研数学一真题

1987年全国硕士研究生入学统一考试 数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________. (3)与两直线 1y t =-+ 及121111x y z +++==都平行且过原点的平面方程为_____________. (4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx xx dy -+-⎰Ñ= _____________.(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B 四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设2()()lim 1,()x a f x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值 (D)()f x 的导数不存在(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值 (A)依赖于s 和t(B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)n n k n n ∞=+-∑ (A)发散(B)绝对收敛 (C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a - (D)n a六、(本题满分10分)求幂级数1112n n n x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分)求曲面积分其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分)问,a b 为何值时,现线性方程组有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),x x f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤, 求2Z X Y=+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域.(3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且310(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x = 22x 1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是 (A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小(C)比x ∆低阶的无穷小(D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值(B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x yu yf xg y x=+其中函数f 、g 具有二阶连续导数,求222.u u x y x x y ∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A 八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知 则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)-(B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中12()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12-(B)14-(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分) (1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数. 五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln exx π=-⎰在区间(0,)+∞内有且仅有两个不同实根. 七、(本题满分6分) 问λ为何值时,线性方程组 有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA 为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________. 十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________. (2)设a 为非零常数,则lim()xx x a x a→∞+-=_____________.(3)设函数()f x =10 11x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),x xF x f t dt -=⎰则()F x '等于(A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+ (C)e (e )()x x f f x ---(D)e (e )()x x f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是 (A)1![()]n n f x + (B)1[()]n n f x + (C)2[()]n f x(D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n ∞=∑ (A)绝对收敛(B)条件收敛 (C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim 2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα (B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解). 四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'> 七、(本题满分6分) 设四阶矩阵 且矩阵A 满足关系式其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分) 质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于 (A)3(B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E(D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20lim ).x π+→(2)设n r 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n r的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y z x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体. 四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式. 八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________. (2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________. 十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为求随机变量2ZX Y=+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e cos()0x y xy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x -+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________. (4)微分方程tan cos y y x x '+=的通解为y =_____________. (5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i ia b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2(B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(n n a n ∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为 (A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂(3)设()f x = 21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =. 六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫ ⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________. 十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求ZX Y=+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)x F x dt x =->⎰的单调减少区间为_____________.(2)由曲线222120x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰ (3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π (B)4π (C)3π(D)2π (4)设曲线积分[()e]sin ()cos xLf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x -+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1 (D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x→∞+ (2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和. 六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.b a a b > 七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵. 八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关. 九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________. 十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,x xu y -=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M <<(B)M P N << (C)N M P << (D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()tx t y t t udu ==-⎰,求dydx、22d y dx 在t =.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛. 七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________. (3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>-> (3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1n n u =-则级数(A)1n n u ∞=∑与21nn u ∞=∑都收敛(B)1n n u ∞=∑与21nn u ∞=∑都发散(C)1n n u ∞=∑收敛,而21nn u ∞=∑发散(D)1n n u ∞=∑收敛,而21nn u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数. 五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证: (1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4, 则2X 的数学期望2()E X =____________. (2)设X 和Y 为两个随机变量,且 则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x =e 0x - 00x x ≥<, 求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________. (4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1 (B)0 (C)1 (D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a nλ∞=-∑(A)绝对收敛(B)条件收敛(C)发散 (D)散敛性与λ有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +===L 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2n n n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式. 七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,T ξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T=ξξ(2)当1T =ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)(2)求随机变量X ().E X 1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2013sin coslim(1cos )ln(1)x x x x x x →+++=_____________.(2)设幂级数1n n n a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为_____________.(3)对数螺线e θρ=在点2(,)(e ,)2ππρθ=处切线的直角坐标方程为_____________.(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________. (5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)。

1987考研数学(改革前不分数一二三)真题+答案

1987考研数学(改革前不分数一二三)真题+答案
郝海龙:考研数学复习大全·配套光盘·1987 年数学试题参考解答
1987 年全国硕士研究生入学统一考试 数学试题参考解答
数 学(试卷Ⅰ)
一、填空题(每小题 3 分,满分 15 分. 只写答案不写解题过程)
(1) 与两直线
x 1
y
1
t
z 2 t

x 1 y 2 z 1 121
都平行,且过原点的平面方程是
1987 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·1987 年数学试题参考解答
(3) 已知连续随机变量 X 的密度为 f (x) 1 ex2 2x1 ,则 X 的数学期望为
方差为 1 / 2 .
1 ;X 的
十一、(本题满分 6 分)
设随机变量 X,Y 相互独立,其概率密度函数分别为
十、填空题(每小题 2 分,满分 6 分)
(1) 在一次试验中事件 A 发生的概率为 p ,现进行 n 次独立试验,则 A 至少发生一次的概率
为 1 (1 p)n ;而事件 A 至多发生一次的概率为 [1 (n 1) p](1 p)n1 .
(2) 三个箱子,第一个箱子有 4 个黑球 1 个白球,第二个箱子中有 3 个白球 3 个黑球,第三 个箱子中有 3 个黑球 5 五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为 53/120 ,已知取出的是白球,此球属于第二箱的概率是 20 / 53 .
f13 )e y
ey
f1
f21 xey
f23
.
四、(本题满分 8 分)【 同数学Ⅰ、第四题 】
五、(本题满分 12 分)【 同数学Ⅰ、第五题 】
六、(本题满分 10 分)【 同数学Ⅰ、第六题 】

历年考研数学一真题及答案(1987-)

历年考研数学一真题及答案(1987-)

历年考研数学一真题1987-2014(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数2xy x取得极小值.(2)由曲线lny x与两直线e1y x及0y所围成的平面图形的面积是_____________.1x(3)与两直线1y t2z t及121111x y z都平行且过原点的平面方程为_____________.(4)设L为取正向的圆周229,x y则曲线积分2(22)(4)Lxy y dx x x dy= _____________.(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),ααα则向量(2,0,0)β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a与,b使等式221lim1sinxxtdtbx x a t成立.三、(本题满分7分) (1)设f、g为连续可微函数,(,),(),uf x xy vg xxy 求,.u v x x (2)设矩阵A和B 满足关系式2,AB =AB 其中301110,014A求矩阵.B 四、(本题满分8分) 求微分方程26(9)1y y a y的通解,其中常数0.a五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设2()()lim1,()x a f x f a xa 则在x a 处(A)()f x 的导数存在,且()0f a (B)()f x 取得极大值(C)()f x 取得极小值(D)()f x 的导数不存在(2)设()f x 为已知连续函数,(),st I tf tx dx 其中0,0,t s 则I 的值(A)依赖于s 和t(B)依赖于s 、t 和x(C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k则级数21(1)nn k nn(A)发散(B)绝对收敛(C)条件收敛(D)散敛性与k的取值有关(4)设A 为n 阶方阵,且A的行列式||0,a A 而*A是A 的伴随矩阵,则*||A 等于(A)a(B)1a(C)1n a(D)na六、(本题满分10分)求幂级数1112n nn xn 的收敛域,并求其和函数.七、(本题满分10分)求曲面积分2(81)2(1)4,Ix ydydzy dzdxyzdxdy 其中是由曲线113()zy yf x x绕y 轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于.2八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x 1,证明在(0,1)内有且仅有一个,x 使得().f x x九、(本题满分8分)问,a b 为何值时,现线性方程组12342342341234221(3)2321x x x x x x x x a x x b x x x ax 有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)设在一次实验中,事件A 发生的概率为,p 现进行n次独立试验,则A 至少发生一次的概率为____________;而事件A至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为2211()e,xx f x 则X的数学期望为____________,X的方差为____________.十一、(本题满分6分)设随机变量,X Y相互独立,其概率密度函数分别为()X f x 101x其它,()Y f y e 0y00y y, 求2ZX Y的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分) (1)求幂级数1(3)3nnn x n 的收敛域.(2)设2()e ,[()]1xf x f x x 且()x ,求()x 及其定义域.(3)设为曲面2221x y z 的外侧,计算曲面积分333.Ix dydzy dzdxz dxdy 二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),txxf t t x则()f t =_____________.(2)设()f x 连续且31(),x f t dt x 则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]上定义为()f x 22x101x x,则的傅里叶()Fourier 级数在1x处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,AB则行列式AB= _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x 则x 时,()f x 在0x 处的微分dy 是(A)与x等价的无穷小(B)与x同阶的无穷小(C)比x低阶的无穷小(D)比x高阶的无穷小(2)设()yf x 是方程240y y y 的一个解且00()0,()0,f x f x 则函数()f x 在点0x 处(A)取得极大值(B)取得极小值(C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,xyzR z xyzR xyz则(A)124xdv dv (B)124ydvydv(C)124zdvzdv (D)124xyzdv xyzdv(4)设幂级数1(1)nn n a x 在1x 处收敛,则此级数在2x 处(A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n维向量组12,,,(3)s s n ααα线性无关的充要条件是(A)存在一组不全为零的数12,,,,s k k k 使1122s sk k k ααα(B)12,,,s ααα中任意两个向量均线性无关(C)12,,,s ααα中存在一个向量不能用其余向量线性表示(D)12,,,s ααα中存在一个向量都不能用其余向量线性表示四、(本题满分6分) 设()(),xy uyf xg yx其中函数f、g 具有二阶连续导数,求222.uuxyxx y五、(本题满分8分) 设函数()yy x 满足微分方程322e ,xy y y 其图形在点(0,1)处的切线与曲线21yxx 在该点处的切线重合,求函数().y y x 六、(本题满分9分)设位于点(0,1)的质点A对质点M的引力大小为2(0k kr为常数,r为A 质点与M之间的距离),质点M 沿直线22yxx自(2,0)B 运动到(0,0),O 求在此运动过程中质点A对质点M的引力所作的功.七、(本题满分6分)已知,AP BP 其中100100000,210,001211BP 求5,.A A 八、(本题满分8分)已知矩阵20000101xA与2000001y B 相似. (1)求x 与.y (2)求一个满足1PAPB的可逆阵.P 九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x 证明:在(,)a b 内存在唯一的,使曲线()yf x 与两直线(),yf xa所围平面图形面积1S 是曲线()y f x 与两直线(),y f x b所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X服从均值为10,均方差为0.02的正态分布,已知221()e,(2.5)0.9938,2uxx du 则X落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X的概率密度函数为21(),(1)X f x x 求随机变量31Y X 的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)已知(3)2,f 则(3)(3)lim2hf h fh=_____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt则()f x=_____________.(3)设平面曲线L为下半圆周21,y x则曲线积分22()Lx y ds=_____________.(4)向量场div u在点(1,1,0)P处的散度div u=_____________.(5)设矩阵300100140,010,003001A I则矩阵1(2)A I=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当0x时,曲线1siny xx(A)有且仅有水平渐近线(B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y上点P处的切平面平行于平面2210,x y z则点的坐标是(A)(1,1,2)(B)(1,1,2)(C)(1,1,2)(D)(1,1,2)(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y (B)1122123()c y c y c c y (C)1122123(1)c y c y c c y (D)1122123(1)c y c y c c y (4)设函数2(),01,f x x x 而1()sin ,,n n S x b n x x其中102()sin ,1,2,3,,n b f x n xdx n 则1()2S 等于(A)12(B)14(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,A 则A 中(A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分) (1)设(2)(,),zf xy g x xy 其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y(2)设曲线积分2()cxy dx y x dy 与路径无关,其中()x 具有连续的导数,且(0)0,计算(1,1)2(0,0)()xy dxy x dy 的值.(3)计算三重积分(),xz dv 其中是由曲面22zxy与221zx y所围成的区域.四、(本题满分6分) 将函数1()arctan1x f x x展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),x f x x x t f t dt 其中f为连续函数,求().f x 六、(本题满分7分)证明方程ln 1cos 2ex xxdx在区间(0,)内有且仅有两个不同实根. 七、(本题满分6分)问为何值时,线性方程组13x x 123422x x x 1236423x x x 有解,并求出解的一般形式.八、(本题满分8分)假设为n 阶可逆矩阵A的一个特征值,证明(1)1为1A 的特征值.(2)A为A 的伴随矩阵*A的特征值.九、(本题满分9分)设半径为R的球面的球心在定球面2222(0)xyza a上,问当R 为何值时,球面在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A的概率()0.5,P A随机事件B的概率()0.6P B及条件概率(|)0.8,P B A则和事件A B的概率()P A B=____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量在(1,6)上服从均匀分布,则方程210x x有实根的概率是____________.十一、(本题满分6分)设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.试求随机变量23Z X Y的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2xt(1)过点(1,21)M且与直线34y t垂直的平面方程是_____________.1zt(2)设a为非零常数,则lim()xxxa xa=_____________. (3)设函数()f x 1011x x,则[()]f f x =_____________. (4)积分222ey x dx dy的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e()(),xxF x f t dt 则()F x 等于(A)e(e )()xxf f x (B)e(e )()xxf f x (C)e (e )()xxf f x (D)e (e )()x x f f x(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x 则当n 为大于2的正整数时,()f x 的n阶导数()()n f x 是(A)1![()]n n f x (B)1[()]n n f x (C)2[()]nf x (D)2![()]nn f x (3)设a 为常数,则级数21sin()1[]n na nn(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a 的取值有关(4)已知()f x 在x 的某个邻域内连续,且()(0)0,lim2,1cos x f x f x则在点0x 处()f x (A)不可导(B)可导,且(0)f (C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组AXb的两个不同的解1,α、2α是对应其次线性方程组AX的基础解析1,k 、2k 为任意常数,则方程组AX b的通解(一般解)必是(A)1211212()2k k ββααα(B)1211212()2k k ββααα(C)1211212()2k k ββαββ(D)1211212()2k k ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求12ln(1).(2)x dx x (2)设(2,sin ),zf xy y x 其中(,)f u v 具有连续的二阶偏导数,求2.zx y(3)求微分方程244exy y y 的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SIyzdzdxdxdy其中S 是球面2224xyz外侧在z的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b 证明在(,)a b 内至少存在一点,使得()0.f 七、(本题满分6分)设四阶矩阵1100213401100213,001100210102BC且矩阵A 满足关系式1()A E C B CE其中E为四阶单位矩阵1,C 表示C 的逆矩阵,C表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448fx x x x x x x x x 成标准型.九、(本题满分8分)质点P 沿着以AB为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F作用(见图).F的大小等于点P与原点O 之间的距离,其方向垂直于线段OP且与y轴正向的夹角小于.2求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X的概率密度函数1()e,2xf x x则X 的概率分布函数()F x =____________.(2)设随机事件A、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X服从参数为2的泊松()Poisson 分布,即22e{},0,1,2,,!kP X k k k 则随机变量32ZX的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x yx内服从均匀分布,求关于X的边缘概率密度函数及随机变量21Z X的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x tyt,则22dydx=_____________.(2)由方程2222xyzxyz所确定的函数(,)zz x y 在点(1,0,1)处的全微分dz=_____________. (3)已知两条直线的方程是1212321:;:.101211x y zx y z l l 则过1l 且平行于2l 的平面方程是_____________.(4)已知当x 时123,(1)1ax 与cos1x 是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011A则A的逆阵1A=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt 则()f x 等于(A)e ln 2x(B)2eln 2x (C)eln 2x(D)2eln 2x(3)已知级数12111(1)2,5,n n nn n a a 则级数1n n a 等于(A)3 (B)7 (C)8 (D)9(4)设D 是平面xoy上以(1,1)、(1,1)和(1,1)为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxyx y dxdy 等于(A)12cos sin D x ydxdy (B)12D xydxdy(C)14(cos sin )D xy x y dxdy(D)0(5)设n 阶方阵A 、B 、C 满足关系式,ABCE 其中E 是n 阶单位阵,则必有(A)ACB E(B)CBA E(C)BAC E(D)BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20lim(cos ).xx(2)设n 是曲面222236xyz在点(1,1,1)P 处的指向外侧的法向量,求函数2268xy u z在点P 处沿方向n 的方向导数.(3)22(),xyz dv 其中是由曲线220y z x绕z轴旋转一周而成的曲面与平面4z所围城的立体.四、(本题满分6分) 过点(0,0)O 和(,0)A 的曲线族sin (0)ya x a中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx xy dy 的值最小.五、(本题满分8分)将函数()2(11)f x x x 展开成以2为周期的傅里叶级数,并由此求级数211n n的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dxf 证明在(0,1)内存在一点,c 使()0.f c 七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)aa αααα及(1,1,3,5).b β(1)a、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A是n阶正定阵,E是n阶单位阵,证明A E的行列式大于 1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X服从均值为2、方差为2的正态分布,且{24}0.3,P X 则{0}P X=____________.(2)随机地向半圆202(y ax x a为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于4的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y的密度函数为(,)f x y(2)2e0,0x y x y其它求随机变量2Z X Y的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x由方程e cos()0x y xy确定,则dydx =_____________.(2)函数222ln()u x y z在点(1,2,2)M处的梯度grad Mu=_____________.(3)设()f x211xxx,则其以2为周期的傅里叶级数在点x处收敛于_____________.(4)微分方程tan cosy y x x的通解为y=_____________.(5)设111212121212,nnn n n na b a b a ba b a b a ba b a b a bA其中0,0,(1,2,,).i ia b i n则矩阵A的秩()r A=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x时,函数1211e1xxx的极限(A)等于2 (B)等于0(C)为(D)不存在但不为(2)级数1(1)(1cos)(nn an常数0)a(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a有关(3)在曲线23,,x t y t z t的所有切线中,与平面24x y z 平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x则使()(0)nf存在的最高阶数n为(A)0(B)1(C)2(D)3(5)要使12100,121ξξ都是线性方程组AX0的解,只要系数矩阵A为(A)212(B)201011(C)102011(D)011422011三、(本题共3小题,每小题5分,满分15分) (1)求20esin 1lim.11xx x x(2)设22(e sin ,),xzf y x y 其中f具有二阶连续偏导数,求2.zx y(3)设()f x 21exx 00x x,求31(2).f x dx 四、(本题满分6分)求微分方程323exyy y 的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydzyax dzdxzay dxdy 其中为上半球面222zaxy的上侧.六、(本题满分7分)设()0,(0)0,f x f 证明对任何120,0,x x 有1212()()().f x x f x f x 七、(本题满分8分)在变力Fyzizxjxyk的作用下,质点由原点沿直线运动到椭球面2222221x y z a bc上第一卦限的点(,,),M问当、、取何值时,力F 所做的功W最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,对应的特征向量依次为1231111,2,3,149ξξξ又向量12.3β(1)将β用123,,ξξξ线性表出.(2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC 则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X服从参数为1的指数分布,则数学期望2{e}XE X =____________.十一、(本题满分6分)设随机变量X与Y独立,X服从正态分布2(,),N Y服从[,]上的均匀分布,试求Z X Y的概率分布密度(计算结果用标准正态分布函数表示,其中221()e)2txx dt.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数11()(2)(0)xF x dt x t的单调减少区间为_____________.(2)由曲线223212x y z绕y 轴旋转一周得到的旋转面在点(0,3,2)处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x的傅里叶级数展开式为01(cos sin ),2n n n a a nxb nx 则其中系数3b 的值为_____________.(4)设数量场222ln ,u xyz 则div(grad)u =_____________.(5)设n 阶矩阵A的各行元素之和均为零,且A的秩为1,n则线性方程组AX的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 234()sin(),(),x f x t dt g x xx 则当x 时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线22222()xy xy所围成的区域面积可用定积分表示为(A)402cos 2d(B)404cos 2d(C)402cos 2d(D)2401(cos 2)2d(3)设有直线1158:121x y z l 与2:l 623x y yz 则1l 与2l 的夹角为(A)6(B)4(C)3(D)2(4)设曲线积分[()e ]sin ()cos x Lf t ydxf x ydy与路径无关,其中()f x 具有一阶连续导数,且(0)0,f 则()f x 等于(A)ee 2xx(B)e e 2xx(C)ee 12x x(D)ee 12x x(5)已知12324,369t QP 为三阶非零矩阵,且满足0,PQ则(A)6t时P 的秩必为 1 (B)6t 时P 的秩必为 2 (C)6t 时P 的秩必为 1 (D)6t 时P 的秩必为 2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).xx xx(2)求e .e1xx x dx(3)求微分方程22,x yxy y 满足初始条件11x y的特解.四、(本题满分6分) 计算22,xzdydz yzdzdxz dxdy 其中是由曲面22zxy与222zxy所围立体的表面外侧.五、(本题满分7分) 求级数20(1)(1)2n nn nn 的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)上函数()f x 有连续导数,且()0,(0)0,f x kf 证明()f x 在(0,)内有且仅有一个零点.(2)设,bae 证明.baab 七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a通过正交变换化成标准形22212325,fy yy 求参数a及所用的正交变换矩阵.八、(本题满分6分)设A 是nm矩阵,B 是mn矩阵,其中,n m I是n阶单位矩阵,若,ABI 证明B 的列向量组线性无关.九、(本题满分6分)设物体A从点(0,1)出发,以速度大小为常数v沿y 轴正向运动.物体B从点(1,0)与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X服从(0,2)上的均匀分布,则随机变量2YX在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X的概率分布密度为1()e,.2xf x x (1)求X 的数学期望EX和方差.DX (2)求X 与X 的协方差,并问X与X 是否不相关?(3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)11lim cot ()sin x xx= _____________.(2)曲面e 23x z xy 在点(1,2,0)处的切平面方程为_____________.(3)设esin ,xxuy则2ux y在点1(2,)处的值为_____________.(4)设区域D为222,xyR 则2222()Dx y dxdy ab=_____________.(5)已知11[1,2,3],[1,,],23αβ设,Aαβ其中α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x Mxdx Nxx dx Px x x dx x则有(A)NPM(B)M P N(C)NMP(D)P M N(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y 、00(,)y f x y 存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,且级数21nn a收敛,则级数21(1)n nn a n(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与有关(4)2tan (1cos )lim2,ln(12)(1)xx a x b x c x d e其中220,ac则必有(A)4b d(B)4b d(C)4a c(D)4a c(5)已知向量组1234,,,αααα线性无关,则向量组1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)11lim cot ()sin x xx= _____________.(2)曲面e23xz xy在点(1,2,0)处的切平面方程为_____________.(3)设esin ,xx u y则2ux y在点1(2,)处的值为_____________.(4)设区域D为222,xyR 则2222()Dx y dxdy ab=_____________.(5)已知11[1,2,3],[1,,],23αβ设,Aαβ其中α是α的转置,则nA=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x Mxdx N x x dx Px x x dx x 则有(A)NPM(B)M P N(C)NMP(D)P M N(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y 、00(,)y f x y 存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,且级数21nn a收敛,则级数21(1)n nn a n(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与有关(4)2tan (1cos )lim2,ln(12)(1)xx a x b x c x d e其中220,ac则必有(A)4bd(B)4b d(C)4a c(D)4a c(5)已知向量组1234,,,αααα线性无关,则向量组(A)12233441,,,αααααααα线性无关(B)12233441,,,αααααααα线性无关(C)12233441,,,αααααααα线性无关(D)12233441,,,αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()1cos()cos 2t x t yt t uduu,求dy dx、22d y dx在2t的值.(2)将函数111()ln arctan 412x f x xxx展开成x的幂级数.(3)求.sin(2)2sin dxx x四、(本题满分6分) 计算曲面积分2222,Sxdydz z dxdy xyz其中S是由曲面222xyR及,(0)z R z R R两平面所围成立体表面的外侧.五、(本题满分9分) 设()f x 具有二阶连续函数,(0)0,(0)1,f f 且2[()()][()]0xy xy f x y dxf x x y dy为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点x 的某一邻域内具有二阶连续导数,且0()lim0,x f x x证明级数11()n f n绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕x 轴旋转一周所成的旋转曲面为.S 求由S及两平面0,1zz所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x ,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,A是A的转置矩阵,当*AA时,证明0.A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB 且(),P A p 则()P B =____________.(2)设相互独立的两个随机变量,X Y具有同一分布率,且X 的分布率为X1P1212则随机变量max{,}Z X Y 的分布率为____________.十一、(本题满分6分)设随机变量X和Y分别服从正态分布2(1,3)N 和2(0,4),N 且X与Y 的相关系数1,2xy设,32X Y Z(1)求Z 的数学期望EZ和DZ 方差.(2)求X 与Z 的相关系数.xz(3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)x x x =_____________.(2)202cos xd x t dt dx= _____________.(3)设()2,a b c 则[()()]()ab bc ca =_____________.(4)幂级数2112(3)n nnn nx的收敛半径R=_____________. (5)设三阶方阵,A B满足关系式16,A BAA BA 且1003100,4107A 则B=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 32102103x y z xyz,及平面:4220,xyz则直线L(A)平行于(B)在上(C)垂直于(D)与斜交(2)设在[0,1]上()0,f x 则(0),(1),(1)(0)f f f f 或(0)(1)f f 的大小顺序是(A)(1)(0)(1)(0)f f f f (B)(1)(1)(0)(0)f f f f (C)(1)(0)(1)(0)f f f f (D)(1)(0)(1)(0)f f f f (3)设()f x 可导,()()(1sin ),F x f x x 则(0)0f 是()F x 在0x处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设1(1)ln(1),nnu n则级数(A)1n n u 与21nn u 都收敛(B)1n n u 与21nn u都发散(C)1n n u 收敛,而21nn u发散(D)1n n u 收敛,而21nn u发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a AB P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B (D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yuf x y z x z y x 其中,f 都具有一阶连续偏导数,且0.z求.du dx(2)设函数()f x 在区间[0,1]上连续,并设10(),f x dxA 求110()().xdxf x f y dy 四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS 其中为锥面22zxy在柱体222xyx 内的部分.(2)将函数()1(02)f x xx展开成周期为4的余弦函数.五、(本题满分7分) 设曲线L 位于平面xOy的第一象限内,L 上任一点M 处的切线与y轴总相交,交点记为.A 已知,MAOA 且L 过点33(,),22求L 的方程.六、(本题满分8分) 设函数(,)Q x y 在平面xOy上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydxQ x y dyxydxQ x y dy 求(,).Q x y 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b 试证:(1)在开区间(,)a b 内()0.g x (2)在开区间(,)a b 内至少存在一点,使()().()()f fg g八、(本题满分7分)设三阶实对称矩阵A的特征值为1231,1,对应于1的特征向量为11,1ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足(AAI I是n 阶单位矩阵,A是A 的转置矩阵),0,A 求.AI 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P XYP X P Y 则{max(,)0}P X Y ____________.十一、(本题满分6分)设随机变量X的概率密度为()X f x e 0x00x x,求随机变量eXY的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xxx a x a 则a =_____________.(2)设一平面经过原点及点(6,3,2),且与平面428xyz垂直,则此平面方程为_____________.(3)微分方程22exy y y的通解为_____________.(4)函数22ln()u x yz 在点(1,0,1)A 处沿点A指向点(3,2,2)B 方向的方向导数为_____________.(5)设A是43矩阵,且A的秩()2,r A 而10220,103B则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()xay dx ydyxy 为某函数的全微分,a 则等于(A)-1(B)0(C)1(D)2(2)设()f x 具有二阶连续导数,且()(0)0,lim1,xf x f x则(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()yf x 的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()yf x 的拐点(3)设0(1,2,),n a n 且1nn a 收敛,常数(0,),2则级数21(1)(tan)nnn n a n(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x xt f t dt 且当x 时,()F x 与kx 是同阶无穷小,则k 等于(A)1(B)2(C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b (B)12341234a a a ab b b b (C)12123434()()a ab b a a b b (D)23231414()()a ab b a a b b 三、(本题共2小题,每小题5分,满分10分)。

全国硕士研究生入学统一考试数学(一)历年真题(1987-2010)

全国硕士研究生入学统一考试数学(一)历年真题(1987-2010)



z

y 1
1 y 3 绕 y 轴旋转一周而成的曲面,其法向量与 y 轴正向的夹角

x0
恒大于 . 2
八、(本题满分 10 分)
设函数 f (x) 在闭区间 [0,1] 上可微,对于 [0,1] 上的每一个 x, 函数 f (x) 的值都在开区间 (0,1) 内,且
f (x) 1,证明在 (0,1) 内有且仅有一个 x, 使得 f (x) x.
x
x
x3 1
(2)设 f (x) 连续且 f (t)dt x, 则 f (7) =_____________. 0
(3)设周期为 2 的周期函数,它在区间 (1,1] 上定义为 f (x) 2 1 x 0 ,则的傅里叶 (Fourier) x2 0 x 1
级数在 x 1 处收敛于_____________.
设函数 f (x) 在区间 [a, b] 上连续,且在 (a,b) 内有 f (x) 0, 证明:在 (a,b) 内存在唯一的 , 使曲线 y f (x) 与两直线 y f ( ), x a 所围平面图形面积 S1 是曲线 y f (x) 与两直线 y f ( ), x b 所围 平面图形面积 S2 的 3 倍.
设函数 y y(x) 满足微分方程 y 3y 2y 2ex, 其图形在点 (0,1) 处的切线与曲线 y x2 x 1 在该点处的切线重合,求函数 y y(x).
六、(本题满分 9 分)
设位于点 (0,1)
的质点
A 对质点
M
的引力大小为
k r2
(k
0 为常数
,r
(3)设随机变量 X 服从均值为 10,均方差为 0.02 的正态分布,已知

历年考研数学线代真题1987-201X(最新最全)

历年考研数学线代真题1987-201X(最新最全)

历年考研数学一真题1987-20161987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知三维向量空间的基底为 a (1,1,0), 02 (1,0,1), «3 (0,1,1),则向量B(2, 0, 0)在此基底下的坐标是______________ .三、(本题满分7分)3 0 1(2)设矩阵A和B满足关系式AB = A 2B,其中A 1 1 0 ,求矩阵B.0 1 4五、选择题(本题共4小题,每小题3分,满分12分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(4)设A为n阶方阵,且A的行列式|A | a 0,而A*是A的伴随矩阵,贝U | A* |等于(A)a (B)1 a(C)a n1(D)a九、(本题满分8分)作X3 X4 0问a,b为何值时,现线性方程组X2 2x3 2X4 1x(a 3)X3 2X4 b3x-i 12x2 X3 ax4 1 有唯一解,无解,有无穷多解?并求出有无穷多解时的通解1988年全国硕士研究生入学统一考试数学(一)试卷二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)⑷设4阶矩阵A [a, Y, Y3, Y],B [卩,Y, 丫3, Y],其中讥Y, Y, Y均为4维列向量,且已知行列式|A| 4,| B| 1,则行列式A B = .三、选择题(本题共5小题,每小题3分,满分15分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)n维向量组a, a丄,a s(3 s n)线性无关的充要条件是(A) 存在一组不全为零的数人*2,L ,k s,使k1 a k? a L k s a 0(B) a, a2丄,a中任意两个向量均线性无关(C) a, a2,L , a s中存在一个向量不能用其余向量线性表示(D) a, a2,L , a s中存在一个向量都不能用其余向量线性表示七、(本题满分6分)1 0 0 1 0 0已知AP BP ,其中B 0 0 0 ,P 2 1 0 ,求A,A50 0 1 2 1 1八、(本题满分8分)2 0 0 2 0 0已知矩阵A 0 0 1 与B0 y 0相似.0 1 x 0 0 11 0 00 1 0 ,则矩阵(A 2I) 1= ________________ 0 0 1二、 选择题(本题共5小题,每小题3分,满分15分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)设A 是n 阶矩阵且A 的行列式|A 0,则A 中(A)必有一列元素全为0(B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合(D )任一列向量是其余列向量的线性组合三、 (本题共3小题,每小题5分,满分15分) 七、(本题满分6分)% X 3问为何值时,线性方程组4X 1 X 2 2X 32有解,并求出解的一般形式 6x-i x 2 4x 323八、(本题满分8分)假设 为n 阶可逆矩阵A 的一个特征值,证明 (1)-为A 1的特征值.⑵A 为A 的伴随矩阵A *的特征值.3 00 (5)设矩阵A14 0,1 0 03(5)已知向量组 a (123,4), a (2,3,4,5), a (3,4,5,6), a (4,5,6,7), 则该向量组的秩是 _______________ .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)已知目、g 是非齐次线性方程组AX b 的两个不同的解,a 、a 是对应其次线性方程组AX0的基础解析,K > k 为任意常数,则方程组AX b的通解(一般解)必是且矩阵A 满足关系式A (E C -B )C E其中E 为四阶单位矩阵,C 1表示C 的逆矩阵,C 表示C 的转置矩阵•将上述关系式化简并求矩阵A.八、(本题满分8分) 求一个正交变换化二次型f x 2 4x ; 4x ( 4x 1x 2 4x^3 8x 2x 3成标准型.5 2 0 02 (5)设 4 阶方阵 A 20 1 0 0 1 0, 则 A 的逆阵 A 12 0 0 1 1(A) k 1 a k 2 (a a 2)-- 2(C) k - a k -( g g)—- 2七、(本题满分6分)设四阶矩阵(Dm k 2( gg2 )1 221 1 0 02 13 40 1 1 0 0 2 1 3 B,C0 0 1 1 0 0 2 1 0 0 0 1 0 0 0 2(B) k 1 a k 2( aa 2)--2二、选择题 (本题共 5 小题,每小题 3分,满分 15分.每小题给出的四个选项中 ,只有一个符合题目要求 ,把所选项前的字母填在题后的括号内 )(5)设n阶方阵A、B、C满足关系式ABC E ,其中E是n阶单位阵,则必有(A)ACB E (B)CBA E(C)BAC E (D)BCA E七、(本题满分 8 分)已知a (1,0,2,3), a (1,1,3,5), a (1, 1,a 2,1), a (1,2,4,a 8)及p (i,i,b 3,5).(1)a、b为何值时,B不能表示成a, a, a, a的线性组合?⑵a、b为何值时,^有a, a2, a, a4的唯一的线性表示式?写出该表示式.八、(本题满分 6 分)设A是n阶正定阵,E是n阶单位阵证明A E的行列式大于1.a 1b 1 a 1b 2 L a 1b na 2b 1 a 2b 1 L(5)设 A2 1 2 1;bn ,其中 a 0,b i 0,(i 1,2,L,n).则矩阵 A 的秩 r(A )a nb 1 a n b 2 La nb n二、选择题 (本题共 5 小题,每小题 3分,满分 15分.每小题给出的四个选项中 ,只有一个符合题目要求 ,把所选项前的字母填在题后的括号内 ) 10 (5)要使&0 , &1都是线性方程组AX 0的解,只要系数矩阵A 为 2(A) 2 1 2(C) 1 0 20 1 1 八、(本题满分 7 分)设向量组a , a , a 线性相关,向量组a, a , a 线性无关,问:(1) a 能否由a , a 线性表出?证明你的结论. ⑵a 能否由a , a , a 线性表出?证明你的结论. 九、(本题满分 7 分) 设3阶矩阵A 的特征值为i 1,2 2, 3 3,对应的特征向量依次为1 1 1 1 1 , &2 2 , &3 ,3 ,又向量B214931201 (B)0110 1 1(D) 4 2 20 1 1(2)求A£n为自然数).可编辑范本1993年全国硕士研究生入学统一考试数学 (一)试卷一、填空题 (本题共 5 小题,每小题 3分,满分 15分.把答案填在题中横线上 )(5)设n阶矩阵A的各行元素之和均为零,且A的秩为n 1,则线性方程组AX 0的通解为 ___________________ .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) 123(5)已知Q 2 4 t ,P为三阶非零矩阵,且满足PQ 0,则369(A) t 6时P的秩必为1 B)t 6时P的秩必为2(C)t 6时P的秩必为1 (D)t 6时P的秩必为2七、(本题满分 8 分)已知二次型f(X i,X2,X3)2x i23x| 3x| 2ax2X3(a 0)通过正交变换化成标准形f y;2y;5y|,求参数a及所用的正交变换矩阵.八、(本题满分 6 分)设A是n m矩阵,B是m n矩阵,其中n m,I是n阶单位矩阵若AB I,证明B的列向量组线性无关」、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知%[1,2,3],卩[1,-,-],设A a®其中a是a的转置,则A n= _________________2 3、选择题(本题共5小题每小题3分,满分15分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)已知向量组a1 ,a,a3, a4线性无关,则向量组(A) a a, a a3 , a3 a4, a4a线性无关(B) a a?, a? a, a a4, a a线性无关(C) a1a2, a2a3, a a4, oa a线性无关(D) a1a2, a a, a a4, a4a线性无关八、(本题满分8分)设四元线性齐次方程组(I )为X1 X2 0,x2 x40又已知某线性齐次方程组(U )1的通解为匕(0,1,1,0) k2( 1,221).(1) 求线性方程组(I )的基础解析•(2) 问线性方程组(I )和 (H )是否有非零公共解?若有,则求出所有的非零公共解若没有,则说明理由•九、(本题满分6分)设A为n阶非零方阵,A*是A的伴随矩阵,A是A的转置矩阵,当A * A 时证明A 0.1994年全国硕士研究生入学统一考试数学(一)试卷1995年全国硕士研究生入学统一考试数学(一)试卷、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设三阶方阵A , B 满足关系式A 1BA 6A BA,且A、选择题(本题共5小题,每小题3分,满分15分每小题给出的四个选项中 九、(本题满分6分) 设A 为n 阶矩阵,满足AA1(1是n 阶单位矩阵,A 是A 的转置矩阵),帆| 0,求A I .,只有一个符合题目要求,把所选项前的字母填在题后的括号内a 11 a 12a 13a 11 a 12(5)设 A a 21 a 22 a 23 , Ba 21 a 22a 31 a 32 a 33a 31 a 32 (A) AP 1P 2 : =B(C)RP 2A = :B八、(本题 「满分7 分)a 130 1 01 0 0a 23 , P 1 1 0 0 ,P 2 0 1 0 ,则必有 a 330 0 11 0 1(B) AP2R =B(DpRA = B设三阶实对称矩阵A 的特征值为 1 1,231,对应于1的特征向量为石1 ,求A1996年全国硕士研究生入学统一考试数学(一)试卷 、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)1 0 2、选择题(本题共5小题,每小题3分,满分15分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(C)(a02 db 2)(a 3a 4 bA) (D)(a 2a 3 b z baXaQ b^)八、(本题满分6分)设A I E TE ,其中I 是n 阶单位矩阵,売n 维非零列向量,?是三的转置.证明 (1)A 2 A 的充分条件是珥1. ⑵当1时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型 f (x 1, x 2, x 3) 5xf 5x ; ex ] 2x ^x 2 6x ^x 3 6x 2x 3 的秩为 2, (1) 求参数e 及此二次型对应矩阵的特征值. (2) 指出方程f(X 1,X 2,X 3)1表示何种二次曲面.(5)设A 是4 3矩阵,且A 的秩r(A) 2,而B0 2 0 ,贝U r(AB ) = _________________ 1 0 3 ⑸四阶行列式印 0 0 b 40 0 a 2 b> a s b 3 0 0bi 0 0 a 4的值等于(A)aQ 2a 3a 4 Ddb a b q (B)d a 2a 3a 4 b^bA1997年全国硕士研究生入学统一考试数学 (一)试卷一、填空题 (本题共 5 小题,每小题 3分,满分 15分.把答案填在题中横线上 )1 2 2(4)设A 4 t 3 ,B为三阶非零矩阵,且AB O,则t= _____________________ .3 1 1二、选择题 (本题共 5小题,每小题 3分,满分 15分.每小题给出的四个选项中 ,只有一个符合题目要求 ,把所选项前的字母填在题后的括号内 )a1 b1 c1a1x b1y c1 0,(4)设a a2 ,a2 b2 ,a3 c2 , 则三条直线a2x b2y c2 0 a3 b3 c3a3x b3y c3 0(其中a i2b i20,i 1,2,3 )交于一点的充要条件是(A) a, a?, a线性相关(B) a, a, a线性无关(C)秩r(a,a, a)秩r(a, a?) (D) a, a?, a线性相关,a, a线性无关七、 (本题共 2 小题,第(1)小题 5分,第(2)小题 6分,满分 11分)⑴设B是秩为2的5 4矩阵,a [1,1,2,3]T, a [ 1,1,4, 1]T, a [5, 1, 8,9]T是齐次线性方程组BX O的解向量,求Bx 0的解空间的一个标准正交基1 ? 1 ?(2)已知E 1是矩阵A 5 a 3的一个特征向量.1 1 b 21) 试确定a,b参数及特征向量E所对应的特征值•2) 问A能否相似于对角阵?说明理由.八、(本题满分 5 分)设A是n阶可逆方阵将A的第i行和第j行对换后得到的矩阵记为B.(1) 证明 B 可逆.(2) 求AB 1.一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)设A为n阶矩阵,|A| 0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值,则(A*)2 E必有特征值___________ .二、选择题(本题共5小题,每小题3分,满分15分每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)⑷设矩阵c b Ga2 b2 C2是满秩的,则直线x a3 y b3 z C3与直线区』心!三2a i a2b i b2 C i C2 a2 a3 b2 b3 C2 C3a s b3 C3(A)相交于一点(B)重合(C)平行但不重合(D)异面十、(本题满分6分)已知二次曲面方程x2 ay2 z2 2bxy 2xz 2yz 4可以经过正交变换 y Pz 十二、(本题满分5分)化为椭圆柱面方程2 4 2 4,求a,b的值和正交矩阵P.(本题满分4分)设A是n阶矩阵,若存在正整数k,使线性方程组A k x0有解向量a且A k 1a 0.证明向量组a, A a,L , A k 1a是线性无关已知方程组(I)a i2x2L a1,2n x2n0a?2 x?L a2,2n x2n0 a ni X i的一个基础解析为(bl1,bl2,L ,b1,2n)T,(b21,b22,L ,b2,2n)T,L ,(b n1,b n2,L ,b n,2n)I 试写出线性方程组(□) b11 y1 b12 y2 Lb21 y1 b22 y2 L< Mb n1y1 b}y2 Lb1,2n y2n 0b2,2n y2n 0b n,2n y2n 0f*11〉a2i x〔Ma n2x2 L a n,2n x2n的通解并说明理由.1999年全国硕士研究生入学统一考试数学 (一)试卷一、填空题 (本题共 5 小题,每小题 3分,满分 15分.把答案填在题中横线上 ) (4)设n 阶矩阵A 的元素全为1则A 的n 个特征值是 _______________ .二、选择题 (本题共 5小题,每小题 3分,满分 15分.每小题给出的四个选项中 ,只有一个符合题目要求 ,把所选项前的字母填在题后的括号内 ) (4)设 A 是 m n 矩阵 ,B 是 n m 矩阵 ,则 (A)当m n 时,必有行列式| AB | 0 (B)当m n 时,必有行列式| AB | 0十、 (本题满分 8 分)设A 为m 阶实对称矩阵且正定,B 为m n 实矩阵,B T为B 的转置矩阵,试证B TAB 为正定矩阵的充分必要条件是B 的秩r(B) n(C)当n m 时,必有行列式| AB | 0(D)当n m 时,必有行列式|AB | 01 b 0 一、 (本题满分 6 分) a设矩阵 A 51c c3 , 其行列式 |A | a1,又A 的伴随矩阵A *有一个特征值°,属于°的一个特征向量为a ( 1, 1,1)T ,求a,b,c 和°的值.一、 填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)12 1 x , 1⑷已知方程组2 3 a 2 x 23无解则a = _______ . 1 a2x 3二、 选择题(本题共5小题,每小题3分,满分15分.(4)设n 维列向量组a 丄,O m (m n)线性无关则n 维列向量组^丄,策线性无关的充分必要条件为(A)向量组a ,L , a 可由向量组 你L ,驚线性表示 (B)向量组 你L ,驚可由向量组a ,L ,妬线性表示 (C)向量组a 丄,a m 与向量组3丄,g m 等价(D)矩阵A (a ,L , a m )与矩阵B W 仏)等价十、(本题满分6分)1 0 0 0* 0 1 0 0设矩阵A 的伴随矩阵A1 0 10 '且ABA 1 BA 13E ,其中E 为4阶单位矩阵,求矩阵B3 0 8十、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计 然后将」熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐•新、老非熟练工6经过培训及实践至年终考核有?成为熟练工•设第n 年1月份统计的熟练工与非熟练工所占百分比分别为人和y n ,记成向量X1 .5y n(1)求Xn1与Xn 的关系式并写成矩阵形式:^22X n Ay ny n 1 y n y n 1(2) 验证n 4, n 1是A的两个线性无关的特征向量,并求出相应的特征值•⑶当* 2时,求X n 11 1 y1 J y n 12001年全国硕士研究生入学统一考试数学(一)试卷、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (4)设 A 2A 4E O ,则(A 2E) 1 = _____________________ .、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)九、(本题满分6分)第役丄,伍也为AX O 的一个基础解系? 十、(本题满分8分)已知三阶矩阵A 和三维向量X ,使得X,A X ,A 2X 线性无关,且满足A 3x 3A x 2A 2x . (1)记 P (X, A X , A 2X),求 B 使 A PBP 1.(2)计算行列式|A E一、 填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)⑷已知实二次型f (x 1 ,x 2, x 3) a(x : x 2 x 3) 4x 1x 2 4x 1x 3 4x 2x 3经正交变换可化为标准型f 6y ;,则a = _____________________________ .二、 选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)1 1 11 4 0 0 0 ⑷设A1 1 11 B0 0 0 0则A 与1 1 1 1 0 0 0 0 1 1 1(A)合同且相似 10 0 0 0(B)合同但不相似 (D)不合同且不相似设a , a ,L , a 为线性方程组AXO 的一个基础解系,$ t 1 a t 2 a ,债t 1 a 2 12 a 3,L t 1 a s t 2a ,其中t 1,t 2为实常数 试问t 1,t 2满足什么条件时(C)不合同但相似⑷设有三张不同平面,其方程为ax by C i Z d i(i 1,2,3)它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为九、(本题满分6分)已知四阶方阵A ( a, a, a, a4), a, a2, a, a均为四维列向量,其中a, a3, a4线性无关,a 2 a a3.若B a a a a4,求线性方程组Ax B的通解.十、(本题满分8分)设A , B为同阶方阵,(1) 若 A ,B相似,证明A ,B的特征多项式相等.(2) 举一个二阶方阵的例子说明(1)的逆命题不成立.⑶当A,B为实对称矩阵时,证明(1)的逆命题成立.2003年全国硕士研究生入学统一考试数学(一)试卷、填空题(本题共6小题,每小题4分满分24分.把答案填在题中横线上)11 11(4)从 R2的基a o , a 〔到基3 〔,直2的过渡矩阵为_____________ .、选择题(本题共6小题,每小题4分满分24分每小题给出的四个选项中,只有一个符合题目要求把所选项前的字母填在题后的括号内)(4) 设向量组I: a, a丄,a可由向量组II:3,血丄,%线性表示,则(A)当r s时,向量组II必线性相关(B)当r s时,向量组II必线性相关(C)当r s时,向量组I必线性相关(D)当r s时,向量组I必线性相关(5) 设有齐次线性方程组Ax 0和Bx 0,其中A,B均为m n矩阵,现有4个命题:①若Ax 0的解均是Bx 0的解,则秩(A)秩(B)②若秩(A)秩(B),则Ax 0的解均是Bx 0的解③若Ax 0与Bx 0同解,则秩(A)秩(B)④若秩(A)秩(B),则Ax 0与Bx 0同解以上命题中正确的是(A)①②(B)①③(C)②④(D)③④九、(本题满分10分)3 2 2 0 1 0设矩阵A 2 3 2 ,P 1 0 1 ,B P 1A*P,求 B 2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.2 23 0 0 1十、(本题满分8分)已知平面上三条不同直线的方程分别为l1 : ax 2by 3c 0 ,l2 : bx 2cy 3a 0 ,l3 : cx 2ay 3b 0 .试证这三条直线交于一点的充分必要条件为a b c 0.2004年全国硕士研究生入学统一考试数学(一)试卷、填空题(本题共6小题,每小题4分满分24分.把答案填在题中横线上)2 1 0(5)设矩阵A 1 2 0,矩阵B满足ABA * 2BA* E ,其中A*为A的伴随矩阵,E是单位矩阵,则B = ___________________0 0 1、选择题(本题共8小题,每小题4分满分32分每小题给出的四个选项中,只有一个符合题目要求把所选项前的字母填在题后的括号内) (11设A是3阶方阵将A的第1列与第2列交换得B,再把B的第2列加到第3列得C ,则满足AQ C的可逆矩阵Q为0 1 0 0 1 0 0 1 0 0 1 1(A) 1 0 0 (B) 1 0 1 (C) 1 0 0 (D) 1 0 01 0 1 0 0 1 0 1 1 0 0 1(12设A,B为满足AB O的任意两个非零矩阵,则必有(A)A的列向量组线性相关,B的行向量组线性相关 (C)A的行向量组线性相关,B的行向量组线性相关(20)(本题满分9分)(1 a)x1 X2 L X n 0,设有齐次线性方程组2X1 (2护 2 L 2X n 0,(nL L L L L Ln^ nx2L (n a)x n0,试问a取何值时,该方程组有非零解,并求出其通解. (B) A的列向量组线性相关,B的列向量组线性相关(D)A的行向量组线性相关,B的列向量组线性相关2)(21)(本题满分9分)1 2 3设矩阵A 1 4 3的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分满分24分.把答案填在题中横线上)(5)设a, a2, a均为3维列向量,记矩阵A ( a, a2, a3) ,B ( a a2a3, a 2 a2 4 a3, a 3 a29 a3),如果A| 1,那么B _.二、选择题(本题共8小题每小题4分满分32分每小题给出的四个选项中,只有一项符合题目要求把所选项前的字母填在题后的括号内)(11设,对应的特征向量分别为a, a,则a,A( a a)线性无关的充分必要条件是1, 2是矩阵A的两个不同的特征值(A) 1 0 (B) 2 0(C) 1 0 (D) 2 0(12设A为n(n 2)阶可逆矩阵,交换A的第1行与第2行得矩阵B.A*, B*分别为A,B的伴随矩阵,则(A)交换A*的第1列与第2列得B* (B)交换A*的第1行与第2行得B*(C)交换A*的第1列与第2列得B* (D)交换A*的第1行与第2行得B*(20) (本题满分9分)已知二次型f(X1,X2,X3) (1 a)x1 (1 a)x2 2x3 2(1 a)X1X2 的秩为 2.(1) 求a的值;(2) 求正交变换x Qy,把f(x1,X2,X3)化成标准形.(3) 求方程f(捲瓜风)=0的解.(21) (本题满分9分)1 2 3已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B 2 4 6 (k为常数),且AB O ,求线性方程组Ax 0的通解.3 6k(1) 求X 与y.(2) 求一个满足P 1 2AP B的可逆阵P.。

1987考研数学一、二、三真题+答案 【无水印】

1987考研数学一、二、三真题+答案 【无水印】

1987年全国硕士研究生入学统一考试数学试题参考解答数 学(试卷Ⅰ)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1) 与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-==都平行,且过原点的平面方程是 50x y -+=(2) 当x =1/ln 2-;时,函数2xy x =取得极小值.(3) 由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4) 设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18- .(5) 已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1) 设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂ 解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2) 设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1) 设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A) 发散(B) 绝对收敛(C) 条件收敛(D) 收敛与发散与k 的值有关.(2) 设)(x f 为已知连续函数,⎰=t sdx tx f t I 0)(,0,0s t >>,则I 的值(D )(A) 依赖于s 和t (B) 依赖于s 、t 、x(C) 依赖于t 和x , 不依赖于s (D) 依赖于s , 不依赖于t (3) 设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A) ()f x 导数存在,0)(≠'a f (B) ()f x 取得极大值(C) ()f x 取得极小值(D) ()f x 的导数不存在.(4) 设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A) a(B) a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx --⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解; ○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1) 在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2) 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3) 已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷Ⅱ)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故 原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【 同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷Ⅲ)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1) 设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2) 曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3) 积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=, 且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰. 因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2 的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数. 设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x e x x x f x-,sin )(cos 是(D )(A )有界函数(B )单调函数(C )周期函数 (D )偶函数(2). 函数()sin f x x x -(D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界 (D )在),(+∞-∞内无界(3) 设()f x 在x a =处可导,则xx a f x a f x )()(lim--+→等于(B)(A ))(a f ' (B ))(2a f ' (C )0(D ))2(a f '(4) 【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷Ⅳ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √ )(3) 若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4) 假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0, 那么矩阵A 的一切1r +阶子式都等于0 ( √ ) (5) 连续型随机变量取任何给定实数值的概率都等于0( √ )二、选择题(每小题2分,满分10分.) (1) 下列函数在其定义域内连续的是(A)(A ) ()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2) 若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A) ()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3) 下列广义积分收敛的是 (C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4) 设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A) 必有r 个行向量线性无关(B) 任意r 个行向量线性无关(C) 任意r 个行向量都构成极大线性无关向量组 (D) 任意一个行向量都可以由其它r 个行向量线性表示 (5) 若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A) A 和B 互不相容(互斥) (B) AB 是不可能事件 (C) AB 未必是不可能事件(D) P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1) 求极限 xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而 ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3) 已知 y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1) t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-, 故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域. 解:联立y x =和3x y =,可解得两曲线交点的横坐标 0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰ 七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1(万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-. 又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1) 已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2) 已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1) 先取出的零件是一等品的概率p ;(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q . 解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=; (2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷Ⅴ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 【 同数学Ⅳ 第一(1)题 】 (2) 【 同数学Ⅳ 第一(2)题 】(3) 若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4) 若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5) 【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分) (1) 【 同数学Ⅳ 第二(1)题 】 (2) 【 同数学Ⅳ 第二(2)题 】 (3) 【 同数学Ⅳ 第二(3)题 】 (4) 【 同数学Ⅳ 第二(4)题 】(5) 对于任二事件A 和B ,有()P A B -= (C)(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C) ()()P A P AB - (D) )()()(B A P B P A P -- 三、计算下列各题(每小题4分,满分20分)(1) 求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++=== (2) 【 同数学Ⅳ 第三(2)题 】 (3) 【 同数学Ⅳ 第三(3)题 】 (4) 计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5) 求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1) t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性. 解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题 】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题 】。

1987考研数学一、二、三真题+答案 【无水印】

1987考研数学一、二、三真题+答案 【无水印】

1987年全国硕士研究生入学统一考试数学试题参考解答数 学(试卷Ⅰ)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1) 与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-==都平行,且过原点的平面方程是 50x y -+=(2) 当x =1/ln 2-;时,函数2xy x =取得极小值.(3) 由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4) 设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18- .(5) 已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1) 设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂ 解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2) 设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1) 设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A) 发散(B) 绝对收敛(C) 条件收敛(D) 收敛与发散与k 的值有关.(2) 设)(x f 为已知连续函数,⎰=t sdx tx f t I 0)(,0,0s t >>,则I 的值(D )(A) 依赖于s 和t (B) 依赖于s 、t 、x(C) 依赖于t 和x , 不依赖于s (D) 依赖于s , 不依赖于t (3) 设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A) ()f x 导数存在,0)(≠'a f (B) ()f x 取得极大值(C) ()f x 取得极小值(D) ()f x 的导数不存在.(4) 设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A) a(B) a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx --⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解; ○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1) 在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2) 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3) 已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷Ⅱ)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故 原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【 同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷Ⅲ)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1) 设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2) 曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3) 积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=, 且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰. 因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2 的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数. 设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x e x x x f x-,sin )(cos 是(D )(A )有界函数(B )单调函数(C )周期函数 (D )偶函数(2). 函数()sin f x x x -(D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界 (D )在),(+∞-∞内无界(3) 设()f x 在x a =处可导,则xx a f x a f x )()(lim--+→等于(B)(A ))(a f ' (B ))(2a f ' (C )0(D ))2(a f '(4) 【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷Ⅳ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √ )(3) 若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4) 假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0, 那么矩阵A 的一切1r +阶子式都等于0 ( √ ) (5) 连续型随机变量取任何给定实数值的概率都等于0( √ )二、选择题(每小题2分,满分10分.) (1) 下列函数在其定义域内连续的是(A)(A ) ()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2) 若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A) ()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3) 下列广义积分收敛的是 (C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4) 设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A) 必有r 个行向量线性无关(B) 任意r 个行向量线性无关(C) 任意r 个行向量都构成极大线性无关向量组 (D) 任意一个行向量都可以由其它r 个行向量线性表示 (5) 若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A) A 和B 互不相容(互斥) (B) AB 是不可能事件 (C) AB 未必是不可能事件(D) P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1) 求极限 xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而 ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3) 已知 y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1) t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-, 故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域. 解:联立y x =和3x y =,可解得两曲线交点的横坐标 0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰ 七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1(万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-. 又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1) 已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2) 已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1) 先取出的零件是一等品的概率p ;(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q . 解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=; (2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷Ⅴ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 【 同数学Ⅳ 第一(1)题 】 (2) 【 同数学Ⅳ 第一(2)题 】(3) 若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4) 若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5) 【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分) (1) 【 同数学Ⅳ 第二(1)题 】 (2) 【 同数学Ⅳ 第二(2)题 】 (3) 【 同数学Ⅳ 第二(3)题 】 (4) 【 同数学Ⅳ 第二(4)题 】(5) 对于任二事件A 和B ,有()P A B -= (C)(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C) ()()P A P AB - (D) )()()(B A P B P A P -- 三、计算下列各题(每小题4分,满分20分)(1) 求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++=== (2) 【 同数学Ⅳ 第三(2)题 】 (3) 【 同数学Ⅳ 第三(3)题 】 (4) 计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5) 求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1) t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性. 解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题 】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题 】。

1987年全国硕士研究生入学统一考试

1987年全国硕士研究生入学统一考试
(3)已知两条直线的方程是 则过 且平行于 的平面方程是_____________.
(4)已知当 时 与 是等价无穷小,则常数 =_____________.
(5)设4阶方阵 则 的逆阵 =_____________.
二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)
(1)已知随机事件 的概率 随机事件 的概率 及条件概率 则和事件 的概率 =____________.
(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.
(3)若随机变量 在 上服从均匀分布,则方程 有实根的概率是____________.
六、(本题满分9分)
设位于点 的质点 对质点 的引力大小为 为常数 为 质点与 之间的距离),质点 沿直线 自 运动到 求在此运动过程中质点 对质点 的引力所作的功.
七、(本题满分6分)
已知 其中 求
八、(本题满分8分)
已知矩阵 与 相似.
(1)求 与
(2)求一个满足 的可逆阵
九、(本题满分9分)
设函数 在区间 上连续,且在 内有 证明:在 内存在唯一的 使曲线 与两直线 所围平面图形面积 是曲线 与两直线 所围平面图形面积 的3倍.
七、(本题满分6分)
问 为何值时,线性方程组
有解,并求出解的一般形式.
八、(本题满分8分)
假设 为 阶可逆矩阵 的一个特征值,证明
(1) 为 的特征值.
(2) 为 的伴随矩阵 的特征值.
九、(本题满分9分)
设半径为 的球面 的球心在定球面 上,问当 为何值时,球面 在定球面内部的那部分的面积最大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可编辑范本历年考研数学一真题1987-20161987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________. 三、(本题满分7分)(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B 五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A )a(B )1a(C )1n a - (D )n a九、(本题满分8分)问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x bx x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.可编辑范本1988年全国硕士研究生入学统一考试数学(一)试卷二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _______.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A )存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B )12,,,s αααL 中任意两个向量均线性无关(C )12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D )12,,,s αααL 中存在一个向量都不能用其余向量线性表示 七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A 八、(本题满分8分) 已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P可编辑范本1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中(A )必有一列元素全为0 (B )必有两列元素对应成比例 (C )必有一列向量是其余列向量的线性组合 (D )任一列向量是其余列向量的线性组合 三、(本题共3小题,每小题5分,满分15分) 七、(本题满分6分)问λ为何值时,线性方程组131231234226423x x x x x x x x λλλ+=++=+++=+⎧⎪⎨⎪⎩有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.可编辑范本一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα 则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A )1211212()2k k -+++ββααα(B )1211212()2k k ++-+ββααα(C )1211212()2k k -+++ββαββ(D )1211212()2k k ++-+ββαββ七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分) 求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.可编辑范本一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A )=ACB E (B )=CBA E (C )=BAC E (D )=BCA E 七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式. 八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.可编辑范本1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L 其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A )[]212- (B )201011-⎡⎤⎢⎥⎣⎦(C )102011-⎡⎤⎢⎥-⎣⎦(D )011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫ ⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出.(2)求(n nAβ为自然数).可编辑范本可编辑范本1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A )6t =时P 的秩必为1 B )6t =时P 的秩必为2 (C )6t ≠时P 的秩必为1 (D )6t ≠时P 的秩必为2 七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵. 八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.可编辑范本1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (5)已知向量组1234,,,αααα线性无关,则向量组 (A )12233441,,,++++αααααααα线性无关 (B )12233441,,,----αααααααα线性无关 (C )12233441,,,+++-αααααααα线性无关(D )12233441,,,++--αααααααα线性无关八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A可编辑范本1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有 (A )12AP P =B (B )21AP P =B (C )12P P A =B(D )21P P A =B八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I可编辑范本1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(5)四阶行列式112233440000000a b a b a b b a 的值等于(A )12341234a a a a b b b b -(B )12341234a a a a b b b b + (C )12123434()()a a b b a a b b --(D )23231414()()a a b b a a b b --八、(本题满分6分)设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,T ξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T =ξξ (2)当1T =ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.可编辑范本1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (4)设111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα则三条直线 1112223330,0,0a x b y c a x b y c a x b y c ++=++=++= (其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 (A )123,,ααα线性相关(B )123,,ααα线性无关 (C )秩123(,,)r =ααα秩12(,)r αα(D )123,,ααα线性相关12,,αα线性无关七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设B 是秩为2的54⨯矩阵123,[1,1,2,3],[1,1,4,1],[5,1,8,9]T T T ==--=--ααα是齐次线性方程组x =B 0的解向量,求x =B 0的解空间的一个标准正交基.(2)已知111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 的一个特征向量. 1)试确定,a b 参数及特征向量ξ所对应的特征值. 2)问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为.B (1)证明B 可逆. (2)求1.-AB可编辑范本1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A )相交于一点 (B )重合(C )平行但不重合(D )异面十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分) 设A 是n 阶矩阵,若存在正整数,k 使线性方程组k x =A 0有解向量,α且1.k -≠A α0 证明:向量组1,,,k -αA αA αL 是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=L L ML的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).T T T n n n n n n b b b b b b b b b L L L L 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n n b y b b y b y b y b y b y b y b y +++=+++=+++=L L ML的通解,并说明理由.可编辑范本1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A )当m n >时,必有行列式||0≠AB (B )当m n >时,必有行列式||0=AB(C )当n m >时,必有行列式||0≠AB(D )当n m >时,必有行列式||0=AB十、(本题满分8分)设矩阵153,10a c b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 其行列式||1,=-A 又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T=--α求,,a b c 和0λ的值. 十一、(本题满分6分)设A 为m 阶实对称矩阵且正定,B 为m n ⨯实矩阵,T B 为B 的转置矩阵,试证T B AB 为正定矩阵的充分必要条件是B 的秩().r n =B可编辑范本2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a= _____. 二、选择题(本题共5小题,每小题3分,满分15分.(4)设n 维列向量组1,,()m m n <ααL 线性无关,则n 维列向量组1,,m ββL 线性无关的充分必要条件为(A )向量组1,,m ααL 可由向量组1,,m ββL 线性表示 (B )向量组1,,m ββL 可由向量组1,,m ααL 线性表示 (C )向量组1,,m ααL 与向量组1,,m ββL 等价 (D )矩阵1(,,)m =A ααL 与矩阵1(,,)m =B ββL 等价 十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫ ⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值. (3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭可编辑范本一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)设24+-=A A E O ,则1(2)--A E = _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(4)设1111400011110000,11110000111100⎛⎫⎛⎫⎪⎪⎪⎪== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭A B ,则A 与B (A )合同且相似 (B )合同但不相似 (C )不合同但相似(D )不合同且不相似九、(本题满分6分)设12,,,s αααL 为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβααL ,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββL 也为=AX O 的一个基础解系?十、(本题满分8分)已知三阶矩阵A 和三维向量x ,使得2,,A A x x x 线性无关,且满足3232=-A A A x x x . (1)记2(,,),=P A A x x x 求B 使1-=A PBP .(2)计算行列式+A E .可编辑范本一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分)设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 .二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(4)设向量组I :12,,,r αααL 可由向量组II :12,,,s βββL 线性表示,则(A )当s r <时,向量组II 必线性相关 (B )当s r >时,向量组II 必线性相关 (C )当s r <时,向量组I 必线性相关 (D )当s r >时,向量组I 必线性相关 (5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题:① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是(A )①② (B )①③ (C )②④ (D )③④ 九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax ,:2l 032=++a cy bx ,:3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ . 二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为 (A )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010 (B )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010 (D )⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A )A 的列向量组线性相关,B 的行向量组线性相关 (B )A 的列向量组线性相关,B 的列向量组线性相关 (C )A 的行向量组线性相关,B 的行向量组线性相关 (D )A 的行向量组线性相关,B 的列向量组线性相关 (20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩L L L L L L L L L试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B )02≠λ(C )01=λ(D )02=λ (12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则 (A )交换*A 的第1列与第2列得*B(B )交换*A 的第1行与第2行得*B(C )交换*A 的第1列与第2列得*-B (D )交换*A 的第1行与第2行得*-B(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.。

相关文档
最新文档