声波透射法

合集下载

声波透射法与钻芯法在桩基检测中的应用

 声波透射法与钻芯法在桩基检测中的应用

声波透射法与钻芯法在桩基检测中的应用桩基检测是针对建筑物的基础进行检测和评估的一种方法,它对建筑物的安全性、稳定性有着决定性的作用。

声波透射法和钻芯法是桩基检测中常用的两种方法,下面将分别介绍它们的原理、特点以及应用情况。

一、声波透射法声波透射法是一种非破坏性检测方法,它利用声波的传播特性来获取桩基的内部结构信息。

首先在桩顶或侧面放置一个声源,并在另一个点放置接收器,通过测量信号的传播时间和振幅来计算桩基的质量和长度等信息。

声波透射法不需要损坏桩身,因此不影响桩的承载能力,适用于桩基无损检测。

声波透射法的特点是数据获取快速,精度高,适用于各种桩基类型,可以检测出桩基的各种结构特性,如长度、直径、孔隙率等。

而且,声波透射法测量的信息可以与其他检测方法结合使用,如地质雷达和电子磁振,进一步提升桩基的检测准确度。

二、钻芯法钻芯法是一种常用的桩基检测方法,也是破坏性检测方法。

钻芯法将钻具插入到桩基中,利用钻芯获取桩体的样品,通过对样品进行实验分析,确认桩的质量和强度。

根据钻芯的长度和芯样的形状、颜色等特征可以判断桩体的质量和稳定性。

钻芯法的特点是经验丰富,数据可靠,可以获取桩体的实际结构信息,由于数据的清晰透彻,可以提供高质量的检测结果,对基础结构的改进和维护具有很高的价值。

但是,钻芯法需要损坏桩身,对于使用环境比较严苛的场合不太适用。

三、应用情况声波透射法和钻芯法都是桩基检测中的常用方法,它们各有特点,应用范围和场景不同。

对于桩基长度的评估,声波透射法具有很高的准确性,而钻芯法则对桩基的质量和强度评估更为准确。

如果需要进行深入的分析可以结合使用。

声波透射法在城市建筑物、道路、桥梁等工程中得到了广泛的应用,尤其是在建筑物维护和保养工作中,声波透射法可以准确地评估桩基的问题,帮助维护人员及时发现并解决基础问题,保障建筑物的安全。

钻芯法在桥梁、水坝等重要工程中使用较多,这些工程的桩基深度较大,需要对其进行中断检测以及质量评估。

声波透射法与钻芯法在桩基检测中的应用

声波透射法与钻芯法在桩基检测中的应用

声波透射法与钻芯法在桩基检测中的应用关键词:声波透射法;钻芯法;预埋管钻芯法一、声波透射法1.1检测原理采用声波透射法对桩基完整性进行检测的原理为:采用发射源在桩基中发出弹性脉冲波,同时用接收装置对这一脉冲波在桩基混凝土中传播的波动特征进行记录;如果桩基混凝土不连续或存在破损的界面,则在缺陷面上将产生一个波阻抗界面,在声波到达这个界面后,将发生反射与透射,导致实际接收到的能量显著减小;如果桩基混凝土中有严重缺陷,如孔洞、松散和蜂窝,则声波会发生散射与绕射;以声波在传播时能量发生的衰减与初至时间为依据,结合频率产生的变化与波形发生的畸变,确定测区中桩基混凝土密实度等技术参数。

对不同检测面与高度对应的波特征进行测试记录,通过处理分析可以确定测区中桩基混凝土参考强度与内存缺陷。

桩基施工开始前,以桩径大小为依据埋设声测管,将其作为换能器主要通道。

在实际测试过程中,将两根声测管作为一组,在水的耦合作用下,信号从其中一根声测管当中发出,在另外一根接收,并采用超声仪对相关技术参数进行测量和采集记录。

测试过程中换能器从桩基的底部开始不断向上进行提升检测,直到遍布整个桩基的测试面。

1.2优缺点声波透射法的优点包括:具有较高的准确性,可对桩基混凝土是否完整进行整体检测,同时还能在很大程度上对桩基混凝土的实际强度进行反映。

与钻芯法相比,不仅检测速度较快而且费用相对较低。

以某桥梁工程的1~8#桩基为例进行分析,其设计直径为1600mm,采用声波透射法对其进行检测。

从检测的信号可以看出,该桩基的1.1~2.9m处有缺陷,后采用钻芯法进行验证,发现该桩基的1.75~2.83m处存在夹泥的现象。

声波透射法的缺点包括:声测管容易发生堵塞,难以对桩基底部的沉渣与桩端持力层实际情况进行检测,而且桩基底部的实际情况较复杂,存在一些可能对检测结果造成影响的因素,需借助钻芯法等其他方法来验证该方法检测后得出的结果。

根据相关检测经验,可能对桩底实际检测结果造成影响的因素包括:声测管的底部存在积水导致表面产生锈蚀,使声测管和混凝土的胶结变差;在声测管的底部,容易被泥浆所覆盖,也会使声测管和混凝土之间的胶结变差;对声测管进行的清洗不到位或不彻底,在声测管底部存在很多的沉积物。

低应变和声波透射法比例

低应变和声波透射法比例

低应变和声波透射法比例
摘要:
一、引言
二、低应变和声波透射法的定义与原理
三、低应变和声波透射法在工程中的应用
四、低应变和声波透射法的优缺点分析
五、结论
正文:
一、引言
随着我国基础建设的快速发展,对于工程质量和安全性的要求越来越高。

在土木工程中,为了检测混凝土的质量和强度,常常使用低应变和声波透射法。

本文将对这两种方法进行详细的介绍和分析。

二、低应变和声波透射法的定义与原理
1.低应变法:低应变法是通过测量混凝土在受到外力作用时的应变变化,来推断混凝土的强度和质量。

2.声波透射法:声波透射法是通过分析声波在混凝土中的传播速度和反射情况,来判断混凝土的质量和强度。

三、低应变和声波透射法在工程中的应用
1.低应变法:在桥梁、建筑等混凝土结构的施工过程中,通过低应变法可以实时监测混凝土的应力和变形情况,以确保工程质量和安全。

2.声波透射法:在混凝土构件的检测和评估中,声波透射法可以快速、准
确地测量混凝土的质量和强度,为工程提供可靠的数据支持。

四、低应变和声波透射法的优缺点分析
1.低应变法:优点是实时监测,能及时发现和预警工程中的问题;缺点是对设备和操作人员的技术要求较高。

2.声波透射法:优点是检测速度快、精度高,不受混凝土本身的性质和状态影响;缺点是不能实时监测,对于深层混凝土结构的检测效果较差。

五、结论
总的来说,低应变和声波透射法都是混凝土质量检测的有效手段。

声波透射法检测细则

声波透射法检测细则

声波透射法检测细则1.检测设备声波透射法需要使用一套专门的设备进行检测。

这套设备通常包括发射器、接收器和信号处理器。

发射器通过产生声波信号,将信号传播到待测材料中。

接收器用来接收传播过程中的回波信号。

信号处理器用来处理接收到的信号,从中提取出有用的信息。

2.检测对象3.实施步骤步骤一:确定检测对象和检测面。

首先需要确定待测对象和待测材料的表面。

步骤二:设置检测参数。

根据待测材料的性质和检测目的,设置适当的检测参数,包括声波频率、发射器和接收器的位置等。

步骤三:传播声波。

在确定好检测参数后,将发射器放置在待测材料的一侧,发出声波信号。

声波信号将通过材料传播,有一部分信号将穿过材料,另一部分信号将以反射的形式返回。

步骤四:接收信号。

使用接收器接收传播过程中的回波信号。

回波信号包含了关于材料的信息,包括缺陷、结构特征等。

步骤五:信号处理。

对接收到的信号进行处理,通常包括滤波、放大、解调等操作,以提取出有用的信息。

步骤六:数据分析与解释。

根据处理后的信号,进行数据分析和解释。

根据信号的特征,可以判断材料的缺陷类型、尺寸等。

4.灵敏度和准确性声波透射法的灵敏度和准确性受到多种因素的影响,包括声波频率、传播距离、材料性质等。

通常情况下,较高频率的声波信号能够提高检测的灵敏度,但对于材料的穿透能力较弱。

传播距离的增加有助于提高灵敏度和准确性,但也会增加检测的复杂性。

5.应用领域声波透射法广泛应用于材料工程、机械制造、航空航天等领域。

在材料工程中,声波透射法可以用于检测材料的质量和性能,包括裂纹、夹杂等缺陷。

在机械制造中,声波透射法可以用于检测零部件的内部缺陷,以确保产品的质量。

在航空航天中,声波透射法可以用于检测飞机机身、发动机等重要部件的缺陷,以确保飞机的安全。

总结起来,声波透射法是一种重要的无损检测方法,广泛应用于材料工程和机械制造等领域。

通过合理设置检测参数和进行适当的信号处理,可以获取关于材料的缺陷和结构特征的有用信息。

声波透射法实验报告(3篇)

声波透射法实验报告(3篇)

第1篇一、实验目的本次实验旨在通过声波透射法,对混凝土结构进行无损检测,分析其内部缺陷的位置、大小和性质,验证声波透射法在混凝土结构无损检测中的应用效果。

二、实验原理声波透射法是一种利用超声波在混凝土中传播的声学参数变化来检测混凝土内部缺陷的方法。

当超声波在混凝土中传播时,遇到缺陷(如裂缝、孔洞等)时,会发生透射、反射和散射现象。

通过分析超声波的传播时间、波幅、频率等参数的变化,可以判断混凝土内部的缺陷情况。

三、实验材料与设备1. 实验材料:混凝土试块(尺寸为100mm×100mm×100mm)。

2. 实验设备:- 超声波检测仪- 发射换能器- 接收换能器- 测量尺- 计算机及数据处理软件四、实验步骤1. 准备实验材料:将混凝土试块切割成100mm×100mm×100mm的标准尺寸。

2. 安装声测管:在混凝土试块的两个相对侧面各安装一个声测管,声测管内插入发射换能器和接收换能器。

3. 发射与接收超声波:开启超声波检测仪,将发射换能器置于声测管内,向混凝土试块发射超声波;同时,将接收换能器置于另一声测管内,接收反射回来的超声波。

4. 测量声学参数:记录超声波的传播时间、波幅和频率等参数。

5. 数据处理与分析:将实验数据输入计算机,利用数据处理软件进行分析,得出混凝土内部缺陷的位置、大小和性质。

五、实验结果与分析1. 实验结果:- 混凝土试块内部存在一个直径约为10mm的孔洞,位于试块中心。

- 通过声波透射法检测,发现孔洞处的声波传播时间延长,波幅减小,频率降低。

2. 结果分析:- 孔洞处的声波传播时间延长,说明超声波在孔洞处发生了散射和绕射,导致传播路径变长。

- 波幅减小和频率降低,说明孔洞处的声波能量发生了衰减。

- 根据声学参数的变化,可以判断出孔洞的位置、大小和性质。

六、实验结论1. 声波透射法在混凝土结构无损检测中具有可行性,可以有效地检测混凝土内部的缺陷。

声波透射法检测桩基培训

声波透射法检测桩基培训

频率测量是量测接收信号第一个波的周期,再按频率 值是周期的倒数的关系计算而得:
f=1000/T
(3)
f – 信号主频值(kHz);
T – 信号周期(μs)。
如果波形畸变,测得频率的误差就较大。
声波透射法检测桩身质量,采用声时、振幅、频率三 者声学参数来综合分析、判断确定桩身完整性。
二、仪器设备 1、声波发射与接收换能器选择 (1)圆柱状径向无指向性; (2)外径小于声测管内径,有效工作面轴向长度不大于
1、当检测剖面出现多个测点的声速值普遍偏低且离散性很小时, 采用声速低限值判据Vi<Vc。故判定为声速低于低限值异常。
2、当波幅异常时的临界值判据,如某段测点的波幅值Api<Am6时,波幅可判定为异常。
3、当采用斜率法的PSD值作为辅助异常点判据时,按PSD数值 在某深度处的突变,结合波幅变化情况进行异常点判定。
V=L/t
(1)
式中:V – 超声波速 (km/s);
L – 埋管的间距 (mm);
t – 声时 (μs) 。
从实测的声速特征可以反应穿透的混凝土介质特性的变化。 由(1)式可知,在埋管间距相等情况下,当声时增加时,波 速减小,混凝土强度相对降低;相反,当声时减小时,声速 增加,混凝土强度增加,据此可以判断桩身完整性,缺陷位 置及缺陷程度。
五、检测报告 除了与其他基桩检测报告容相同外,声波透射 法还提供如下内容:
1、声测管布置图;
2、受检桩每个检测剖面声速—深度曲线、波幅—深
度曲线。并将相应判据临界值所对应的标志线 绘制于同一个坐标系; 3、当采用他频值或PSD值进行辅助分析判定时,绘
制主频—深度曲线或PSD曲线;
4、对缺陷分布图示述。
三、现场检测

声波透射法检测介绍

声波透射法检测介绍

声波透射法一、声波透射法原理:基桩成孔后,灌注混凝土之前,在桩内预埋若干根声测管作为声波发射和接收换能器的通道,在桩身混凝土灌注若干天后开始检测,用声波检测仪沿桩的纵轴方向以一定的间距逐点检测声波穿过桩身各横截面的声学参数, 然后对这些检测数据进行处理、分析和判断,确定桩身混凝土缺陷的位置、范围、程度,从而推断桩身混凝土的连续性、完整性和均匀性状况,评定桩身完整性等级。

二、仪器设备超声仪:NM4B 型非金属超声仪。

仪器在检定周期内。

换能器:径向换能器三、 声测管埋设1 声测管为50mm 镀锌钢管。

2 声测管应下端封闭、上端加盖、管内无异物;声测管连接处应光滑过渡,管口应高出桩顶1OOmm 以上,且各声测管管口高度宜一致。

3 应采取适宜方法固定声测管,使之成桩后相互平行。

4 声测管埋设数量为3根管。

检测剖面编号分别为1-2、1-3、2-3;根据设计图纸,本工程声测管埋设为3φ50的镀锌钢管。

5声测管的连接与埋没用作声测管的管材一般都不长(钢管为6m 长一根)当受检桩较长时,需把管材一段一段地联结,接口必须满足下列要求:(1) 有足够的强度和刚度,保证声测管不致因受力而弯折、脱开;(2) 有足够的水密性,在较高的静水压力下,不漏浆;(3) 接口内壁保持平整通畅,不应有焊渣、毛刺等凸出物,以免妨碍接头的上、下移动。

声测管布置图通常有两种联结方式:螺纹联结和套筒联结。

一般用焊接或绑扎的方式固定在钢筋笼内侧,在成孔后,灌注混凝土之前随钢筋笼一起放置于桩孔中,声测管应一直埋到桩底,声测管底部应密封,如果受检桩不是通长配筋,则在无钢筋笼处的声测管间应设加强箍,以保证声测管的平行度。

安装完毕后,声测管的上端应用螺纹盖或木塞封口,以免落入异物,阻塞管道。

声测管的安装方法1—钢筋, 2—声测管,3—套接管,4—箍筋,5—密封胶布(3) 检查测试系统的工作状况,。

(4) 将伸出桩顶的声测管切割到同一标高,测量管口标高,作为计算各测点高程的基准。

声波透射法检测方法

声波透射法检测方法

1111
声波透射法检测方法的基本原理是用人工的方法在混凝土介质中激发一定频率的弹性波,该弹性波在介质中传播时,遇到混凝土介质缺陷会产生反射、透射、绕射、散射、衰减,从而造成穿过该介质的接收波波幅衰减、波形畸变、波速降低等。

根据超声波换能器通道在桩体中的不同布置方式,超声波透射法基桩检测有以下三种方法:
- 桩内单孔透射法:在某些特殊情况下只有一个孔道可供检测使用,例如在钻孔取芯后,需进一步了解芯样周围混凝土质量,作为钻芯检测的补充手段,这时可采用单孔检测法。

此时,换能器放置于一个孔中,换能器间用隔声材料隔离(或采用专用的一发双收换能器)。

超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。

需要注意的是,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。

- 桩外单孔透射法:当桩的上部结构已施工或桩内没有换能器通道时,可在桩外紧贴桩边的土层中钻一孔作为检测通道,检测时在桩顶面放置一发射功率较大的平面换能器,接收换能器从桩外孔中自上而下慢慢放下,超声波沿桩身混凝土向下传播,并穿过桩与孔之间的土层,通过孔中耦合水进入接收换能器,逐点测出透射超声波的声学参数,根据信号的变化情况大致判定桩身质量。

由于超声波在土中衰减很快,这种方法的可测桩长十分有限,且只能判断夹层、断桩、缩颈等。

- 桩内跨孔透射法:在桩内预埋两根或两根以上的声测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10 声波透射法10.1 适用范围10.1.1声波透射法适用于混凝土灌注桩的桩身完整性检测,判定桩身缺陷的位置、范围和程度。

【条文说明】声波透射法是利用声波的透射原理对桩身混凝土介质状况进行检测。

当桩径小于0.6m时,声测管的声耦合会造成较大的测试误差,因此该方法适用于桩径不小于0.6m,在灌注成型过程中已经预埋了两根或两根以上声测管的基桩的完整性检测;基桩经钻芯法检测后(有两个以及两个以上的钻孔)需进一步了解钻芯孔之间的混凝土质量时也可采用本方法检测。

由于桩内跨孔测试的测试误差高于上部结构混凝土的检测,且桩身混凝土纵向各部位硬化环境不同,粗细骨料分布不均匀,因此该方法不宜用于推定桩身混凝土强度。

10.2 仪器设备10.2.1 声波发射与接收换能器应符合下列规定:1 圆柱状径向振动,沿径向无指向性;2 外径小于声测管内径,有效工作段长度不大于150mm;3 谐振频率为30~60kHz;4 水密性满足1MPa水压不渗水。

【条文说明】声波换能器有效工作面长度指起到换能作用的部分的实际轴向尺寸,该长度过大将夸大缺陷实际尺寸并影响测试结果。

换能器的谐振频率越高,对缺陷的分辨率越高,但高频声波在介质中衰减快,有效测距变小。

选配换能器时,在保证有一定的接收灵敏度的前提下, 原则上尽可能选择较高频率的换能器。

提高换能器谐振频率,可使其外径减少到30mm以下,有利于换能器在声测管中升降顺畅或减小声测管直径。

但因声波发射频率的提高,将使声波穿透能力下降。

所以,本规范仍推荐目前普遍采用的30~60kHz的谐振频率范围。

桩中的声波检测一般以水作为耦合剂,换能器在1MPa水压下不渗水也就是在100m水深能正常工作,这可以满足一般的工程桩检测要求。

对于超长桩,宜考虑更高的水密性指标。

当测距较大接收信号较弱时,宜选用带前置放大器的接收换能器,也可采用低频换能器,提高接收信号的幅度。

声波换能器宜配置扶正器,防止换能器在声测管内摆动影响测试声参数的稳定性。

10.2.2 声波检测仪应符合下列要求:1 具有实时显示和记录接收信号的时程曲线以及频率测量或频谱分析的功能。

2 最小采样时间间隔小于或等于0.5μs,声波幅值测量相对误差小于5%,系统频带宽度为5~200kHz,系统最大动态范围不小于100dB。

3 声波发射脉冲为阶跃或矩形脉冲,电压幅值为200~1000V。

4 具有首波实时显示功能。

5 具有自动记录声波发射与接收换能器位置功能。

【条文说明】由于混凝土灌注桩的声波透射法检测没有涉及桩身混凝土强度的推定,因此系统的最小采样时间间隔放宽至0.5μs 。

首波自动判读可采用阈值法,亦可采用其他方法,对于判定为异常的波形,应人工校核数据。

10.3 声测管埋设10.3.1 声测管埋设应符合下列规定:1 声测管内径应大于换能器外径。

2 声测管应有足够的径向刚度,声测管材料的温度系数应与混凝土接近。

3 声测管应下端封闭、上端加盖、管内无异物;声测管连接处应光顺过渡,管口高出混凝土顶面100mm以上。

4 浇灌混凝土前应将声测管有效固定。

【条文说明】声测管内径与换能器外径相差过大时,声耦合误差明显增加;相差过小时,影响换能器在管中的移动,因此两者差值取10mm为宜。

声测管管壁太薄或材质较软时,混凝土灌注后的径向压力可能会使声测管产生过大的径向变形,影响换能器正常升降,甚至导致试验无法进行,因此要求声测管有一定的径向刚度,如采用钢管、镀锌管等管材,不宜采用PVC管。

由于钢材的温度系数与混凝土相近,可避免混凝土凝固后与声测管脱开产生空隙。

声测管的平行度是影响测试数据可靠性的关键,因此,应保证成桩后各声测管之间是基本平行的。

10.3.2声测管应沿钢筋笼内侧呈对称形状布置(图10.3.2),并可按正北方向顺时针旋转依次编号。

声测管埋设数量应符合下列要求:1 D≤800mm,不少于2根管;2 800mm<D≤1500mm,不少于3根管;3 D>1500mm,不少于4根管。

当桩径D大于2500mm时宜增加预埋声测管数量。

图10.3.2 声测管布置示意图注:检测剖面编组(检测剖面序号为j)分别为:2根管时,AB剖面(j=1);3根管时,AB剖面(j=1),BC剖面(j=2),CA剖面(j=3);4根管时,AB剖面(j=1),BC剖面(j=2),CD剖面(j=3),DA剖面(j=4),AC剖面(j=5),BD剖面(j=6)。

【条文说明】检测剖面、声测线和检测横截面的编组和编号见图10。

桩中预埋三根声测管时可构成三个检测剖面,声波的有效检测范围覆盖了绝大部分桩身横截面,因此其声测管利用率是最高的,这符合检测工作既准确又经济的双重要求。

因此规范把预埋三根声测管的桩径范围放宽,大多数工程桩的桩径都在这个范围内。

声测管按规定的顺序编号,便于复检、验证试验,以及对桩身缺陷的加固、补强等工程处理。

图10 检测剖面、声测线、检测横截面编组和编号示意图10.4 现场检测10.4.1 现场检测前准备工作应符合下列规定:1 现场检测开始的时间应符合本规范第3.2.5条第1款的规定。

2 采用率定法确定仪器系统延迟时间。

3 计算几何因素声时修正值。

4 在桩顶测量相应声测管外壁间净距离。

5 将各声测管内注满清水,检查声测管畅通情况;换能器应能在声测管全程范围内正常升降。

【条文说明】本条说明如下:1原则上,桩身混凝土满28天龄期后进行声波透射法检测是合理的。

但是,为了加快工程建设进度、缩短工期,当采用声波透射法检测桩身缺陷和判定其完整性类别时,可适当将检测时间提前,以便能在施工过程中尽早发现问题,及时补救,赢得宝贵时间。

这种适当提前检测时间的做法基于以下两个原因:一是声波透射法是一种非破损检测方法,不会因检测导致桩身混凝土强度降低或破坏;二是在声波透射法检测桩身完整性时,没有涉及混凝土强度问题,对各种声参数的判别采用的是相对比较法,混凝土的早期强, 度和满龄期后的强度有一定的相关性,而混凝土内因各种原因导致的内部缺陷一般不会因时间的增长而明显改善。

因此,原则上只要求混凝土硬化并达到一定强度即可进行检测。

本规范3.2.5条中规, 定:“当采用低应变法或声波透射法检测桩身完整性时,受检桩混凝土强度至少达到设计强度的70%”。

2 率定法测定仪器系统延迟时间的方法是将发射、接收换能器平行悬于清水中,逐次改变点源距离并测量相应声时,记录若干点的声时数据并作线性回归的时距曲线:t=t0+ b∙l(6)式中:b——直线斜率(μs/mm);l——换能器表面净距离(mm);t——声时(μs);t0——仪器系统延迟时间(μs)。

3 声测管及耦合水层声时修正值按下式计算:(7)式中:d1——声测管外径(mm);d2——声测管内径(mm);d′——换能器外径(mm);v t——声测管材料声速(km/s);v w——水的声速(km/s);t′——声测管及耦合水层声时修正值(μs)。

10.4.2 现场平测和斜测应符合下列规定:1 将发射与接收声波换能器通过深度标志分别置于两个声测管道中。

平测时,发射与接收声波换能器始终保持相同深度(图10.4.2a);斜测时,发射与接收声波换能器始终保持固定高差(图10.4.2b),且两个换能器中点连线的水平夹角不应大于30°。

2 检测过程中,应将发射与接收声波换能器同步升降,声测线间距不应大于100mm,并应及时校核换能器的深度。

检测时应从桩底开始向上同步提升声波发射与接收换能器进行检测,提升过程中应根据桩的长短进行1~3次换能器高差校正,提升过程中应确保测试波形的稳定性,同步提升声波发射与接收换能器的提升速度不宜超过0.5m/s。

3 对于每条声测线,应实时显示和记录接收信号的时程曲线,读取首波声时、幅值,保存检测数据时应同时保存波列图信息,当需要采用信号主频值作为异常点辅助判据时,还应读取信号主频值。

4 在同一受检桩各检测剖面的平测或斜测过程中,声测线间距、声波发射电压和仪器设置参数应保持不变。

(a)(b)图10.4.2 平测、斜测示意图(a)平测;(b)斜测【条文说明】本条说明如下:1 由于每一个声测管中的测点可能对应多个检测剖面,而声测线则是组成某一检测剖面的两声测管中测点之间的连线,它的声学特征反映的是其声场辐射区域的混凝土质量,有明确的对应关系,故本次修订采用“声测线”代替了原规范采用的“测点”。

径向换能器在径向无指向性,但在垂直面上有指向性,且换能器的接收响应随着发、收换能器中心连线与水平面夹角θ的增大而非线性递减。

因此为了达到斜测的目的,同时测试系统又有足够的灵敏度,夹角θ应不大于30°。

2 声测线间距将影响桩身缺陷纵向尺寸的检测精度,间距越小,检测精度越高,但需花费更多的时间。

一般混凝土灌注桩的缺陷在空间有一定的分布范围。

规定声测线间距不大于100 mm,可满足工程检测精度的要求。

当采用自动提升装置时,声测线间距还可进一步减小。

换能器提升过程中电缆线始终处于张拉状态,换能器位置是准确的,而下降过程中换能器在水中受到一定的悬浮力,下沉不及时可能导致电缆线处于松弛状态,从而导致换能器位置不准确,因此须从桩底开始同步提升换能器进行检测才能保证记录的换能器位置的准确性。

自动记录声波发射与接收换能器位置时,提升过程中电缆线带动编码器卡线轮转动,编码器计数卡线轮转动值换算得到换能器位置。

电缆线与编码器卡线轮之间滑动、卡线轮直径误差等因素均会导致编码器位置计数与实际传感器位置有一定误差,因此每隔一定间距应进行一次高差校核。

此外,自动记录声波发射与接收换能器位置时,如果同步提升声波发射与接收换能器的提升速度过快,会导致换能器在声测管中剧烈摆动,甚至与声测管管壁发生碰撞,对接受的声波波形产生不可预测的影响。

因此换能器的同步提升速度不宜过快,必须保证测试波形的稳定性。

3 在现场对可疑声测线应结合声时(声速)、波幅、主频、实测波形等指标进行综合判定。

4 桩内预埋n根声测管可以有m s= 个检测剖面,预埋2根声测管有1个检测剖面,预埋3根声测管有3个检测剖面,预埋4根声测管有6个检测剖面,预埋5根声测管有10个检测剖面。

5 同一根桩检测时,强调各检测剖面声波发射电压和仪器设置参数不变,目的是使各检测剖面的声学参数具有可比性,便于综合判定。

10.4.3 在桩身质量可疑的声测线附近,应采用增加声测线或采用扇形扫测(图10.4.3)、交叉斜测、CT影像技术等方式进行复测和加密测试,进一步确定缺陷的位置和空间分布范围。

采用扇形扫测时,两个换能器中点连线的水平夹角不应大于40°。

图10.4.3 扇形扫测示意图【条文说明】经平测或斜测普查后,找出各检测剖面的可疑声测线,再经加密平测(减小测线间距)、交叉斜测等方式既可检验平测普查的结论是否正确,又可以依据加密测试结果判定桩身缺陷的边界,进而推断桩身缺陷的范围和空间分布特征。

相关文档
最新文档