高分子有机磁性材料

合集下载

磁性塑料的综述

磁性塑料的综述

1磁性塑料的介绍~~~~~~~磁性塑料是高分子磁性材料中的一种。

高分子磁性材料是一种具有记录声、光、电等信息并能重新释放的功能高分子材料,是现代科学技术的重要基础材料之一。

有机高分子磁性材料作为一种新型功能材料,在超高频装置、高密度存储材料、吸波材料和微电子等需要轻质磁性材料的领域具有很好的应用前景。

磁性高分子材料的出现大大改善了烧结磁体的这些缺点,它具有重量轻、有柔性、加工温度不高、结构便于分子设计、透明、绝缘、可与生物体系和高分子共容、成本低等优点,但是磁性高分子材料的磁性能较低,如何提高其磁性能成为磁性高分子材料研究的主要热点。

磁性高分子材料广泛应用于冰箱、冷藏柜、冷藏车的门封磁条,标识教材,广告宣传,电子工业以及生物医学等领域,是一种重要的功能材料特点:有机磁性材料的优点:a、结构种类的多样性;b、可用化学方法合成;c、可得到磁性能与机械、光、电等方面的综合性能;d、磁损耗小、质轻、柔韧性好、加工性能优越;用于超高频装置、高密度存储材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域2磁性塑料的分类及举例高分子磁性材料分为结构型和复合型两种:结构型磁性材料是指高分子材料本身具有强性;复合型磁性材料是指以塑料或橡胶为黏结剂与磁粉混合黏结加工而制成的磁性体。

结构型磁性材料:结构型高分子磁性材料的种类主要有:高自旋多重度高分子磁性材料;自由基的高分子磁性材料;热解聚丙烯腈磁性材料;含富勒烯的高分子磁性材料;含金属的高分子磁性材料;多功能化高分子磁性材料等.复合型磁性材料:复合型磁性塑料是指在塑料中添加磁粉和其他助剂,塑料起黏结剂作用。

磁性塑料根据磁性填料的不同可以分为铁氧体类、稀土类和纳米晶磁类。

根据不同方向磁性能的差异,又可以分为各向同性和各向异性磁性塑料。

3磁性材料的应用3.1磁性橡胶磁性橡胶铁氧体填充橡胶永磁体曾大量用于制造冷藏车、电冰箱、电冰柜门的垫圈。

北京化工研究院曾研制出专用于风扇电机的磁性橡胶,应用于计算机散热风扇。

有机高分子磁性材料研究综述

有机高分子磁性材料研究综述

有机磁性材料研究综述摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。

本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。

关键词:有机磁性材料结构型复合型Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect.Key word: organic magnetic material intrinsic complex一、简介历史上记载的人类对磁性材料的最早应用是中国人利用磁石能够指示南北方向的特性,将天然磁石制成的司南,这一发明对航海业的发展有着重要的推动作用。

有机磁性材料的应用及原理

有机磁性材料的应用及原理

有机磁性材料的应用及原理有机磁性材料是指由有机物质构成的具有磁性的材料,与传统的无机磁性材料(如铁、钴、镍等)不同。

相较于无机磁性材料,有机磁性材料具有许多独特的特性和优势,因此具有广泛的应用前景。

本文将就有机磁性材料的应用及其原理进行探讨。

首先,有机磁性材料在信息存储领域有着广泛的应用。

信息存储材料是指用于存储信息的介质,典型的例子如硬盘和磁带。

有机磁性材料由于其独特的分子结构和磁性行为,被广泛研究用于制备新型的信息存储介质。

例如,许多有机磁性材料展现出了良好的磁记录性能,如高磁化强度和可逆磁化。

这些性能使得有机磁性材料成为可能的磁存储介质之一。

其次,有机磁性材料在磁性共振成像(MRI)中具有重要的应用。

MRI是一种常用的医学成像技术,可以提供人体内部的详细图像,对于诊断和治疗疾病起着重要作用。

传统的MRI需要使用无机磁性材料作为对比剂来增强成像效果,但这些材料常常具有毒性和刺激性。

相比之下,有机磁性材料由于其良好的生物相容性和生物降解性,在MRI中被广泛研究和应用。

有机磁性材料可以通过改变其分子结构和磁性性质来调控其在MRI中的成像效果。

另外,有机磁性材料在磁性纳米粒子(MNPs)的制备和应用中也展现出了许多优势。

MNPs是一种具有磁性的纳米颗粒,具有许多重要的应用,如磁性液体、磁性药物载体等。

传统的MNPs通常由无机材料(如铁氧体和金属合金)制备,但存在一些问题,如合成成本高和生物相容性差。

有机磁性材料可以通过合成方法的选择和分子结构的调控来制备高性能的MNPs。

此外,有机磁性材料可以功能化修饰,实现对MNPs的表面性质和生物相容性的调控。

有机磁性材料的磁性原理主要有两个方面。

第一,有机磁性材料的磁性主要来自于它们的分子结构和电子排布。

例如,一些有机磁性材料具有未成对的自旋电子,这导致了它们的磁性行为。

此外,有机磁性材料中的π轨道电子也可以参与磁性相互作用,从而产生独特的磁性行为。

第二,有机磁性材料的磁性还与它们的相互作用方式有关。

功能性高分子

功能性高分子
1、电磁性功能高分子材料 包括导电性高分子、超导电高分子、有机半 导体、压电和热电高分子磁性体、磁记录材料。
永久磁性材料采用 Al-Ni-Co / 铁氧化磁体合
金,易脆、不宜切割成型。有机磁性材料分为结
构型和复合型两种,前者是共合成为一体,后者
是在有机聚合物中添加磁粉。如磁性标志物、冰 箱门封等。
2、光功能性高分子材料
8、氨基树脂及塑料
属于氨基、酰胺基单体与醛类热
固性树脂,包括脲醛、三聚腈胺甲醛、
脲三聚腈胺甲醛、苯胺甲醛等。无臭、
耐水、耐热、耐霉菌及自熄性强,可
作白色开关、冰箱外壳及制作麻将等。
9、环氧树脂
其主链结构上含有醚键和仲醇基, 主要用于生产涂料、电绝缘材料、增 强材料以及粘接剂。
10、不饱和聚酯
二元醇与二元酸或二元不饱和酸
2、聚氯乙烯
具有优良的综合性能及便宜的价格,
其特点为难燃、抗化学腐蚀、耐磨及优 良的电绝缘性能、较高的机械性能,为 第二大塑料常用作管材、电缆、日用门 窗等多种工程塑料。其缺点为热稳定差、 受热易降解、制作软制品须添加增塑剂。
3、聚苯乙烯树脂
属于热塑性树脂,具良好的刚性、透 明、耐水性及化学稳定性,具有优异的电 性和耐辐射性能及低的吸湿性、良好的加 工性以及便宜价格,使其具有广泛应用。 缺点:机械加工强度不高、耐冲击性 差、不耐热、易燃、易裂。
• 离子交换膜是指在电位差作用下,电解质中的不 同离子实现膜分离的过程。其材质是以高分子制 成膜状后,再引入离子交换基团。其材质为聚全 氟磺酸等。
• 气化分离膜是用于常规气体或有机物气体提纯、 富集或回收用。其材质是聚砜、聚烯烃、聚碳 酸酯、硅橡胶。
• 透过汽化膜是利用在减压时有机物选择性溶解、 扩散或蒸发性能的差别达到分离目的。其材质 为聚四氟乙烯等。

高分子磁性材料的合成和磁性能研究

高分子磁性材料的合成和磁性能研究

高分子磁性材料的合成和磁性能研究随着科技的不断发展,磁性材料在各个领域都有着广泛的应用。

其中,高分子磁性材料因其独特的结构和性质备受关注。

高分子磁性材料是指通过在高分子材料中引入磁性颗粒或通过合成具有磁性的高分子材料而得到的材料。

本文将主要探讨高分子磁性材料的合成方法以及其磁性能研究。

合成高分子磁性材料的方法有多种多样,下面将重点介绍一种常用的方法——磁性颗粒合成法。

这种方法通过控制磁性颗粒与高分子之间的相互作用,实现磁性颗粒的均匀分散在高分子材料中。

一种常见的磁性颗粒合成方法是溶液法。

首先,选取适当的溶剂,将高分子材料溶解于其中,并加入磁性颗粒制备的前驱体。

然后,在适当的条件下,通过控制溶剂的挥发、调整温度和添加表面活性剂等方法,使磁性颗粒在高分子材料中均匀分散。

最后,通过干燥或固化等方法得到高分子磁性材料。

这种方法制备的高分子磁性材料具有磁性稳定性好、粒径分布窄以及可控的磁性能等优点。

除了磁性颗粒合成法,还有一种常用的方法是合成具有磁性的高分子材料。

这种方法通过合成含有磁性基团的单体,然后将其聚合成高分子材料。

一种常见的具有磁性的高分子材料是聚苯胺和聚吡咯。

它们的磁性来源于其分子内的共轭结构和共轭链上的磁性基团。

通过调控单体的合成条件和聚合反应的条件,可以得到具有不同磁性性能的高分子材料。

这种方法制备的高分子磁性材料具有良好的热稳定性和机械性能。

针对高分子磁性材料的磁性能研究是非常重要的,它有助于了解材料的磁性行为以及优化材料的性能。

高分子磁性材料的磁性性能通常包括饱和磁化强度、剩余磁化强度和矫顽力等。

这些性能可以通过磁化曲线和磁滞回线来进行表征。

磁化曲线是描述材料在外加磁场下磁化行为的曲线,可以通过磁强计等仪器测得。

磁滞回线是描述材料在磁场的变化下磁化状态变化的曲线,可以进一步了解材料的磁性稳定性和磁化动力学行为。

此外,磁性材料的磁性性能还可以通过电子自旋共振、交流磁化等方法进行研究。

高分子磁性材料的合成和磁性能研究在现代科学技术中具有广泛的应用前景。

二十世纪末的重大发明—高分子磁性材料

二十世纪末的重大发明—高分子磁性材料

二十世纪末的重大发明—高分子磁性材料
佚名
【期刊名称】《中国新技术新产品》
【年(卷),期】2000(000)0Z2
【摘要】根据现有电磁场理论发展起来的电子信息技术,磁性物质是一种不可缺少的材料。

目前世界上使用的磁性材料通常是金属材料、合金材料或无机氧化物,例如铁、铁氧体、稀土氧化物等。

过去一般认为,有机化合物是难于具有磁性的。

因此本身具有磁性的高分子化合物的出现就是高分子领域的一个重大突破,具有
【总页数】1页(P54-54)
【正文语种】中文
【中图分类】TM271
【相关文献】
1.基于Ucinet社会网络分析的专利发明人团队和核心发明人分析——以华南理工大学高分子光电材料与器件研究所为例 [J], 王立杰
2.节能环保的重大发明--谐振节电器--新发现和新发明是对全人类的重大贡献 [J], 曾凡昌;黄有银
3.鼓励重大发明促进自主创新——2009年(第9届)信息产业重大技术发明发布会综述 [J], 胡人
4.磁性材料家族的新成员—高分子有机磁性材料 [J], 钟昭明
5.第四届信息产业重大技术发明评选结果揭晓我国将加大对重大技术发明项目支持力度 [J], 阴志华
因版权原因,仅展示原文概要,查看原文内容请购买。

高分子有机磁性材料

高分子有机磁性材料

高分子有机磁性材料1 引言磁性材料是一簇新兴的基础功能材料。

虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。

人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。

经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下:上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。

近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。

过去一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。

有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。

有可能在磁性材料领域产生一系列新技术。

2高分子有机磁性材料的主要性能特点由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。

从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点:(1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。

该类材料和元件制备的主要工艺流程如图1。

有机高分子吸波材料优缺点及应用

有机高分子吸波材料优缺点及应用

有机高分子吸波材料优缺点及应用
有机高分子吸波材料,是一种特殊的材料,具有吸收电磁波能量的能力。

它们在吸波材料领域有着广泛的应用。

下面将从优缺点和应用三个方面进行介绍。

优点:
有机高分子吸波材料具有较好的柔韧性和可塑性,可以根据需要制备成各种形状和结构,适应不同领域的需求。

其次,这种材料具有较高的吸波性能,可以有效吸收电磁波的能量,减少反射和散射的现象。

再次,有机高分子吸波材料制备工艺简单,成本较低,可大规模生产,具有较好的经济性。

缺点:
然而,有机高分子吸波材料也存在一些缺点。

首先,这种材料的吸波性能受到温度、湿度等环境因素的影响,易受到外界条件的限制。

其次,有机高分子吸波材料的稳定性较差,容易受到光、热、氧等因素的影响,导致性能的衰减和寿命的缩短。

再次,有机高分子吸波材料的机械强度较低,容易受到外力的损伤,限制了其在一些应用场景中的使用。

应用:
有机高分子吸波材料在军事、通信、电子等领域有着广泛的应用。

在军事领域,它可以用于制造隐身飞机、舰船等装备,有效减少雷达波的反射,增强隐身效果。

在通信领域,它可以用于制造天线罩、
吸波室等设备,减少信号的干扰和泄漏。

在电子领域,它可以用于制造电磁波屏蔽材料、电磁波吸收器等器件,提高电子设备的性能和稳定性。

总结:
有机高分子吸波材料具有柔韧性、吸波性能高、制备工艺简单等优点,但也存在受环境影响大、稳定性差、机械强度低等缺点。

在军事、通信、电子等领域有着广泛的应用。

随着科技的进步和材料研究的深入,有机高分子吸波材料有望在更多的领域发挥作用,为人类创造更多的可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子有机磁性材料1 引言磁性材料是一簇新兴的基础功能材料。

虽然早在3000多年前我国就已发现磁石相互吸引和磁石吸铁的现象, 并在世界上最先发明用磁石作为指示方向和校正时间的应用, 在《韩非子》和东汉王充著的《论衡》两书中所提到的“司南”就是指此, 但毕竟只是单一地应用了天然的磁性材料。

人类注意于磁性材料的性能特点、制造、应用等的研究、开发的发展历史尚不到100年时间。

经过近百年的发展, 磁性材料已经形成了一个庞大的家族,按材料的磁特性来划分, 有软磁、永磁、旋磁、记忆磁、压磁等; 按材料构成来划分, 有合金磁性材料, 铁氧体磁性材料, 分类情况如下:上述材料尽管种类繁多, 庞杂交叉, 但都属于无机物质的磁性材料或以无机物质为主的混合物质磁性材料。

近年来, 由于一种全新的磁性材料的面世, 使磁性材料家族喜添新成员, 这就是高分子有机磁性材料,其独特之处在于它属于纯有机物质的磁性材料。

过去一般认为, 有机高分子化合物是难于具有磁性的, 因此本身具有磁性的有机高分子化合物的出现, 就是高分子材料研究领域的一个重大突破。

有机高分子磁性材料的发现被国内外专家认为是80年代末科学技术领域最重要的成果之一, 它的发现在理论和应用上可与固体超导和有机超导相提并论。

有可能在磁性材料领域产生一系列新技术。

2高分子有机磁性材料的主要性能特点由于高分子有机磁性材料既属于高分子有机材料, 又属于磁性材料, 对这类材料的研究属于交叉科学,人们对这类新型材料的研究和认识尚处于起步阶段,因此尽管专家们已对其进行了多方面的测量、试验和分析、研究, 但对其特性的认识仍很不系统、很不准确、很不全面。

从现已了解到的一些测试数据和分析情况可以初步看出其主要的性能特点:(1) 该材料是采用与过去所有磁性材料的制备方法完全不同的高分子化工工艺制成的高分子有机物质,是高分子有机物再加上二茂铁的络合物, 分子量高达数千。

该类材料和元件制备的主要工艺流程如图1。

有机物的主要构成元素是碳、氢、氮,结构和化学性能十分稳定。

将磁粉加工制成磁性元件, 不需烧结,只需热压成型。

加工方便, 元件属塑性软磁产品, 不产生因高温烧结而导致的尺寸偏差, 且机械特性好, 可进行切、车、铣、钻等机械加工, 机械的抗振动、抗冲击性好。

(2)从磁性能看,属于软磁。

其本征磁特性参数有, 比磁化强度为20~27A·m2/kg, 剩磁为2.91A·m2/kg,矫顽力4.9kA/m; 应用磁特性参数有, 初始磁导率μi(在1000MHz时)为3~6, 比磁损耗(在1000MHz时)tgδ/μi为2.7×10-3; 低损耗适用频率范围为200~3500MHz。

(3)介电特性较好。

电阻率≥1010Ω·cm, 在1~1000MHz下, 复数介电常数的实部ε′为8.2~8.3, 虚部ε″为0.21~0.22。

(4)其他物理特性有, 密度低, 磁粉(为纳米级微粉)密度为0.33g/cm3, 磁片或磁环密度为1.05~2.05g/cm3; 适应温度宽, 为1.5~450K; 温度变化率低, Δμ/μi在-55~15℃间为-0.4%, 在55~125℃间为1.4%; 耐热冲击好, 在-45℃, 20℃及125℃间循环升降温及从-45℃到100℃剧烈温度冲击下磁棒无异常; 抗辐射; 抗老化等。

(5)目前对高分子有机磁性材料的分子结构和产生磁性的机理尚不清楚。

随着材料温度的升高, 磁性能变化很小, 直到220℃该种高分子有机材料分解时,磁性能才消失, 研究者暂时将此温度称作此种材料的居里温度。

有关专家估计, 二茂金属高分子有机磁性材料的磁性, 可能是源于磁性金属离子的有序排列, 由于高分子有机材料的结构非常稳定, 所以磁性能随温度的变化很小, 直到高分子有机材料分解破坏时, 磁性才立即消失, 几乎无渐变过程。

金属高分子有机磁性材料与NiZn铁氧体材料的性能比较如表1所列。

3国内外研究进展国际上对有机磁性材料的研究始于1986年。

1988年美国杜邦公司的Miller 研制出名为“十二甲基二茂铁TCNE电荷转移化合物”的有机磁性材料。

之后, 日本、前苏联(俄罗斯)也相继研制出有机磁性材料。

但都由于磁性太弱, 而且有在常温下磁性能不稳定的缺陷而没有实用价值。

我国对有机磁性材料的研究基本和国外同期开始。

清华大学和四川师范大学是国内的主要研究单位。

国家对高分子有机磁性材料的研究十分重视。

将该项目作为国家自然科学基金会1987~1997年连续十年资助的科研项目。

由四川师范大学林展如教授主持研究的高分子有机磁性材料于1993年获国家专利局保密发明专利, 1994年11月在成都通过国家技术鉴定。

以中国科学院院士徐僖为首的鉴定组认为:该课题组研制的二茂金属高分子磁性化合物及试制的一系列磁性元器件, 在结构型金属有机高分子磁性材料研究方面处于国际领先水平。

1996年被列入国家“863”高科技计划。

1997年由四川省科技投资公司与四川师范大学组建了四川科新磁电有限责任公司联合开发这一高新科技项目, 同年12月高分子有机磁粉中试成功。

他们通过分子设计和化学合成已做了3个结构系列29个配方的材料并具有一定的生产能力。

林展如教授主持研究的高分子有机磁性材料的应用开发得到了国内电子、通信、航天、航空等方面从事整机、部件、元器件和材料研究的高等院校、研究所和有关工厂的大力协同和密切合作。

科研人员利用这类新型磁性化合物已研制出功率分配器、射频振荡器等15种磁性元器件, 经有关部门试用,这些元器件具有高频磁信号损耗小, 温度系数数低,重量轻, 体积小,易加工等特点。

这表明该类磁性材料是在电子信息领域较富发展潜力的新型磁性材料。

在国内同时进行高分子有机磁性材料研究的还有东北金属研究所、中科院物理所等,他们也都分别取得不同程度的进展。

4应用开发前景和需要解决的一些问题1998年4月13日, 四川省电子学会和四川省投资公司在成都联合组织召开了高分子磁性材料应用开发合作研讨会。

省电子厅、省电子学会、省投资公司和13个研究所、院校、工厂的20多名相关专业的专家参加了会议。

从会上介绍的对有机磁性材料及研制出的元器件的性能的测量、试验、分析及展示出的磁片、磁环、磁板、磁棒等元件和射频振荡器、混频器、滤波器、功率分配器和合成器、放大器等器件的样品情况来看, 林教授主持研究的高分子有机磁性材料已初步进入实用阶段, 居国际领先水平。

专家们认为,由于高分子有机磁性材料具有密度低、适用温度范围宽、温度变化率低、在高频和微波频率下磁损耗低,磁性能、介电性能和化学性能十分稳定, 不需烧结、可加工性好、抗振动性和抗冲击性好等明显优于其他软磁材料的优良特性, 因而在军工和民用方面都应该具有十分广泛的应用。

但是,高分子有机磁性材料具体应用于哪些方面,还需相当时间的开发、研究,才能确定。

预计在如下方面可能有较好的开发应用前景:(1) 在200~3500MHz范围内做各类通讯天线。

例如用于移动通讯的手机中做天线, 长4cm左右, 可装入机壳内, 成为无天线移动通讯手机, 方便携带使用;此外手机收发的高频电磁波对人体有辐射作用, 用有机磁性材料做天线可使辐射下降80%左右, 对人体健康大为有益,很受欢迎。

将高分子有机磁性材料天线放于无绳电话的子机中, 可以取代原长几十厘米的金属天线。

此外还可开发研制军用战术天线, 小型化和重量轻的电视天线和可移动式电视机接收天线等。

(2) 可在200~3500MHz范围内做各种电感器。

实际上在200MHz以下仍然有大量电感器件的需求,如在共用天线等方面。

要求材料提高μ值以增大电感量。

(3) 高分子有机磁性材料也是一种性能良好的电介质材料。

在开关电源中必须使用大的电解电容, 如用高分子有机磁性材料做介质膜, 可使膜厚度增大,使电容大大增高, 降低开关电源的成本。

(4)可在一定的射频频率范围制做军工和民用的振荡器、混频器、变频器、功率分配器、功率合成器、功率放大器、滤波器等微波器件。

需扩展材料应用频率范围和降低材料损耗。

在上述应用中需使材料系列化, 提高一致性、重复性,并大大提高性能价格比。

(5) 由于高分子有机磁性材料的稳定性好、加工性好、介电常数高, 在微波频率范围内做微带基片, 不仅可大大缩小器件、部件、整机的体积,减轻重量, 而且由于耐振性好, 可以解决用陶瓷基片振动后常出现裂纹的问题,因而特别适合于航天、航空中应用。

但应解决好两方面的问题:一是损耗应小于1×10-3; 二是材料的分解温度应由目前的220℃提高到基片的成型温度和锡焊温度260℃以上。

(6) 做成抗电磁干扰器件和电子战中的吸波隐身材料。

由于国家将用法规强制推行抗电磁干扰器件以减少电磁污染; 军队对航天、航空、舰船等电子整机较多的武器装备系统都提出了电磁兼容的严格要求,以减小相互干扰, 提高灵敏度,因而应用十分广泛。

此外, 涂敷于飞机和舰船表面, 使敌方侦察雷达无法发现的吸波隐身材料用量也很大。

但这些用途都需要材料有高的损耗, 应从这方面研究有机磁性材料的磁损耗特性和电损耗特性。

(7) 高分子有机磁性材料还有望在其他方面进行开发应用。

例如用于高级密封的液体磁性材料, 用于水下探测的磁致伸缩材料, 用于制作脉冲变压器以及电视机、光纤通讯中的某些更新换代产品等。

以上述应用为代表的各种应用, 还应考虑解决以下几个方面的问题:一是从安全性考虑, 解决有机磁性材料目前存在的易燃问题, 使之成为阻燃材料; 二是在有机磁性材料中增添一些东西, 使之变为新复合磁性材料, 拓宽应用开发面; 三是从小批量试制到中批量生产需解决工艺的稳定问题; 四是纳米级微粉有许多优良特性, 但某些应用中需要更粗一些的, 如微米级的粉末,因此还应解决微米级高分子有机磁性材料粉末的制备问题。

5结束语高分子有机磁性材料的面世,将会在磁性材料领域引起重大变革。

预计从现在起再经过3~5年时间的应用开发研究, 到21世纪初期以后, 将有大批用高分子有机磁性材料制成的元器件或器材投放市场, 满足国防和国民经济建设的需要, 使我国的这一高新技术成果转化为显著的经济效益, 并保持国际领先水平。

相关文档
最新文档