NTC温度监测及控制电路

合集下载

单片机ntc测温电路

单片机ntc测温电路

单片机ntc测温电路单片机NTC测温电路是一种温度检测系统,利用NTC进行测温,使用单片机进行数据处理和显示。

本文将分步骤介绍单片机NTC测温电路的原理、组成部分以及具体操作方法。

组成部分单片机NTC测温电路主要由单片机、NTC热敏电阻、稳压器、电容、电阻等组成。

其中,NTC热敏电阻是测温的核心部件,其阻值随着温度的变化而变化。

稳压器、电容、电阻等则起到稳定、过滤信号的作用。

原理NTC热敏电阻的阻值与温度成反比,即在温度升高的过程中,其阻值逐渐下降。

利用这一特性,通过串联电路实现电压分压,测量NTC 热敏电阻的阻值,进而反推出温度值。

通过单片机控制LED灯的状态,实现对温度值的显示。

操作步骤1. 连接电路图:将稳压器、电容、NTC热敏电阻和电阻按照电路图连接起来。

2. 程序设计:通过C语言编写单片机程序,实现对温度值的测量、计算和显示。

具体代码的编写可以参考相关教程或者资料。

3. 烧录程序:将编写好的程序通过专业的烧录器烧录进入单片机,使其能够正常运行。

4. 调试电路:连接电源,并连接具备串口通讯功能的终端。

使用终端发送指令,读取设备的数据,观察温度值的变化,进行电路的调试。

注意事项1. 电路连接时,要注意电路图上的连接方式,避免连接发生错误,导致电路无法正常工作。

2. 编写程序时,要注意代码的规范性和实现的准确性,避免出现程序的漏洞,导致系统无法正常运行。

3. 烧录过程中,要注意选择正确的单片机型号和烧录方式,避免烧录失败,影响系统运行。

4. 在电路调试过程中,要进行逐步调试,找出问题出现的位置,一步步解决问题。

总结单片机NTC测温电路具有简单、实用、精准的特点,广泛应用于各种工业、农业、医疗等领域。

本文介绍了单片机NTC测温电路的原理、组成部分和具体操作方法,希望对大家有所帮助。

同时,也提醒大家在使用时要仔细操作,确保系统能够正常运行。

NTC温度监测及控制电路

NTC温度监测及控制电路

大庆石油学院课程设计2009年6 月29 日大庆石油学院课程设计任务书课程电子技术课程设计题目NTC温度监测及控制电路专业自动化姓名李连会学号070601140215 主要内容:运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

基本要求:(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

(2)、用100Ω/2W的电阻元件作为加热装置。

(3)、设计温度检测电路和温度控制电路。

(4)、具有自动指示“加热”与“停止”功能。

(5)、写出完整的设计及实验调试总结报告。

参考资料:[1] 孙淑燕,张青.电子技术教学实践指导书[M].北京:中国电力出版社,2005.10.[2] 刘润华,刘立山.模拟电子技术[M].山东:石油大学出版社,2003.[3] 廖先芸,郝军.电子技术实践教程[M].北京:石油工业出版社,1998.5.[4] 汪学典.电子技术基础实验[M].武汉:华中科技大学出版社,2006.8.[5] 彭介华.电子技术课程设计指导[J].北京:高等教育出版社,1997.完成期限2009.6.29至2009.7.3指导教师专业负责人2009年6 月27 日目录1 设计要求 (1)2方案设计 (1)2.1设计思路 (1)2.2总体方案方框图 (1)2.3基本原理 (2)3总体方案的选择和设计 (2)3.1 PTC温度控制电路 (2)3.2 NTC温度监测及控制电路 (3)4单元电路的设计 (3)4.1含有热敏电阻的桥式放大电路 (3)1、测温电桥 (3)2、差动放大电路 (4)4.2 滞回比较器 (5)4.3 输出警报和控制电路 (6)4.4元件参数的计算及选择 (6)1、差分放大电路 (6)2、桥式测温放大电路 (7)3、滞回比较器 (7)5总电路图 (8)6总结 (8)参考文献 (9)附录 (10)1 设计要求运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

NTC温度监测及控制电路

NTC温度监测及控制电路

大庆石油学院课程设计2009年 6 月 29 日石油学院课程设计任务书课程电子技术课程设计题目 NTC温度监测及控制电路专业自动化连会学号070601140215 主要容:运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

基本要求:(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

(2)、用100Ω/2W的电阻元件作为加热装置。

(3)、设计温度检测电路和温度控制电路。

(4)、具有自动指示“加热”与“停止”功能。

(5)、写出完整的设计及实验调试总结报告。

参考资料:[1] 淑燕,青.电子技术教学实践指导书[M].:中国电力,2005.10.[2] 润华,立山.模拟电子技术[M].:石油大学,2003.[3] 廖先芸,郝军.电子技术实践教程[M].:石油工业,1998.5.[4] 汪学典.电子技术基础实验[M].:华中科技大学,2006.8.[5] 介华.电子技术课程设计指导[J].:高等教育,1997.完成期限 2009.6.29至2009.7.3指导教师专业负责人2009年 6 月 27 日目录1 设计要求 (1)2方案设计 (1)2.1设计思路 (1)2.2总体方案方框图 (1)2.3基本原理 (2)3总体方案的选择和设计 (2)3.1 PTC温度控制电路 (2)3.2 NTC温度监测及控制电路 (3)4单元电路的设计 (3)4.1含有热敏电阻的桥式放大电路 (3)1、测温电桥 (3)2、差动放大电路 (4)4.2 滞回比较器 (5)4.3 输出警报和控制电路 (6)4.4元件参数的计算及选择 (6)1、差分放大电路 (6)2、桥式测温放大电路 (7)3、滞回比较器 (7)5总电路图 (8)6总结 (8)参考文献 (10)附录 (11)1 设计要求运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

(2)、用100Ω/2W的电阻元件作为加热装置。

ntc热敏电阻测温电路原理

ntc热敏电阻测温电路原理

NTC热敏电阻测温电路的原理是利用热敏电阻的电阻随温度变化的特性来测量温度。

热敏电阻是一种温度感应元件,它的电阻值会随着环境温度的变化而发生变化。

NTC热敏电阻的电阻-温度特性是负温度系数的,也就是说当温度升高时,电阻值会下降。

这种特性可以用来测量温度的变化。

NTC热敏电阻测温电路一般由热敏电阻、电阻、电源和测量电路组成。

电源提供电流,流经热敏电阻产生电压。

测量电路会将电压转换为温度值,常用的方法是使用电压比较器或模数转换器。

当热敏电阻与电阻串联连接时,它们所组成的电压分压电路的输出电压与热敏电阻的电阻值及温度相关。

通过测量输出电压的变化,可以推算出温度的变化。

总而言之,NTC热敏电阻测温电路通过测量热敏电阻的电阻值变化来间接推断环境温度的变化,从而实现温度测量的目的。

ntc热敏电阻测温电路设计_概述说明以及解释

ntc热敏电阻测温电路设计_概述说明以及解释

ntc热敏电阻测温电路设计概述说明以及解释1. 引言1.1 概述本文讨论的是NTC热敏电阻测温电路设计。

在现代科技发展中,温度测量是非常重要的一项技术。

NTC热敏电阻作为常见的温度传感器之一,具有精确、可靠、成本低廉等特点,广泛应用于各个领域。

1.2 文章结构本文主要分为五大部分。

第一部分是引言,对文章进行概述说明以及目的阐述。

第二部分详细介绍了NTC热敏电阻的基本知识和特性。

第三部分讨论了温度测量原理及方法,并与其他常见温度测量方法进行比较。

第四部分重点探讨了NTC 热敏电阻测温电路设计的要点,包括选择合适的NTC热敏电阻型号与参数设置、温度补偿与校准技巧以及信号处理与转换电路设计要点。

最后一部分是结论和展望,总结了文章的主要内容并对未来发展进行了展望。

1.3 目的本文的目的是提供关于NTC热敏电阻测温电路设计方面的详细说明和解释。

通过对NTC热敏电阻的介绍和温度测量原理的解析,帮助读者了解如何选择合适的NTC热敏电阻、进行温度补偿与校准,并设计出高效可靠的信号处理与转换电路。

同时,本文还展望了NTC热敏电阻测温技术在未来的发展方向。

2. NTC热敏电阻简介2.1 什么是NTC热敏电阻NTC热敏电阻全称为负温度系数热敏电阻( Negative Temperature Coefficient Thermistor),是一种根据温度变化而改变阻值的传感器。

它由金属氧化物制成,具有负温度系数特性,即当温度上升时,其电阻值会下降;反之,当温度下降时,电阻值会增加。

2.2 NTC热敏电阻的特性NTC热敏电阻具有许多独特的特性。

首先,它们响应速度快,能够实时测量环境温度。

其次,NTC热敏电阻的响应范围广泛,可覆盖从低至几摄氏度到高达几百摄氏度的整个温度范围。

此外,NTC热敏电阻精确可靠,在稳态和非稳态情况下都能提供准确的温度测量结果。

2.3 应用领域NTC热敏电阻广泛应用于各个领域中的温度测量与控制。

它们被广泛用于家电、汽车、电子设备等领域,在温度测量、过热保护、温度补偿等方面发挥着重要作用。

温度测量、控制、补偿用NTC热敏电阻器原理图及应用

温度测量、控制、补偿用NTC热敏电阻器原理图及应用

温度测量、控制用NTC热敏电阻器
外形结构
环氧封装系列NTC热敏电阻
玻璃封装系列NTC热敏电阻
应用电路原理图
温度测量(惠斯登电桥电路)
温度控制
应用设计
•电子温度计、电子万年历、电子钟温度显示、电子礼品;
•冷暖设备、加热恒温电器;
•汽车电子温度测控电路;
•温度传感器、温度仪表;
•医疗电子设备、电子盥洗设备;
•手机电池及充电电器。

温度补偿用NTC热敏电阻器
产品概述
许多半导体和ICs有温度系数而且要求温度补偿,以在较大的温度范围中达到稳定性能的作用,由于NTC热敏电阻器有较高的温度系数,所以广泛应用于温度补偿。

主要参数
额定零功率电阻值R25 (Ω)
R25允许偏差(%)
B值(25/50 ℃)/(K)
时间常数≤30S
耗散系数≥6mW/ ℃
测量功率≤0.1mW
额定功率≤0.5W
使用温度范围 -55 ℃ ~+125 ℃
降功耗曲线:
应用原理及实例。

热敏电阻测温电路

热敏电阻测温电路

热敏电阻测温电路概述热敏电阻(thermistor)是一种将温度变化转化为电阻变化的传感器。

热敏电阻测温电路是一种常见的温度测量方法,通过读取热敏电阻的电阻值来确定温度。

本文将介绍热敏电阻测温电路的工作原理、电路设计以及使用注意事项。

工作原理热敏电阻的电阻值与温度呈负相关关系,温度升高时电阻值减小,温度降低时电阻值增加。

这是因为热敏电阻的电阻值受其内部材料温度相关性的影响。

常见的热敏电阻有两种类型:PTC(正温度系数)和NTC (负温度系数)。

PTC热敏电阻的电阻值随温度升高而增加,而NTC热敏电阻的电阻值随温度升高而减小。

热敏电阻测温电路利用了热敏电阻温度-电阻特性的这一特点,通过测量电阻值来间接确定温度。

电路设计热敏电阻测温电路一般由以下几部分组成:1.热敏电阻:选择适当的热敏电阻类型和参数,根据测量范围和精度要求进行选择。

2.偏置电阻:为了减小热敏电阻的电阻变化对测量结果的影响,一般需要在热敏电阻和测量电路之间加入一个偏置电阻。

3.电桥:为了提高测量精度,常常使用电桥电路来测量热敏电阻的电阻值。

电桥电路一般由热敏电阻、偏置电阻和参考电阻组成。

4.读取电路:读取电桥电路的输出电压,通过将输出电压与参考电压进行比较,可以得到热敏电阻的电阻值,从而确定温度。

使用注意事项在设计和使用热敏电阻测温电路时,需要注意以下几点:1.热敏电阻的特性:了解选用的热敏电阻的温度-电阻特性,以及其额定工作范围和精度。

2.偏置电阻的选择:根据热敏电阻的特性和设计要求,选择适当的偏置电阻,以使热敏电阻的电阻变化对测量结果的影响最小化。

3.电桥电路的设计:根据热敏电阻的特性和设计要求,设计适当的电桥电路,以提高测量精度。

4.温度补偿:热敏电阻的温度-电阻特性可能受到环境温度的影响,在一些应用中,可能需要进行温度补偿以提高测量精度。

5.输出接口:根据实际需求,选择合适的输出接口(如模拟电压输出或数字信号输出),以便接入其他设备或系统。

基于ntc热敏电阻的温度检测报警电路设计

基于ntc热敏电阻的温度检测报警电路设计

基于ntc热敏电阻的温度检测报警电路设计下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着科技的不断进步,基于NTC(Negative Temperature Coefficient)热敏电阻的温度检测报警电路设计已成为现代电子领域中备受关注的话题之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大庆石油学院课程设计2009年 6 月29 日石油学院课程设计任务书课程电子技术课程设计题目NTC温度监测及控制电路专业自动化连会学号 5 主要容:运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

基本要求:(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

(2)、用100Ω/2W的电阻元件作为加热装置。

(3)、设计温度检测电路和温度控制电路。

(4)、具有自动指示“加热”与“停止”功能。

(5)、写出完整的设计及实验调试总结报告。

参考资料:[1] 淑燕,青.电子技术教学实践指导书[M].:中国电力,2005.10.[2] 润华,立山.模拟电子技术[M].:石油大学,2003.[3] 廖先芸,郝军.电子技术实践教程[M].:石油工业,1998.5.[4] 汪学典.电子技术基础实验[M].:华中科技大学,2006.8.[5] 介华.电子技术课程设计指导[J].:高等教育,1997.完成期限2009.6.29至2009.7.3指导教师专业负责人2009年 6 月27 日目录1 设计要求 (1)2方案设计 (1)2.1设计思路 (1)2.2总体方案方框图 (1)2.3基本原理 (2)3总体方案的选择和设计 (2)3.1 PTC温度控制电路 (2)3.2 NTC温度监测及控制电路 (3)4单元电路的设计 (3)4.1含有热敏电阻的桥式放大电路 (3)1、测温电桥 (3)2、差动放大电路 (4)4.2 滞回比较器 (5)4.3 输出警报和控制电路 (6)4.4元件参数的计算及选择 (6)1、差分放大电路 (6)2、桥式测温放大电路 (7)3、滞回比较器 (7)5总电路图 (8)6总结 (8)参考文献 (9)附录 (10)1 设计要求运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。

(1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。

(2)、用100Ω/2W的电阻元件作为加热装置。

(3)、设计温度检测电路和温度控制电路。

(4)、具有自动指示“加热”与“停止”功能。

(5)、写出完整的设计及实验总结报告。

2方案设计2.1设计思路根据课题要求,电路主要包括四个部分。

(1)由具有负温度系数电阻特性的热敏电阻(NTC)为一臂组成测温电桥的传感器,来测量温度。

(2)由差动放大电路,将测得的温度信号按比例放大。

(3)测温电桥输出经测量放大器放大后由滞回比较器输出“加热”“停止”信号。

改变滞回比较器的比较电压U R即改变控温的围,而控温的精度则由滞回比较器的滞回宽度确定。

(4)滞回比较器输出的信号经三极管放大后控制加热器“加热”与“停止”。

2.2总体方案方框图图1 基本原理框图2.3基本原理基本原理框图如图1所示。

采用负温度系数电阻特性的热敏电阻(NTC元件)R t为一臂组成测温电桥,其输出经测量放大器放大后由滞回比较器输出“加热”与“停止”信号,经三极管放大后控制加热器“加热”与“停止”。

改变滞回比较器的比较电压U R即改变控温的围,而控温的精度则由滞回比较器的滞回宽度确定。

3总体方案的选择和设计3.1 PTC温度控制电路图2 TC620结构图在工作温度围,阻值随温度升高而增加的热敏电阻器成为正温度系数热敏电阻器,简称PTC元件。

TC620是一种新型智能温度控制集成电路.其部主要由温度传感器(PTC 热敏电阻)、基准电压源、温度/电压变换器、两个带滞回的电压比较器及锁存器等组成。

其主要特性参数为:工作电压围4.5V~18V;最大士作电流200mA;最大输出电流可达1mA;输出阻抗400Ω;测温围-55℃~+125℃;温度测量精度±3℃。

TC620的实际结构框图如图2所示。

A1A2及C1组成低于温度下限报警的输出,A1、A3及C2组成高于温度上限报警的输出。

C1的输出经反相后与C2的输出一起作为RS触发器的输入,由CON端输出温度控制信号。

外接两个电阻R SL 和R SH,其电阻值的大小可由公式R SH(R SL)=0.59972.1312×T求出(式中T为绝对温度)。

从理论上讲,恒定温度是一个“点”。

实际上,为了防止频繁的通断信号而损坏继电器,恒定温度应是一个温度区间,这个区间的温度差值根据所要求的恒温精度确定,如2~3℃。

在设计电路时,可根据恒定温度选择温度上限电阻R SH,在以低于恒定温度2~3℃的温度选择温度下限电阻R SL。

这样,当温度高于上限时,继电器断开(保温);当温度低于下限时,继电器吸合,从而实现恒温目的。

3.2 NTC温度监测及控制电路如图NTC温度监测及控制电路是由负温度系数电阻特性的热敏电阻(NTC 元件)R t为一臂组成测温电桥,其输出经测量放大器放大后由滞回比较器输出“加热”与“停止”信号,经三极管放大后控制加热器“加热”与“停止”。

改变滞回比较器的比较电压U R即改变控温的围,而控温的精度则由滞回比较器的滞回宽度确定。

差动放大器输出电压Uo1经分压后A2组成的滞回比较器,与反向输入端的参考电压U R相比较。

当同相输入端的电压信号大于反相输入端的电压时,A2输入正饱和电压,三极管T饱和导通。

通过发光二极管LED的发光情况,可见负载的工作状态为加热。

反之,为同相输入信号小于反相输入电压时,A2输出负饱和电压,三极管T截止,LED熄灭,负载的工作状态为停止。

调节R W4可以改变参考电平,也同时调节了上下门限电平,从而达到设定温度的目的。

4单元电路的设计4.1含有热敏电阻的桥式放大电路1、测温电桥如图3所示,由R1、R2、R3、R W1及Rt组成测温电桥,其中Rt是温度传感器。

其呈现出的阻值与温度成线性变化关系且具有负温度系数,而温度系数又与流过它的工作电流有关。

为了稳定Rt的工作电流,达到稳定其温度系数的目的,设置了稳压管D2。

R W1可决定测温电桥的平衡。

V cc++12V图3测温电桥电路2、差动放大电路图4 差动放大电路如图4所示,由A1及外围电路组成的差动放大电路,将测温电桥输出电压△U按比例放大。

其输出电压B6564W274A4W2701)URRR)(RRRR()URRR(U+++++-=当R4=R5,(R7+R W2)=R6时)U(URRRUAB4W2701-+=(1)R W3用于差动放大器调零。

可见差动放大电路的输出电压U01仅取决于二个输入电压之差和外部电阻的比值。

4.2 滞回比较器图5 同相滞回比器图6 电压传输性差动放大器的输出电压U01输入由A2组成的滞回比较器。

滞回比较器的单元电路如图5所示,设比较器输出高电平为U0H,输出低电平为U OL,参考电压U R加在反相输入端。

当输出为高电平U0H时,运放同相输入端电位0HF22iF2FHURRRURRRU+++=+(2)当Ui减小到使U+H=U R,即OHF2RFF2TLiURRURRRUU-+==(3)此后,Ui稍有减小,输出就从高电平跳变为低电平。

当输出为低电平U0L时,运放同相输入端电位OLF22i F 2F L U R R R U R R R U +++=+(4)当Ui 增大到使U +L =U R ,即OL F2R F F 2TH i U R RU R R R U U -+== (5) 此后,Ui 稍有增加,输出又从低电平跳变为高电平。

因此U TL 和U TH 为输出电平跳变时对应的输入电平,常称U TL 为下门限电平,U TH 为上门限电平,而两者的差值)U (U R R -U U U OL OH F2TL TR T -== (6) 称为门限宽度,它们的大小可通过调节R 2/R F 的比值来调节。

图6为滞回比较器的电压传输特性。

4.3 输出警报和控制电路利用滞回比较器输出的电压U O2控制一个开关三极管使报警电路中的发光二极管显示不同的状态(亮/灭),同时控制电流继电器KA ,进而控制加热电路的导通和截止。

调节滞回比较器的上下门限电平可控制三极管的开关时间,从而达到设定加热温度的目的。

电路如图7。

图7 输出警报和控制电路4.4元件参数的计算及选择Uo 21、差分放大电路如图4所示,令A 、B 点分别接地,B 点接地:A 47W2o1U R R R 'U +-= (7) A 点接地:B 65447w26''o1U )R (R R )R R (R R U +++= (8)于是 A 47w265447w26''o1'o1o1U R R R )R (R R )R R (R R U U U +-+++=+= (9)设计要求差动放大电路可将A 、B 点电压差△U 按比例放大。

即令47w265447w26R R R )R (R R )R R (R R +=+++ (10)可得7w26R R R +=选取R 4=R 5=10K Ω,R 6=1M Ω,R 7=910K Ω,则Ω90K R -R R 76w2==2、桥式测温放大电路将差动放大电路的A 、B 端与测温电桥的A`、B `端相连,构成一个桥式测温放大电路。

选取常温下Rt 为1K Ω的热敏电阻,R 1=100K Ω,R 2=20K Ω,R 3=220K Ω,选定室温为平衡温度,如图3所示,即要求U A -U B =0。

即,32w13t 1t R R R R R R R ++=+可得,2t31w1R R R R R -==21.98K Ω 3、滞回比较器图8如图8设定参考电平U R =2V ,运算放大器A 2选为μA741。

其输出最大电压为±13V ,即比较器输出低电平U OL =-13V ,输出高电平U OH =+13V 。

U R =122R R R R R 10W49'W410=+++求得,'W4R =16K Ω上门限电压U TH =2.15V U R R U R R R OL 11SR 1111S =-+ 下门限电压89V .1U R RU R R R U OH 11S R 1111S TL=-+=门限宽度△U T =U TH -U TL =26V .0)U U (R R OL OH 11S=- 5总电路图把上述各部分电路连接起来便构成了完整的NTC 温度监测及控制电路。

其总电路图如附录所示。

6总结本次课程设计要求设计一种音乐彩灯控制器。

应用所学的知识及在图书馆搜集的资料,对题目所要求的电路进行了设计。

1、设计了两种温度控制电路进行对比,方案一是利用PTC 集成元件TC260进行组配电路,方案二是利用NTC 热敏电阻组配电路。

方案一电路使用集成元件相对来说比较简单。

2、在方案二的设计中,用到了差分放大器、滞回比较器、测温电桥等基本电路。

3、根据任务要求对相关参数进行了计算,并对相关元件进行了选择。

相关文档
最新文档