一种用于移动机器人状态和参数估计的自适应UKF算法

合集下载

基于改进的IMM-UKF高超声速目标跟踪算法

基于改进的IMM-UKF高超声速目标跟踪算法

基于改进的IMM-UKF高超声速目标跟踪算法肖楚晗;李炯;雷虎民;李世杰【摘要】针对临近空间高超声速目标跟踪过程中,因初值不准确、状态方程偏差较大而引起的滤波初期跟踪误差较大的问题,提出了基于改进的 IMM-UKF 高超声速目标跟踪算法.该算法利用方差膨胀原理,添加自适应因子αk调整状态预测值与量测预测值所占权重.利用Monte Carlo仿真实验与IMM-UKF滤波算法仿真结果进行比较,证明了所提算法跟踪高超声速目标的优越性与可靠性.%During the near-space hypersonic target tracking process,the initial tracking error is large due to the inaccu-rate initial value and large deviation of the state equation.Aiming at this problem,an improved IMM-UKF algorithm was proposed.By using variance inflation principle,an adaptive factor was used to adjust weights of predicted state val-ues and predicted measures.Monte Carlo simulation results and IMM-UKF filter algorithm simulation results were compared to prove the superiority of the proposed algorithm in tracking hypersonic targets.【期刊名称】《探测与控制学报》【年(卷),期】2018(040)003【总页数】6页(P108-113)【关键词】临近空间;目标跟踪;交互式多模型;自适应无迹卡尔曼滤波【作者】肖楚晗;李炯;雷虎民;李世杰【作者单位】空军工程大学防空反导学院,陕西西安 710051;空军工程大学防空反导学院,陕西西安 710051;空军工程大学防空反导学院,陕西西安 710051;空军工程大学防空反导学院,陕西西安 710051【正文语种】中文【中图分类】E927;TN9530 引言临近空间高超声速目标具有飞行速度快、机动范围广、飞行高度高、气动参数变化复杂等特点。

基于超宽带和航位推算的室内机器人UKF定位算法

基于超宽带和航位推算的室内机器人UKF定位算法

基于超宽带和航位推算的室内机器人UKF定位算法
王芳;李楠;刘汝佳;吕翀
【期刊名称】《导航定位与授时》
【年(卷),期】2017(004)002
【摘要】超宽带是一种传输速率快、功耗低的新型无线通信技术,可提供亚米级定位精度,近年来超宽带定位在机器人领域的应用日益广泛.在超宽带信号有效区域边缘或信号受到遮挡时,超宽带定位精度急剧下降.为此提出了一种基于超宽带定位和航位推算的UKF组合定位方法,可有效克服上述问题,从而为室内机器人定位提供一种稳定可靠的解决方案.
【总页数】5页(P26-30)
【作者】王芳;李楠;刘汝佳;吕翀
【作者单位】航天科工智能机器人有限责任公司,北京100074;航天科工智能机器人有限责任公司,北京100074;航天科工智能机器人有限责任公司,北京100074;航天科工智能机器人有限责任公司,北京100074
【正文语种】中文
【中图分类】TP242
【相关文献】
1.一种基于智能手机的行人航位推算室内定位方法 [J], 徐龙阳
2.基于粒子滤波的WiFi行人航位推算融合室内定位 [J], 周瑞;李志强;罗磊
3.基于行人航位推算的室内定位技术综述 [J], 蔡敏敏
4.一种基于地图匹配辅助行人航位推算的室内定位方法 [J], 胡安冬;王坚;高井祥
5.基于多源信息融合的行人航位推算室内定位方法 [J], 刘春燕
因版权原因,仅展示原文概要,查看原文内容请购买。

SLAM_介绍以及浅析

SLAM_介绍以及浅析

SLAM_介绍以及浅析SLAM(Simultaneous Localization and Mapping),即同时定位与建图,是一种将移动机器人在未知环境中的位置定位与环境地图生成统一起来的技术。

SLAM技术是实现自主导航和智能导航的关键性技术之一,广泛应用于无人车、无人潜艇、无人机、机器人等领域。

SLAM技术分为前端和后端两部分。

前端主要负责机器人的位置定位,根据传感器获取的数据,通过运动估计(例如里程计模型)和感知估计(例如视觉、雷达感知)等方法,计算机器人在运动过程中的位置和姿态。

后端主要负责地图生成,根据机器人在不同时间点的位置估计和传感器获取的环境地图数据,利用优化算法估计机器人的位置和地图。

在前端中,常用的传感器有激光雷达、相机、惯性测量单元(IMU)等。

激光雷达可以提供高精度的距离和角度信息,常用于建立环境地图。

相机能够捕捉到图像信息,通过图像算法可以提取出环境中的特征点,用于定位和建图。

IMU能够提供线性加速度和角速度信息,用以估计机器人的运动。

在后端中,常用的算法有滤波器、优化方法和图优化等。

滤波器方法包括扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF),通过状态估计和协方差矩阵来估计机器人的位置和姿态。

优化方法包括最小二乘法、非线性优化等,通过最小化误差函数来优化机器人的位置估计和地图。

图优化方法使用图模型来描述机器人的位置和环境地图,通过最大化后验概率来估计位置和地图。

SLAM技术的关键挑战之一是数据关联问题。

由于噪声和误差的存在,机器人在不同时刻获取的传感器数据可能不完全匹配。

因此,需要通过数据关联来确定当前获取的数据与之前数据的对应关系。

常用的数据关联方法有最近邻法、滤波法和图优化法等。

最近邻法通过计算不同数据之间的距离来确定对应关系。

滤波法通过滤波器来更新机器人的位置估计,并根据新的数据重新关联。

图优化法通过图模型来描述数据的关联关系,并通过最大后验概率来估计位置和地图。

基于SR-UKF的移动机器人主动故障检测和容错控制

基于SR-UKF的移动机器人主动故障检测和容错控制

o s yte on sma o a w  ̄ t rai e el i cl a o f o os n nieie ・ ul b it t t nf me o o el et a t l a zt no b t a do l n y h j ei i z h r —me o i i r n d t ct na dd t t no efs ca gn o v narp hn ig l pn al h ba e i a o n ee i fh at h n ig( ree bu t a g )sp igfut i f i co t c n i .T eo ti d n
关键 词 :移 动机 器 人 ;R. F; 障检 测 ; S UK 故 容错 控制 中图分 类号 : P 3 T 2 T 1 ;P 4 文献 标志码 : A 文章编 号 : 0 1 0 0 ( 0 1 0 —0 2 10 — 5 5 2 1 ) 5 10  ̄6
S UKF a e c i e f u t d t c i n a d t l r n o t o f m o ie r b t R. b s d a tv a l e e to n o e a t c n r lo b l o o s
f ro ie f u td t ci n a d t lr n r c i o r lo o ie r bo s Th o m o l pi a l o nl a l e e to n oe a tta k ng c nto fm b l o t. n ecm n si ng f u t p o r c d ve i l s c sd r d a h o r s n i g k n m a i o e t n no l p n a fa ta ke h ce i on i e e nd t e c re po d n e tc m d lwih u k wn si i g p — i p r m e e si r ae . Th lp i g p a e e sa l a hepo e o h o o ee tm ae i u tn — a tr sc e t d e si p n a m tr swel st s fte r b ta si t d sm la e r r

一种利用运动补偿的改进JPDA-UKF算法

一种利用运动补偿的改进JPDA-UKF算法

一种利用运动补偿的改进JPDA-UKF算法程欢;王方超;卢华平;李斌【摘要】In order to meliorate divergence,high complexity and poor real-time performance of the traditional maritime target tracking using the joint probabilistic data association with the unscented Kalman filter( JPDA-UKF) under the condition of constant false alarm rate,an improved JPDA-UKF based on motion compensa-tion Cartesian plane is proposed. The method restricts the number of false measurements falling into the inter-section area of the tracking gates using the confidential-matrix produced by motion compensation between the adjacent time-scan echo image. The tracking management adopts the popular logic method combining with the function of soft validation gates. Simulation results show that in comparison with the two algorithms devel-oped via traditional JPDA-UKF and adaptive coefficient α-β filtering,the proposed algorithm gains an im-provement of 10 percent and 20 percent radial velocity error and an improvement of 10 dB and 15 dB in ve-locity root mean squareerror( RMSE) after getting stable track management,and also the complexity of the method is in accordance with that of virtual real-time radar scanning and tracking processing.%在恒虚警条件下,针对传统的航海雷达模拟器目标跟踪采用的基于不敏卡尔曼滤波的联合概率数据互联算法( JPDA-UKF)发散、复杂度高和实时性差的问题,提出了一种利用运动补偿的笛卡尔坐标下改进的JPDA-UKF滤波方法。

模型转移概率自适应的交互式多模型UKF算法

模型转移概率自适应的交互式多模型UKF算法
( aj gR sac stt O l t nc cn lg , nig 10 3C ia N ni eerhI tue f e r is eh oo yNaj 0 1 h ) n ni E c o T n2 n
Abs r c : i a e r s n s ali t r c i g mu t l o e t a t Th sp p rp e e t l n e a tn li e m d lUKF l o i m t d p i e m a k v t a s t n p o a i te , p a g rt h wih a a tv r o r n i o r b b l i s wh c i i ih
1 引言
机 动 目标 跟踪 是 当前 跟踪 技术研 究 的热点 问题 , 有 研 究人员 从构造 目标模 型 、机动检 测等 角度 , 出许 多 提
好 的方法来解决 此问题 。交互多模型方法(MM)【综合 I 】 了这些方 法的优 点 , 目前机 动 目标 跟踪算 法 中广泛应 是 用 的方法之- [,,, - 刚。该方法 主要思想是设计一 系列的
和 应用 的深入 , 缺点 也 日益 明显 , ao i 精度 不高 , 至发散等 不足 。针对这 甚
些不足 , 有研究人员提 出了粒 子滤波( F [等算法 , P )6 1 但此 类方法 计算量过大 , 致其很难在工程 中应用 , J le 导 而 uir 和 Uh ma n提出的 UKF算法【6 改变 了这种现状。该 l n 1】 ., 方 法具 有 运算量 小 , 算稳 定 , 度 高 , 不需要 计 算 计 精 和 J c b 矩阵等优点 , E ao i 是 KF好的替 代。 在交互多 模型( MM ) 法 中 , 型转移概 率完全是 I 算 模

无迹卡尔曼滤波算法

无迹卡尔曼滤波算法

无迹卡尔曼滤波算法
无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)是一种用于处理非线性系统的非参数滤波算法,它可以从观测和测量数据中推断隐藏状态的值。

UKF的基本思想是基于状态变量的状态和测量变量的观测,使用一系列加权的状态估计来预测未来状态,并通过观测和测量值来校正预测值。

UKF的优点在于它可以处理非线性系统,而不需要对系统进行线性化处理,从而可以更准确地估计隐藏状态变量,准确度比传统卡尔曼滤波算法更高。

UKF是一种经典的非线性滤波算法,它可以利用观测和测量值,以及相关的不确定性信息,以准确的方式估计隐藏状态变量。

它也可以用于自适应控制,机器人移动控制,机器视觉,自动驾驶等领域。

UKF可以用来模拟复杂的物理过程,估计不同的系统参数,以及更准确地预测未来的状态,这在许多领域,如自动驾驶汽车,智能机器人,机器视觉,航空航天,大气科学和精细化工等领域中都很有用。

总之,无迹卡尔曼滤波算法是一种用于处理非线性系统的有效滤波算法,能够从观测和测量数据中推断隐藏状态的值,准确度比传统卡尔曼滤波算法更高,在航空航天,机器人,机器视觉,控制系统,大气科学和精细化工等领域都得到了广泛应用。

基于EKF和UKF的移动机器人定位算法优化与仿真

基于EKF和UKF的移动机器人定位算法优化与仿真
中图分类号 T N 6 0 9 DO I : 1 0 . 3 9 6 9  ̄ . i s s n . 1 6 7 2 — 9 7 2 2 . 2 0 1 7 . 0 8 . 0 0 5
Op t i mi z a t i o n a n d S i mu l a t i o n o f Mo b i l e Ro b o t Lo c a l i z a t i o n
t i on pr e d i c t i o n s i mu l a t i o n Cl a s s N um be r TN60 9
1 引言
移 动 机 器 人 定位 技 术 是 是 机器 人 学 的出了 不足 , 比
南阳 4 7 3 0 0 0 ) ( 河南工业职业技术学院


为了研究 卡尔曼 滤波算法在非线性系统 中的定位预测效果 , 对扩展卡尔曼滤波算法和无迹卡尔曼滤波算法 的
应用结果做 了分 析对 比, 并且根据机器人 的受力情况 , 在滤波算法 中引入修正 因子 , 对状态估计方程进行改进 。仿真实验表 明: 无迹卡尔曼滤波算法在非线性系统 中的定位效果优 于扩展 卡尔曼 滤波算法 ; 修 正因子对 两种 算法 都具有改进效果 , 提高 了定位精度 。 关键词 移 动机 器人 ; 扩展卡尔曼滤波 ; 无迹卡尔曼滤波 ; 定位算法改进 ; 位置预测仿真
Ab s t r a c t I n o r d e r t o s t u d y t h e l o c a t i o n p r e d i c t i o n e f f e c t o f Ka l ma n f i l t e r a l g o r i t h m i n n o n l i n e a r s y s t e m ,t h e a p p l i c a t i o n r e — s u hs o f t h e e x t e n d e d Ka l ma n f i l t e r a l g o r i t h m a n d t h e u n s c e n t e d Ka l ma n f i l t e r a l g o r i t h m a r e a n a l y z e d a n d c o mp a r e d a n d a c c o r d i n g t o t h e f o r c e c o n d i t i o n o f t h e mo b i l e r o b o t , t h e mo d i ic f a t o r y f a c t o r i s i n t r o d u c e d i n t o t h e l o c a l i z a t i o n a l g o r i t h m t o i mp r o v e t h e s t a t e e s t i — ma t i o n e q u a t i o n . T h e s i mu l a t i o n r e s u l t s s h o w t h a t t h e l o c a t i o n p r e d i c t i o n e f f e c t o f t h e u n s c e n t e d Ka l ma n i f l t e r a l g o r i t h m i s b e t t e r t h a n t h a t o f e x t e n d e d C a i ma n f i l t e r a l g o r i t h m i n n o n l i n e a r s y s t e m a n d t h e mo d i i f e a t o r y f a c t o r p r o d u c e s a n i mp r o v e me n t e f e c t o n b o t h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vol. 34, No. 1
ACTA AUTOMATICA SINICA
January, 2008
An Adaptive UKF Algorithm for the State and Parameter Estimations of aபைடு நூலகம்Mobile Robot
SONG Qi1, 2 HAN Jian-Da1
Autonomous control is a key technology for autonomous systems widely used in areas such as satellite clusters, deepspace exploration, air-traffic control, and battlefield management with unmanned systems. Most unmanned systems are highly nonlinear, vary with time, and are coupled; in addition, their operating conditions are dynamic, complex, and unstructured, which represent the unpredictable uncertainties of the control system. The issue of overcoming these uncertainties and achieving high performance control is one of the main concerns in the field of autonomous control. Robust and adaptive control methods followed traditionally suffer from several problems, including conservativeness, online convergence, and the complications involved in their real-time implementation. These problems necessitate the development of a new control algorithm that addresses the situation more directly. To this end, autonomous control methods on the basis of model-reference have become the focus of research, and basic technology and online modeling method has attracted more and more research attention. Neural networks (NN) and NN-based self-learning were proposed as the most effective approaches for the active modeling of an unmanned vehicle in the 1990s[1−2] . However, the problems involved in NN, such as training data selection, online convergence, robustness, reliability, and realtime implementation, limit its application in real systems. In recent years, sequential estimation has become an important approach for online modeling and model-reference control with encouraging achievements[3] . The most popular state estimator for nonlinear system is the extended Kalman filter (EKF)[4] . Although widely used, EKFs have some deficiencies, including the requirement of differentiability of the state dynamics as well as susceptibility to bias and divergence in the state estimates. Unscented Kalman filter (UKF), on the contrary, uses the nonlinear model directly instead of linearizing it[5] . The UKF has the same level of computational complexity as that of EKF, both of which are within the order O(L3 ). Since the nonlinear models are used without linearization, the UKF does not need to calculate Jacobians or Hessians, and can achieve
Received November 30, 2006; in revised form April 29, 2007 Supported by National High Technology Research and Development Program of China (863 Program), Hi-Tech Research and Development Program of China (2003AA421020) 1. Robotics Laboratory, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China 2. Department of Auto-control, Shenyang Institute of Aeronautical Engineering, Shenyang 110136, P. R. China DOI: 10.3724/SP.J.1004.2008.00072
Abstract For improving the estimation accuracy and the convergence speed of the unscented Kalman filter (UKF), a novel adaptive filter method is proposed. The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function. On the basis of the MIT rule, an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function. The updated covariance is fed back into the normal UKF. Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations. The asymptotic properties of this adaptive UKF are discussed. Simulations are conducted using an omni-directional mobile robot, and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods. Key words Adaptive Unscented Kalman filter (UKF), innovation, MIT rule, process covariance
second-order accuracy, whereas the accuracy of the EKF is of the first order. However, since UKF is with in the framework of the Kalman filter, it can only achieve a good performance under certain assumptions about the system modeling. But in practice, the assumptions are usually not totally satisfied, and the performance of the filter might be seriously downgraded from the theoretical performance or could even diverge. To avoid these problems, an adaptive filter may be applied, which automatically tunes the filter parameter to adapt insufficiently known a priori filter statistics. There have been many investigations in the area of adaptive filter. Maybeck[6] used a maximum-likelihood estimator for designing an adaptive filter that could estimate the system-error covariance matrix. Lee and Alfriend[7] modified the Maybeck s methods by introducing a window-scale factor. The new automated adaptive algorithms are integrated into the UKF and can be applied to the nonlinear system. One disadvantage of the algorithm is that it is not very robust numerically. Loebis et al.[8] presented an adaptive EKF method, which adjusts the measurementnoise-covariance matrix, employing the principles of fuzzy logic. However, in practice, it is always difficult to determine the values of the increment of covariance at each sampling time. Mohame et al.[9] investigated the performance of multiple-model-based adaptive Kalman filters for vehicle navigation using GPS. The method assumes a knowledge of all the possible statuses beforehand. In this paper, an on-line innovation-based adaptive scheme of UKF is proposed to adjust the noise covariance. The filter parameter is tuned by using an MIT adaptation rule that minimizes the cost function of the innovation sequence. The asymptotic properties of the proposed adaptive UKF are discussed. Extensive simulations are conducted with respect to the dynamics of an omnidirectional mobile robot. Estimation accuracy is significantly improved with the adaptive approache compared to the conventional UKF.
相关文档
最新文档