微波电路及设计的基础知识
微波电路及其PCB技术设计知识

微波电路及其PCB技术设计知识微波电路及其PCB技术设计知识随着科技的不断发展,微波技术在通信、雷达、航空航天等领域中逐渐得到广泛应用。
微波电路是微波技术的核心,而微波电路的设计和制作依靠着PCB技术。
本文将从微波电路的基本概念和PCB技术的基本流程入手,介绍微波电路及其PCB 技术的设计知识。
一、微波电路的基本概念微波电路是指在微波频段(1~300GHz)内工作的电路,通常包括射频电路、微波电路和毫米波电路。
微波电路与一般的低频电路相比,有着不同的特点和要求。
微波电路的特点主要有以下几个方面:1.工作频率高,信号波长短。
微波波长在厘米至毫米级别,与低频电路相比要短得多。
因此在微波电路的设计中,需要特别注意电路的尺寸和传输线的特性阻抗等参数。
2.信号传输损耗大。
由于传输线的损耗、元器件的损耗、导体的损耗等原因,微波电路的传输损耗要比低频电路大得多。
因此,在设计微波电路时需要充分考虑信号传输损耗和信噪比问题。
3.信号噪声低。
微波电路的信噪比要求高,因为在微波频段内,信号与噪声的比例要比低频电路低得多。
因此,在设计微波电路时需要考虑降低噪声的影响,提高信号的质量和可靠性。
4.稳定性要求高。
微波电路的稳定性要求比低频电路高,因为微波电路中的元器件往往是高精度、高质量的,其参数变化容易引起整个电路的性能变化甚至发生故障。
二、PCB技术的基本流程PCB(Printed Circuit Board,印刷电路板)技术是目前电子制造领域中使用最广泛的电路板制造技术之一。
在微波电路的制造过程中,PCB技术也占据着至关重要的地位。
下面简要介绍PCB技术的基本流程,以便更好地理解微波电路和PCB技术的设计。
1.设计。
首先需要进行PCB设计,即绘制电路原理图、布局图和走线图。
PCB设计软件有Altium Designer、Cadence Allegro等。
2.制板。
根据设计好的电路图纸,将其转化为PCB板图,然后使用制板机进行制板。
《微波电路》课件

随着信息技术的不断发展,微 波电路的工作频率和传输带宽
也在不断增大。
集成化、小型化
随着微电子技术的发展,微波 电路的集成化程度越来越高, 体积越来越小。
多功能化
微波电路正向着多功能化的方 向发展,如同时处理多种信号 、实现多种功能等。
低成本、低功耗
随着市场竞争的加剧,低成本 、低功耗的微波电路成为研究
测试技术
微波电路的测试包括信号源测试、接 收机测试和系统测试等。信号源测试 主要是测试信号源的频率、功率和调 制等特性;接收机测试主要是测试接 收机的灵敏度、动态范围和抗干扰能 力等特性;系统测试主要是将微波电 路与其他系统进行集成测试,验证整 个系统的性能和功能。
05
微波电路的典型应用案例
微波通信系统中的微波电路
微波电路与生物医学工程 的融合
生物医学工程中的无损检测、生物传感器等 技术需要利用微波电路进行信号传输和处理 ,这种交叉融合有助于推动两个领域的共同
发展。
THANKS
感谢观看
系统误差
系统误差是由测量系统的硬件设备、线路损耗、连接器失 配等因素引起的误差。这些误差可以通过校准和修正来减 小。
方法误差
方法误差是由测量方法本身引起的误差,如信号源的频率 稳定度、测量接收机的动态范围等。这些误差可以通过选 择合适的测量方法和条件来减小。
微波电路的调试与测试技术
调试与测试的重要性
新型微波半导体材料
新型微波半导体材料如宽禁带半导体材料(如硅碳化物和氮 化镓)具有高电子迁移率和化学稳定性,为微波电路的发展 提供了新的可能性。
新型微波器件在微波电路中的应用
新型微波电子器件
随着微电子技术的不断发展,新型微波 电子器件如微波晶体管、微波集成电路 等不断涌现,这些器件具有体积小、重 量轻、可靠性高等优点,在雷达、通信 、导航等领域得到广泛应用。
精选微波技术基础知识

1、第三章、微波集成传输线常用集成传输线的种类和主要特点2、第四章介质波导和光波导
1、传播条件和波型2、特性阻抗3、波长,相速4、功率容量5、衰减
了解
微波集成传输线
微波集成传输线的最大特点是 平面化
五种重要的传输线:带状线(Stripline)微带线(Microstrip line)槽线(Slotline)鳍线(Finline)共面线(Coplanar line)
式中
微波集成传输线-带状线
带状线—优缺点和应用
1、改变线宽一个参数就改变电路参数(特性阻抗)。2、在馈线、功分器,耦合器,滤波器,混频器,开关的设计中,体积小,重量轻,大批量生产的重复性好。3、立体电路的设计,适用于多层微波电路,LTCC等,辐射小。4、封闭的电路,调试难。5、电路需要同轴或波导馈入,引入不连续性,需要在设计时补偿。6、在多层电路设计中,存在不同节点常数的介质之间的连接,介质与金属导体的连接,分析方法非常复杂,尤其对3D电路,尚缺少各种不连续性的模型和相关设计公式,采用全波分析法或者准静态场分析。
毫米波鳍线混频器
介质波导和光波导
当毫米波波段→亚毫米波段→太赫兹波段时普通的微带线将出现一系列新问题1)高次模的出现使微带的设计和使用复杂2)金属波导的单模工作条件限制了其横向尺寸不能超过大约一个波长的范围。这在厘米波段和毫米波低频段不成问题。但到毫米波高频段,单模波导的尺寸就显得太小,不仅制造工艺困难,而且随着工作频率的提高,功率容量越来越小,壁上损耗越来越大,衰减大到不能容忍的地步。因此,对毫米波段的高端及来说,封闭的金属波导已不再适用。于是,适合于毫米波高频段、亚毫米波的传输线 —— 介质波导等非封闭式的传输线(或称开波导)便应运而生
微波集成传输线-微带线
微波电路基本原理与设计方法

微波电路基本原理与设计方法微波电路是指工作频率在1 GHz至300 GHz范围内的电路。
由于微波信号的特殊性质,微波电路的设计与普通射频电路有较大的区别。
本文将介绍微波电路的基本原理和设计方法。
一、微波电路的基本原理微波电路的基本原理包括微波信号传输特性、微波谐振现象以及微波传输线特性等。
1. 微波信号传输特性微波信号在传输过程中会产生传播损耗、反射损耗和衰减损耗等。
了解微波信号传输特性对于微波电路的设计至关重要。
2. 微波谐振现象微波电路中常常使用谐振器来实现对特定频率微波信号的选择性放大或滤波。
因此,了解微波谐振现象对于微波电路的设计和优化至关重要。
3. 微波传输线特性微波传输线是微波电路中的重要组成部分,其特性包括传输线的阻抗特性、传播常数特性等。
了解微波传输线特性可以帮助我们设计出更加优秀的微波电路。
二、微波电路的设计方法微波电路的设计方法通常包括仿真分析、参数优化和实验验证等步骤。
1. 仿真分析仿真分析是微波电路设计的重要环节之一。
通过使用专业的微波电路仿真软件,可以对设计方案进行仿真分析,从而评估其性能和可行性。
常用的微波电路仿真软件包括ADS、CST等。
2. 参数优化通过对仿真得到的电路参数进行优化,可以得到更佳的性能。
参数优化方法有很多种,可以使用遗传算法、粒子群算法等进行优化。
3. 实验验证在完成仿真分析和参数优化后,需要进行实验验证。
通过在实际硬件中实现设计方案,并利用专业的测量仪器对其进行测试,从而验证设计方案的性能和可行性。
总结:微波电路的基本原理和设计方法是微波电路领域的重要内容。
了解微波电路的基本原理,可以更好地进行微波电路的设计和优化。
同时,合理运用仿真分析、参数优化和实验验证等方法,可以设计出性能优秀的微波电路。
在今后的微波电路设计中,我们应该继续深入学习和探索微波电路的基础知识,不断提高自己的微波电路设计能力。
微波电路

1.归一化负载阻抗
ZL zL
2.在Smith圆图中确定zL位置
3.找出反射系数
zL 0
4. 2旋 d转 获 得0 in ( d ) 0 d
5.记录归一化输入阻抗
zin d
6.转换到实际阻抗
zindZind
2.Smith圆图
[例1]已知阻抗Z50j50,,Z 0求5 导0纳Y
i
Z
1 2
0
r
半径 ±
2
1
1/2 0
缩小为点(1,0)
直线,对应纯电阻
r ↑,半径↓
圆心都在r=1直线上 都在(1,0)点与实轴相切
2.Smith圆图
映射图形表示法-Smith圆图
2.Smith圆图
Smith圆图
2.Smith圆图
普通负载的阻抗变换分析
确定电路阻抗响应,以预言RF/MW系统的性能。
过程:
半径 1 2/3
1/2
1/3
0
r
单位圆
缩小为点(1,0)
r ↑,半径↓
都与(1,0)相切
圆心都在正实轴上
电抗圆
r12i 1x2
12 x
第二式为归一化电抗的轨迹方程,
当x等于常数时,其轨迹为一簇圆弧;(||1)
圆心坐标: 1 , 1 x
半径: 1 x
x
0
0.5
1
2
圆心 (1, ±) (1, ±2) (1, ±1) (1, ±2) (1,0)
ZinZinZ 038 .5j74
2.Smith圆图
求例距3 特负性载阻0.2抗4λZ处0 输5,入0负阻载抗阻。抗
角映射原理为基础的图解方法,即Smith圆图。Smith圆图能 够在一个图中简单直观地显示传输线阻抗及反射系数。
微波电路基本概念

微波电路基本概念微波电路是研究和应用微波技术的重要组成部分,其基本概念是理解微波电路原理和设计微波设备的基础。
本文将介绍微波电路的基本概念,包括微波频率范围、传输线、匹配网络、耦合器和功率分配器等。
一、微波频率范围微波频率范围一般指的是几个GHz到几百GHz之间的频率范围。
与常规的低频电路相比,微波电路在频率、尺寸以及特性上都有所不同。
微波电路的频率高,传输的信号具有高速率和大带宽,因此其特性分析和设计方法也有所不同。
二、传输线传输线是微波电路中常见的元件,用于在微波系统中传输信号。
常见的传输线类型包括同轴电缆、矩形波导和微带线。
传输线具有导频率特性、阻抗特性和波导模式等特点,其设计需要考虑阻抗匹配、功率传输以及信号衰减等因素。
三、匹配网络匹配网络是微波电路中用于实现阻抗匹配的关键元件。
在微波系统中,信号的传输需要保证阻抗的匹配,以减少反射和信号功率损失。
常见的匹配网络包括L型匹配器、T型匹配器和π型匹配器等,通过调整元件的参数来实现阻抗匹配。
四、耦合器耦合器是微波电路中用于将信号从一个部分传输到另一个部分的元件。
常见的耦合器包括负载耦合器、耦合隔离器和功率耦合器等。
耦合器的设计需要考虑耦合效率、插入损耗和功率传输等因素,以确保信号的有效传输。
五、功率分配器功率分配器是微波电路中用于将输入功率分配给不同输出端口的元件。
常见的功率分配器包括功分器和合分器等。
功率分配器的设计需要考虑功率均匀分配、射频损耗和相位平衡等因素,以确保各个输出端口的功率和相位稳定。
六、微波器件微波器件是用于产生、放大、调制、调制微波信号的器件。
常见的微波器件包括微带滤波器、微波放大器、微波发生器和微波调制器等。
这些器件通过调整电磁场的特性和信号的特性来实现对微波信号的处理,广泛应用于通信、雷达和卫星系统等领域。
总结微波电路基本概念涵盖了微波频率范围、传输线、匹配网络、耦合器和功率分配器等关键元件。
了解这些基本概念对于理解微波电路的工作原理和设计微波设备至关重要。
微波理论知识点总结

微波理论知识点总结微波是指波长在1毫米至1米之间的电磁波,它具有许多独特的特性和应用。
微波理论是研究微波的产生、传播、接收和应用的相关理论。
在通信、雷达、无线电频谱、天文学和材料加工等方面都有着广泛的应用。
1. 微波的概念和特性微波是电磁波的一种,波长范围在1毫米至1米之间。
与可见光波长相近,但由于其波长较短,因此具有许多独特的特性。
例如,微波能够穿透云层、雾气和一些障碍物,因此在雷达和通信中有着重要的应用。
此外,微波不会像可见光那样受到大气的散射和吸收,因此可以在大气层中进行远距离的传播。
2. 微波的产生和接收微波可以通过多种方式产生,常见的方法包括使用微波发射器、微波天线和微波放大器等。
微波接收则通过微波接收天线和微波接收器进行。
微波天线的设计对于接收微波信号具有重要影响,通常设计成具有较高的方向性和增益。
3. 微波传播微波在空间中的传播受到地形、大气条件和电磁波干扰等因素的影响。
通常情况下,微波的传播距离受到频率和天线高度的影响,高频率的微波传播距离较短,而低频率的微波传播距离较远。
此外,微波还受到地形和大气层的影响,例如山脉、建筑物和大气湍流都会对微波的传播产生影响。
4. 微波器件和电路微波器件和电路是指在微波频段内工作的元器件和电路。
常见的微波器件包括微波天线、微波滤波器、微波耦合器、微波终端等。
微波电路主要由微波传输线、微波振荡器、微波放大器和微波混频器等组成,用于实现微波信号的处理、分析和放大。
5. 微波通信和雷达系统微波通信和雷达系统是微波技术的两个重要应用领域。
微波通信系统通过微波传输线、微波天线和微波接收器等设备实现无线通信。
雷达系统则利用微波的穿透能力和高精度进行目标探测、跟踪和识别,广泛应用于军事、航空、气象和海洋领域。
6. 微波在材料加工中的应用微波在材料加工中有着广泛的应用,例如微波加热、微波干燥和微波辐照等。
微波加热是利用微波能量对材料进行加热,通常应用于食品加工、化工和材料处理中。
电路中的微波技术与微波器件设计

电路中的微波技术与微波器件设计在现代电子技术的发展中,微波技术成为了重要的一环。
微波技术通常用于高频、高速传输和通信领域,因其具有高速、高效、高频等特点而备受关注。
本文将介绍电路中的微波技术以及微波器件的设计原理和方法。
一、微波技术概述微波技术是指在射频(Radio Frequency,RF)和毫米波(Millimeter Wave,MMW)频段内工作的一种电子技术。
其工作频率一般在300MHz到300GHz之间,相应的波长为1mm到1m。
相较于一般的电子技术,微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,具有较高的频带宽度和信号传输速度,适用于高速数据传输和通信应用。
2. 小尺寸特性:微波器件相比于常规电子器件更小巧,可以集成在微型电路中,便于系统的设计和布局。
3. 低损耗特性:微波信号在传输过程中,由于其高频特性,会引发较大的能量损耗,但相对于其他射频信号而言,微波信号的损耗较低。
二、微波器件的分类微波技术的应用需要相应的器件支持,微波器件作为微波技术的基础,具有重要的意义。
根据其用途和工作原理,微波器件可以分为以下几类:1. 微波放大器:微波放大器用于增加微波信号的幅度。
根据工作原理的不同,微波放大器可以分为二极管放大器、场效应管放大器、功率放大器等。
2. 微波混频器:微波混频器用于将两个不同频率的微波信号进行混合,在输出端产生其和频和差频信号。
广泛应用于通信系统和雷达等领域。
3. 微波继电器:微波继电器用于在微波电路中进行信号的切换和传输。
其具有低损耗、高隔离度等特点,常用于无线通信、微波测量等领域。
4. 微波滤波器:微波滤波器用于在微波电路中对特定频率范围进行滤波,以消除干扰和杂散信号。
常见的微波滤波器类型有低通、高通、带通和带阻滤波器等。
5. 微波天线:微波天线是将电路中的微波信号辐射到空间中或从空间中接收微波信号的装置。
根据其结构和应用,微波天线可分为微带天线、开槽天线、小型化天线等类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波电路及设计的基础知识1. 微波电路的基本常识2. 微波网络及网络参数3. Smith圆图4. 简单的匹配电路设计5. 微波电路的电脑辅助设计技术及常用的CAD软件6. 常用的微波部件及其主要技术指标7. 微波信道分系统的设计、计算和指标分配8. 测试及测试仪器9. 应用电路举例微波电路及其设计1.概述所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。
此外,还有毫米波〔30~300GHz〕及亚毫米波〔150GHz~3000GHz〕等。
实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频〔RF〕电路”等等。
由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。
作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。
另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。
在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。
以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
2.微波电路的基本常识2.1 电路分类2.1.1 按照传输线分类微波电路可以按照传输线的性质分类,如:图1 微带线图2 带状线图3 同轴线图4 波导图5 共面波导2.1.2 按照工艺分类微波混合集成电路:采用别离组件及分布参数电路混合集成。
微波集成电路〔MIC〕:采用管芯及陶瓷基片。
微波单片集成电路〔MMIC〕:采用半导体工艺的微波集成电路。
图6微波混合集成电路例如图7 微波集成电路〔MIC〕例如图8微波单片集成电路〔MMIC〕例如2.1.3 微波电路还可以按照有源电路和无源电路分类。
其中,有源电路包括放大器、振荡器等;无源电路包括分路器、耦合器、移相器、开关、混频器和滤波器等。
2.2 常用的微波传输线电路组件和不连续性组件图9 传输线段图10 耦合线图11 开路线图12 短路线图13 直角拐弯线图14 阶梯线图15 渐变线图16 缝隙图17 T型结图18 十字结其它还有一些如扇形线、Lange耦合器、交指电容和螺旋电感等等。
2.3 常用的微波元器件这里主要介绍一些常用的贴装无源器件和微波半导体器件。
图19 片状迭层电容及单层电容图20 片状迭层电感及线绕电感图21 片状电阻图22 贴装可调电容图23 贴装电位器图24 微波二极管〔封装及芯片〕图25 微波三极管和场效应晶体管〔封装及芯片〕图26 微波单片集成电路〔MMIC〕〔封装及芯片〕2.4 常用的微波介质基片我们经常使用的微波介质材料如表1所示。
表1 几种经常使用的微波介质材料名称介电常数〔εr〕备注聚四氟乙烯玻璃纤维基片 2.7 国产、进口陶瓷〔Al2O3〕基片(99%) 9.6 国产、进口微波复合介质基片可选国产RT/duroid 5880 2.2 Rogers公司RO4003 3.38 Rogers公司TMM10I 9.8 Rogers公司RT/duroid® Series RO4000® Series TMM® Series 图27 Rogers公司生产的几种微波介质基片3. 微波网络及网络参数3.1 具有特定内容〔含义〕的特殊微波网络3.1.1 平行耦合线定向耦合器42 31图28平行耦合线定向耦合器3.1.2 兰格〔Lange〕定向耦合器143 268101214Frequency (GHz)-35-25-15-5DB(|S[2,1]|)Lange CouplerDB(|S[3,1]|)Lange CouplerDB(|S[4,1]|)Lange Coupler图29 Lange定向耦合器3.1.3 威尔金森〔Wilkinson〕功分器/合路器3211819202122Frequency (GHz)Wilkinson Power Divider-40-30-20-10DB(|S[1,1]|) ~PDDB(|S[2,1]|) ~PDDB(|S[3,1]|)PD图30功分器/合路器3.1.4 阶梯阻抗变换器图31阶梯阻抗变换器3.1.5 微带线低通滤波器图32微带线低通滤波器3.1.6 平行耦合线带通滤波器9101112131415-80-60-40-20freq, GHzd B (S (2,1))d B (S (1,1))图33平行耦合线带通滤波器3.1.7 其它,如交指滤波器、谢夫曼移相器及分支线定向耦合器等,也都具有固定〔特定〕的网络形式。
3.2 一般网络微波网络是由各种微波组件根据需要组合而成,所以网络的形式具有任意性。
上面介绍的那些特殊网络只是其中一些典型的形式而已。
一般来说,简单的网络通常是窄带的电路,如λg/4线。
这一点,在设计宽带匹配电路时,需要引起注意。
3.3 网络参数我们经常使用S 参数〔即散射参数〕来描述微波网络。
以下面的二端口网络为例。
图34 二端口微波网络在图34所示的二端口微波网络中,a1和b1分别为埠1的归一化入射电压波和反射电压波;a2和b2分别为埠2的归一化入射电压波和反射电压波。
二端口微波网络的输入和输出之间的关系可以表示为⎭⎬⎫+=+=22212122121111a s a s b a s a s b 〔1〕 即 =⎥⎦⎤⎢⎣⎡21b b []⎥⎦⎤⎢⎣⎡21a a S 其中 []=S ⎥⎦⎤⎢⎣⎡22211211s s s s 〔2〕 式〔1〕称做散射方程,[]S 叫散射矩阵或散射参数。
由式〔1〕可以得出二端口网络的S 参数为:S11=211=a a b ,即当埠2匹配时〔Z L =Z 0〕,埠1的反射系数; S22=122=a a b ,即当埠1匹配时〔Z S =Z 0〕,埠2的反射系数; S12=121=a a b , 即当埠1匹配时,埠2到埠1的传输系数; S21=212=a a b ,即当埠2匹配时,埠1到埠2的传输系数。
通过上面的分析我们可以看出,微波网络的S 参数具有确定的物理意义。
实际上,我们以往所经常使用的如Z 参数、Y 参数和H 参数等均可以通过计算与S 参数互相换算。
但在微波频率上,只有S 参数是可以测量出来的,这样也就解决了微波网络参数的测量问题。
另外,对于端口数为N 的多端口网络,我们同样可以得到类似于式〔1〕的表达式,这时[]S 为N ×N 维的矩阵。
4.史密斯〔Smith〕圆图Smith圆图是一个非常有用的图形化的匹配电路设计和分析工具,且方便有效,在微波电路设计过程中会经常用到。
另外,Smith圆图有阻抗圆图和导纳圆图两种形式,可以视具体情况选用。
图35 Smith阻抗圆图Z=30+j25Ω图36 Smith圆图的应用例如图37 图解用的Smith圆图标准图纸由图35我们可以看到,在Smith阻抗圆图中存在等电阻圆、等电抗线、纯电阻线、电感平面〔jωL〕、电容平面〔1/ jωC〕、开路点、短路点和50Ω点等等。
当然,相对应的在导纳圆图中也存在等电导圆和等导纳线等。
5. 简单的匹配电路设计举例晶体管放大器匹配电路设计例如6.微波电路的电脑辅助设计技术及常用的CAD软件自20世纪70年代以来,微波电路CAD技术已经取得了很大的进步。
一方面是各CAD软件厂商推出了很多通用和专用的微波电路CAD软件产品,包括电原理图输入和微波电路的图形输入、电路的仿真和优化、容差分析、版图生成及输出、与测试仪器接口等功能,并有许许多多的电路模型库、组件库、半导体器件的线性模型库和非线性模型库等可供选择,应该可以说是功能强大、使用方便、应有尽有。
而另一方面,微波电路CAD软件也已被广泛应用于各种微波电路的设计,并成为微波工程师必须掌握的设计工具。
6.1 常用的微波电路CAD软件微波电路的CAD软件大致可以分成下面几类:①线性/非线性微波电路仿真软件;②2.5D平面电路电磁场仿真软件;③3D电磁场仿真软件;④系统仿真软件;⑤专用电路的设计软件。
⑥排版软件表2 主要的微波电路CAD软件简介6.2 微波电路计算计辅助设计-简介微波电路计算计辅助设计〔CAD〕技术是电子设计自动化〔EDA〕技术的一个分支,用于射频及微波电路的电脑仿真和优化设计。
6.2.1 微波电路CAD的特点及主要内容与其它电子EDA技术相比,微波电路CAD软件具有以下几个特点:①必须有精确的传输线模型和各种器件模型;②有时必须采用电磁场仿真等数值仿真工具;③一般都具有S参数分析的功能。
在微波电路CAD技术中,各种传输线及其不均匀区模型、组件之间的寄生耦合模型以及微波有源器件的非线性模型等,在技术上的难度都非常大。
微波电路CAD包括线性微波电路的S参数计算、直流分析、线性/非线性噪声分析、非线性电路的瞬态分析、非线性电路的谐波分析〔功率压缩、交调和谐波特性等〕、优化设计、容差分析、2.5D及3D电磁场仿真、布线和版图设计等,甚至还可以包括微波器件的建模和参数提取以及电脑辅助测试。
6.2.2 常用的分析方法线性电路:采用等效电路模型和S参数矩阵级联计算。
非线性电路:Spice、谐波平衡法、包络仿真法等。
电磁场仿真:常采用矩量法和有限元法等数值计算方法。
6.2.3 优化给定电路的网络拓扑结构、各个组件的初始值,以及电路的设计指针的目标参数,CAD软件将自动改变各组件值,直到满足要求。
CAD软件通常都具有的,也是最常用的优化方法是随机优化和梯度法。
当然,一些软件还提供了其它的优化方法供选择。
6.2.4 设计步骤微波电路CAD设计的步骤可大致总结如下:①根据技术性能指针的要求,选择半导体器件。
②对于不需要半导体器件的微波无源电路,根据技术性能指针的要求,选择网络拓扑结构。
③根据所选器件的具体参数,设计匹配电路的拓扑结构。
④确定〔或计算〕电路中各个组件的初始值。
⑤根据技术性能指针的要求,设置优化目标〔或参数〕。
⑥根据经验或试验性地选择假设干优化变量〔或组件〕。
⑦选择优化方法,并进行优化。
⑧进行容差分析。
⑨进行版图的设计并输出版图。
⑩进行性能指针的复核,进行版图的检查,并提出结构设计的要求。
6.2.5 几点经验和建议①必须保证器件选择、匹配电路或网络拓扑设计的正确性。
②电路中各组件初始值的选择应尽量准确。
这将有利于优化计算的快速收敛,并保证优化设计能够到达全局最优点,而不是局部的极小〔或极大〕点。
③对于存在多个优化目标参数的一般情况,应根据实际的需要,分出主次或考虑折衷,并进行加权。
④关于优化变量〔或组件〕的选择,一方面可以根据自己的经验,另一方面也可以先选择其中几个进行试探。