2019届中考数学思维方法讲义【第10讲】二次函数的综合运用(含答案)
2019年中考数学全国通用复习讲义§3.5 二次函数的综合应用(讲解部分)

考点一㊀ 抛物线与距离㊁面积㊁角度
(3) 当线段不平行于坐标轴时,常过线段的端点作坐标轴的
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
= ③㊀
1 如图,作 CDʊy 轴,则 S әABC = S әACE + S әBCE = CE ( AN + BM ) 2 1 ( y -y ) ( xB -xA ) ㊀ . 2 C E
㊀ ㊀ 用顶点的坐标表示图形的边长, 利用全等 ( 或相似 ) 三角形 不要漏解.
考点三㊀ 抛物线与全等三角形㊁相似三角形
的对应边相等( 或成比例) 解答问题,注意分类讨论思想的应用,
㊀ ㊀ 主要考查利润最大,方案最优,面积最大等问题. 一般步骤: (2) 确定自变量的取值范围; (3) 分析所得函数的性质; (4) 解决提出的问题.
考点四㊀ 二次函数在实际生活( 生产) 中的应用
(1) 先分析问题中的数量关系,列出函数关系式;
2
C,连接 BC 交抛物线的对称轴于点 E,D 是抛物线的顶点. (1) 求此抛物线的解析式; (2) 求出点 C 和点 D 的坐标; P 点坐标. 为 -
2
= - x + bx + c 与 x 轴交于点 A( -1,0) 和点 B ( 3,0) , 与 y 轴交于点
2019年人教版中考数学《二次函数的综合应用》复习课件

25 答案 (1)设抛物线的函数表达式为y=a(x-3) + . 9 16 16 2 25 ∵点A =a(0-3) + , 0, 在此抛物线上,∴ 9 9 9 1 解得a=- . 9 1 2 25 ∴抛物线的函数表达式为y=- (x-3) + . 9 9
2
(2)有危险.理由如下:
1 (3)令y=8,解方程- (x-6)2+10=8, 6
得x1=6+2 3 ,x2=6-2 3, x1-x2=4 3.
答:两排灯的水平距离最小是4 3 m.
名师点拨 本题的解题技巧是转化,如在(2)中,把集装箱的宽度为4米转化为
货运汽车最外侧与地面OA的交点为坐标(2,0)或(10,0),然后求抛物线上x=2时 的y值,则问题进一步转化为比较此时的y值与6 m(集装箱的高度)的大小,至此 即可得到“能否通过”的答案.
答案
1 b c 0, b 2, (1)将A,B点的坐标代入y=-x +bx+c,得 解得 4 2b c 3, c 3.
2
∴抛物线的函数表达式为y=-x2+2x+3.
(2)∵y=-x2+2x+3=ቤተ መጻሕፍቲ ባይዱ(x-1)2+4,
∴D(1,4),C(0,3). 作点C关于直线x=3的对称点C',则点C'的坐标为(6,3). 连接C'D,C'D交直线x=3于M点,连接MC,此时MC+MD的值最小,如图所示.
∴拱顶D到地面OA的距离为10 m.
(2)根据题意,货运汽车最外侧与地面OA的交点坐标为(2,0)或(10,0),
1 2 22 1 2 22 当x=2或x=10时,y=- ×2 +2×2+4= 或y=- ×10 +2×10+4= . 6 3 6 3 22 ∵ m>6 m 3
2019二次函数质应用讲义及答案.doc

二次函数性质应用(讲义)一、知识点睛1.图象平移解题思路①口诀:_____________________;②_______________. 图象对称、旋转可转化为______________来处理.2.方程的根可用__________求解,与两个函数图象的______相对应.3.函数值的大小、最值、需结合______求解,常利用________.4. a 、b 、c 组合判断:①判断a 、b 、c 符号,对称轴,判别式等;②找____________函数值;③等式和不等式________.二、精讲精练1.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的关系式为245y x x =-+,则有( )A .b =-10,c =24B .b =2,c =4C .b =-10,c =28D .b =2,c =02.在平面直角坐标系中,将抛物线26y x x =--向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则||m 的最小值为( )A .1B .2C .3D .63.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+B .22y x x =-+-C .22y x x =-++D .22y x x =++4.如图,二次函数2y ax bx =+与反比例函数=k y x-的图象交于一点P ,那么关于x 的方程2++0k ax bx x =的解为 _____________.若一元二次方程20ax bx m ++=有实数根,则m 的取值范围为__________.5.已知二次函数2()1()y x m n x mn m n =-+++<的图象交x 轴于A (x 1,0),B (x 2,0)两点,且12x x <,则实数x 1,x 2,m ,n 的大小关系为______________________.6.已知函数22(2) 4 (5)=(8) 4 (5)x x y x x ⎧--≤⎪⎨-->⎪⎩,且使y =k 成立的x 值恰好有三个,则k 的值为( )A .3B .4C .5D .67.如图是二次函数2+y ax bx c =+的部分图象,由图象可知不等式20ax bx c ++<的解集是( )A .1<<5x -B .>5xC .<1>5x x -且D .<1>5x x -或8.已知二次函数215y x x =-+-,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m -1、m +1时,对应的函数值分别为1y 、2y ,则1y 、2y 满足( )A .10y >,20y >B .10y <,20y <C .10y <,20y >D .10y >,20y < P Ox y -3-1432y xO 59.函数2y x x m =-+(m >0)的图象如图所示,如果x a =时0y <,那么1x a =-时,函数值( )A .0y <B .0y m <<C .y m >D .y m = 10.A 1(2)y -,、B 2(1)y ,、C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y 、2y 、3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >> 11.已知二次函数y =x 2-4x -3,若16x -≤≤,则y 的取值范围是 ,若-3≤ x <4,则y 的取值范围是 , 若-2<x ≤1,则y 的取值范围是__________________.12.已知二次函数2248y x mx m =-+-,若2x ≥时,函数值y 随x的增大而增大,则m 的取值范围是_____________,若x ≤1时,函数值y 随x 的增大而减小,则m 的取值范围是_______.13.y=x 2+(1-a )x +1是关于x 的二次函数,当x 的取值范围是1 ≤ x ≤ 3时,y 在x =1时取得最大值,则实数a 的取值范围是( )A .a =5B .a ≥ 5C .a =3D .a ≥ 314.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②2a -b =0;③b 2-4ac >0;④a -b +c <0;⑤9a +3b +c >0;⑥8a +c >0;⑦2c >3b ;⑧a +b <m (am +b )(m 为实数,且m ≠1).其中正确的是______________.x 2x 1yx O y O x-1-2x =115.已知二次函数20y ax bx c a =++≠()的图象与x 轴交于(-2,0)、1(0)x ,两点,且1<x 1<2,与y 轴正半轴的交点在(02),的下方.有下列结论:①abc <0;②a +b +c >0;③4a -2b +c =0;④a <b <0;⑤2a +c >0;⑥2a -b +1>0.其中正确的是__________________.16.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②2a +b <0;③a -b +c =2;④a +b <m (am +b )(m 为实数,且m ≠1);⑤(a +c )2<b 2;⑥b =1;⑦a >1.其中正确的是_______________.2-11O xy三、回顾与思考____________________________________________________________________________________________________________ ______________________________________________________【参考答案】一、 知识点睛1. 左加右减,上加下减;点的坐标;点的坐标2. 数形结合;交点3. 图象;对称轴4. 特殊点;组合二、精讲精练1. B 2.B 3.C 4.143x =-; 3m ≤ 5.12m x x n <<< 6.C 7.D 8.B9.C 10.A 11.79y -≤≤;718y -≤≤;69y -≤<12.2m ≤;1m ≥ 13.B 14.①③④⑥⑧15.②③④⑤⑥ 16.①③⑦。
中考数学二次函数的综合复习含答案解析

中考数学二次函数的综合复习含答案解析一、二次函数1.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t=﹣32(t ﹣3)2+272,∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=12CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB=OC,又∵BE =CE ,OE =OE , ∴△OBE ≌△OCE (SSS ), ∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3, 得m =m 2﹣2m ﹣3,解得m =113±, ∵点E 在第四象限, ∴E 点坐标为(1132+,﹣1132+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC , ∴S △ACF =2S △AOC , ∴AF =2OA =2, ∴F (1,0).∵A (﹣1,0),C (0,﹣3), ∴直线AC 的解析式为y =﹣3x ﹣3. ∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b , 将F (1,0)代入,得0=﹣3+b ,解得b =3, ∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩,解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩,∴点Q 的坐标为(﹣3,12)或(2,﹣3). 【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤Q ,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(32,﹣54). 【解析】 【分析】(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32=交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】(1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (32528,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)∵顶点D的坐标为(32528,-),∴抛物线的对称轴为x32=.∵抛物线y12=x2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x32=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y21322x=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x32=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:240bk b=-⎧⎨+=⎩,解得:122kb⎧=⎪⎨⎪=-⎩,∴y12=x﹣2.当x32=时,y1352224=⨯-=-,∴点M的坐标为(3524-,).【点睛】本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.5.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N 为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(1132+,0)、N1(13,﹣1);M2(1132+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.【详解】(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:203a a cc++=⎧⎨=⎩,解得:13ac=-⎧⎨=⎩,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4);(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴33,则点B′的坐标为(m+1,0),点G′的坐标为(1,3m ), 将点B′、G′的坐标代入y=﹣(x ﹣1)2+4﹣k ,得:24043m k k m⎧-+-=⎪⎨-=⎪⎩, 解得:1104m k =⎧⎨=⎩(舍),2231m k ⎧=⎪⎨=⎪⎩,∴k=1;(3)设M (x ,0),则P (x ,﹣x 2+2x+3)、Q (x ,﹣x 2+2x+2), ∴PQ=OA=1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y=﹣1于点H ,则∠QHN=∠OMQ=90°, 又∵△AOQ ≌△PQN , ∴OQ=QN ,∠AOQ=∠PQN , ∴∠MOQ=∠HQN , ∴△OQM ≌△QNH (AAS ), ∴OM=QH ,即x=﹣x 2+2x+2+1, 解得:x=1132± 当113+HN=QM=﹣x 2131-M 113+,0), ∴点N 113+131-1131); 113+131-1),即(1,﹣1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(113+,0)、N1(13,﹣1);M2(113+,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.6.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.7.如图1,在平面直角坐标系中,直线AB :y =kx +b (k <0,b >0),与x 轴交于点A 、与y 轴交于点B ,直线CD 与x 轴交于点C 、与y 轴交于点D .若直线CD 的解析式为y =﹣1k(x+b ),则称直线CD 为直线AB 的”姊线”,经过点A 、B 、C 的抛物线称为直线AB 的“母线”.(1)若直线AB 的解析式为:y =﹣3x +6,求AB 的”姊线”CD 的解析式为: (直接填空);(2)若直线AB 的”母线”解析式为:2142y x x =-+,求AB 的”姊线”CD 的解析式; (3)如图2,在(2)的条件下,点P 为第二象限”母线”上的动点,连接OP ,交”姊线”CD 于点Q ,设点P 的横坐标为m ,PQ 与OQ 的比值为y ,求y 与m 的函数关系式,并求y 的最大值;(4)如图3,若AB 的解析式为:y =mx +3(m <0),AB 的“姊线”为CD ,点G 为AB 的中点,点H 为CD 的中点,连接OH ,若GH =5,请直接写出AB 的”母线”的函数解析式.【答案】(1)1(6)3y x =+;(2)(2,0)、(0,4)、(﹣4,0);(3)当m =﹣32,y 最大值为338;(4)y =x 2﹣2x ﹣3. 【解析】 【分析】(1)由k ,b 的值以及”姊线”的定义即可求解;(2)令x =0,得y 值,令y =0,得x 值,即可求得点A 、B 、C 的坐标,从而求得直线CD 的表达式;(3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 从而求得直线OP 的表达式,将直线OP 和CD 表达式联立并解得点Q 坐标, 由此求得P Q y y ,从而求得y =﹣12m 2﹣32m+3,故当m =﹣32,y 最大值为338; (4)由直线AB 的解析式可得AB 的“姊线”CD 的表达式y =﹣1m(x+3),令x =0,得 y值,令y =0,得x 值,可得点C 、D 的坐标,由此可得点H 坐标,同理可得点G 坐标, 由勾股定理得:m 值,即可求得点A 、B 、C 的坐标,从而得到 “母线”函数的表达式. 【详解】(1)由题意得:k =﹣3,b =6, 则答案为:y =13(x+6); (2)令x =0,则y =4,令y =0,则x =2或﹣4,点A 、B 、C 的坐标分别为(2,0)、(0,4)、(﹣4,0), 则直线CD 的表达式为:y =12(x+4)=12x+2; (3)设点P 的横坐标为m ,则点P (m ,n ),n =﹣12m 2﹣m+4, 则直线OP 的表达式为:y =n mx , 将直线OP 和CD 表达式联立得122ny x my x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:点Q (2438m m m --+,222838m m m m +-+-)则P Q y y =﹣12m 2﹣32m+4, y =1P Q P Q Q y y y PQ OQ y y -==-=﹣12m 2﹣32m+3, 当m =﹣32,y 最大值为338; (4)直线CD 的表达式为:y =﹣1m(x+3), 令x =0,则y =﹣3m,令y =0,则x =﹣3, 故点C 、D 的坐标为(﹣3,0)、(0,﹣3m ),则点H (﹣32,﹣32m), 同理可得:点G (﹣32m ,32), 则GH 2=(32+32m )2+(32﹣32m)22, 解得:m =﹣3(正值已舍去),则点A 、B 、C 的坐标分别为(1,0)、(0,3)、(﹣3,0), 则“母线”函数的表达式为:y =a (x ﹣1)(x+3)=a (x 2﹣2x ﹣3),即:﹣3a =﹣3,解得:a =1,故:“母线”函数的表达式为:y =x 2﹣2x ﹣3. 【点睛】此题是二次函数综合题目,考查了“姊线”的定义,待定系数法求二次函数解析式,二次函数的最值问题,掌握二次函数的有关性质是解答此题的关键.8.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围. 【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c aam bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+ 把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.10.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5) (1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.11.抛物线与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1)A(2,0),B(4,0),C(0,2);(2)①t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②F(3,2),(3,7).【解析】试题分析:(1)在抛物线的解析式中,令y=0,令x=0,解方程即可得到结果;(2)①由题意得:OP=2t,OE=t,通过△CDE∽△CBO得到,即,求得有最小值1,即可求得结果;②存在,求得抛物线的对称方程为x=3,设F(3,m),当△EFP为直角三角形时,①当∠EPF=90°时,②当∠EFP=90°时,③当∠PEF=90°时,根据勾股定理列方程即可求得结果.试题解析:(1)在抛物线的解析式中,令y=0,即,解得:,,∵OA<OB,∴A(2,0),B(4,0),在抛物线的解析式中,令x=0,得y=2,∴C(0,2);(2)①由题意得:OP=2t,OE=t,∵DE∥OB,∴△CDE∽△CBO,∴,即,∴DE=4﹣2t,∴===,∵0<t<2,始终为正数,且t=1时,有最大值1,∴t=1时,有最小值1,即t=1时,有最小值1,此时OP=2,OE=1,∴E(0,1),P(2,0);②存在,∵抛物线的对称轴方程为x=3,设F(3,m),∴,=,=,当△EFP为直角三角形时,①当∠EPF=90°时,,即,解得:m=2,②当∠EFP=90°时,,即,解得;m=0或m=1,不合题意舍去,∴当∠EFP=90°时,这种情况不存在,③当∠PEF=90°时,,即,解得:m=7,综上所述,F(3,2),(3,7).考点:1.二次函数综合题;2.动点型;3.最值问题;4.二次函数的最值;5.分类讨论;6.压轴题.12.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【答案】(1)点A的坐标为(4,8)将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx得8=16a+4b0=64a+8b解得a=,b=4∴抛物线的解析式为:y=-x2+4x(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=AP=t.PB=8-t.∴点E的坐标为(4+t,8-t).∴点G 的纵坐标为:-(4+t )2+4(4+t )=-t 2+8.∴EG=-t 2+8-(8-t)=-t 2+t.∵-<0,∴当t=4时,线段EG 最长为2.②共有三个时刻:t 1=163, t 2=4013,t 3=8525+. 【解析】(1)根据题意即可得到点A 的坐标,再由A 、C 两点坐标根据待定系数法即可求得抛物线的解析式;(2)①在Rt △APE 和Rt △ABC 中,由tan ∠PAE ,即可表示出点E 的坐标,从而得到点G 的坐标,EG 的长等于点G 的纵坐标减去点E 的纵坐标,得到一个函数关系式,根据函数关系式的特征即可求得结果;②考虑腰和底,分情况讨论.13.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值. 【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t 的值为1或4.【解析】 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--, ∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3.Q 点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠, 将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:1132322x t y ⎧+=⎪⎪⎨+-⎪=⎪⎩,2232322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,3294)2t t+++.Q 点A 的坐标为()1,0,()22223943294105719422t t t AM t t t t ⎛⎫⎛⎫+++-+∴=-+-=++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()22223943294105719422t t t AN t t t t ⎛⎫⎛⎫-++++=-+-=+++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,222394394329432941882222t t t t t tMN t ⎛⎫⎛⎫-+++++++-+=-+-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. AMN ∆Q 为直角三角形, ∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即()()225719457194188t t t t t t t t t ++-++++++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去); ②当90AMN ∠=︒时,有222AM MN AN +=,即()()225719418857194t t t t t t t t t ++-++++=+++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去); ③当90ANM ∠=︒时,有222AN MN AN +=,即()()225719418857194t t t t t t t t t +++++++=++-++,整理,得:()941940t t t ++++=.0t >Q ,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4. 【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.14.一次函数y =x 的图象如图所示,它与二次函数y =ax 2-4ax +c 的图象交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图象的对称轴交于点C .(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.【答案】(1)点C(2,);(2)①y=x2-x;②y=-x2+2x+.【解析】试题分析:(1)求得二次函数y=ax2-4ax+c对称轴为直线x=2,把x=2代入y=x求得y=,即可得点C的坐标;(2)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax2-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A 点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax2-4ax+c即可求得函数表达式.试题解析:(1)y=ax2-4ax+c=a(x-2)2-4a+c.∴二次函数图像的对称轴为直线x =2.当x=2时,y=x=,∴C(2,).(2)①∵点D与点C关于x轴对称,∴D(2,-),∴CD=3.设A(m,m)(m<2),由S△ACD=3,得×3×(2-m)=3,解得m=0,∴A(0,0).由A(0,0)、 D(2,-)得解得a=,c=0.∴y=x2-x.②设A(m,m)(m<2),过点A作AE⊥CD于E,则AE=2-m,CE=-m,AC==(2-m),∵CD=AC,∴CD=(2-m).由S△ACD=10得×(2-m)2=10,解得m=-2或m=6(舍去),∴m=-2.∴A(-2,-),CD=5.若a>0,则点D在点C下方,∴D(2,-),由A(-2,-)、D(2,-)得解得∴y=x2-x-3.若a<0,则点D在点C上方,∴D(2,),由A(-2,-)、D(2,)得解得∴y=-x2+2x+.考点:二次函数与一次函数的综合题.15.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.【答案】解:(1)y=x2﹣1(2)详见解析(3)详见解析【解析】【分析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
2019年中考数学二次函数的应用专题(解析版)

2019年中考数学二次函数的应用专题(名师点拨中考必考知识点,建议下载打印练习)时间:45分钟 满分:100分一、单选题(共7题,每题4分;共28分)1.(2017•包头)已知一次函数y 1=4x ,二次函数y 2=2x 2+2,在实数范围内,对于x 的同一个值,这两个函数所对应的函数值为y 1与y 2,则下列关系正确的是( ) A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 2【分析】首先判断直线y =4x 与抛物线y =2x2+2只有一个交点,如图所示,利用图象法即可解决问题.【解答】解:由2422y x y x =⎧⎨=+⎩消去y 得到:x 2-2x +1=0, ∵△=0,∴直线y =4x 与抛物线y =2x 2+2只有一个交点,如图所示 观察图象可知:.y 1≤y 2, 故答案:D .2.(2018威海)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -21x 2刻画,斜坡可以用一次函数y =21x 刻画,下列结论错误的是( ) A .当小球抛出高度达到7.5时,小球距O 点水平距离为3m B .小球距O 点水平距离超过4米呈下降趋势 C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1∶2【分析】根据二次函数图象和性质可解答【解答】解::根据函数图象可知,当抛出的高度为7.5时,小球距离O 点的水平距离有两值(为3m 或5m ),A 结论错误;由y =4x -21x 2得y =-21(x -4)2+8,则对称轴为直线x =4,当x >4时,y 随x 值的增大而减小,B 结论正确;联立方程y =4x -12x 2与y =21x 解得⎩⎨⎧==00y x ,或⎪⎩⎪⎨⎧==277y x ;则抛物线与直线的交点坐标为(0,0)或(7,27),C 结论正确;由点(7,27)知坡度为27∶7=1∶2(也可以根据y =21x 中系数21的意义判断坡度为1∶2),D 结论正确; 故选A .3.(2017•泰安)如图,在△ABC 中,∠C=90°,AB=10cm ,BC=8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为( )A .19cm 2B .16 cm 2C .15 cm 2D .12 cm 2【分析】在Rt △ABC 中,利用勾股定理可得出AC=6cm ,设运动时间为t (0≤t≤4),则PC=(6﹣t )cm ,CQ=2tcm ,利用分割图形求面积法可得出S 四边形PABQ=t 2﹣6t+24,利用二次函数性质即可求出四边形PABQ 的面积最小值.【解答】解:在Rt △ABC 中,∠C=90°,AB=10cm ,BC=8cm ,∴AC=22BC AB =6cm . 设运动时间为t (0≤t≤4),则PC=(6﹣t )cm ,CQ=2tcm , ∴S 四边形PABQ=S △ABC ﹣S △CPQ=21AC•BC ﹣21PC•CQ=21×6×8﹣21(6﹣t )×2t=t2﹣6t+24=(t ﹣3)2+15,∴当t=3时,四边形PABQ 的面积取最小值,最小值为15. 故答案:C .4.(2017•宿迁)如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =2cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20cmB .18cmC .cmD .cm【分析】根据已知条件得到CP =6-t ,得到PQ ===,可得到结论.【解答】解:∵AP =CQ =t ,∴CP =6-t ,∴PQ ===,∵0≤t ≤2,∴当t =2时,PQ 的值最小,∴线段PQ 的最小值是, 故答案:C .5.(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线t=92;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m ,其中正确结论的个数是( ) A .1B .2C .3D .4【分析】由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,可得y=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【解答】解:由题意,抛物线的解析式为y=at(t﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,故答案:B.6.(2018·哈尔滨)将抛物线y=-5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A.y=-5(x+1)2-1 B.y=-5(x-1)2-1C.y=-5(x+1)2+3 D.y=-5(x-1)2+3【分析】先写成顶点式,根据抛物线解析式平称规律(对x:在括号内左加右减;对y在左边直接上减下加)或转化为点的坐标平移规律(左减右加上加下减)直接求解【解答】解:给的抛物线解析式可以看做顶点式,顶点为(0,1)平移可以看做是顶点在移动到(-1,-1),所以选A故答案:A.7.(2016•衢州)二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:则该函数图象的对称轴是()A.直线x=﹣3 B.直线x=﹣2 C.直线x=﹣1 D.直线x=0【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3相等,∴二次函数的对称轴为直线x=﹣2.故答案:B.二、填空题(共3题,每题4分;共12分)8.(2018·沈阳)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB =______m 时,矩形ABCD 的面积最大. EACDBF【分析】利用二次函数增减性及最值解决实际问题.【解答】解:设AB =x m ,因此AB +EF +CD =3x ,所以AD =BC =90032x-,矩形ABCD 的面积设为y (平方米),所以y =x·90032x -=234502x x -+,由于二次项系数小于0,所以y 有最大值,当x =2b a -=34502()2⎡⎤-÷⨯-⎢⎥⎣⎦=150时,函数y 取得最大值..故答案:1509.(2017•阿坝州)如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),点A 的对应点为A′,则抛物线上PA 段扫过的区域(阴影部分)的面积为______.【分析】根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD ,PP′的长,求出面积即可.【解答】解:连接AP ,A′P′,过点A 作AD ⊥PP′于点D ,由题意可得出:AP ∥A′P′,AP=A′P′, ∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(-2,2),与y 轴交于点A(0,3),平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),∴PO=222222=+,∠AOP=45°,又∵AD ⊥OP ,∴△ADO是等腰直角三角形,∴PP′=24222=⨯,∴AD=DO=sin45°•OA=223332=⨯,∴抛物线上PA 段扫过的区域(阴影部分)的面积为:22324⨯=12.故答案:12.10.(2018·武汉)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是___________m . 【分析】会利用配方法把二次函数一般式表示成顶点式,利用二次函数最值解决实际问题 【解答】解: y =60t -32t 2=-32(t -20)2+600,即当t =20时,飞机停止滑行,此时滑行距离为600m ,当t =16时,y =576m ,故最后4s 滑行的距离是600-576=24m . 故答案:24.三、解答题(共6题,每题10分;共60分)11.(2018·襄阳)襄阳精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x 的函数解析式为y =()()761202030mx m x x n x x ⎧-⎪⎨⎪⎩≤<,为正整数,≤≤,为正整数,且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?【分析】(1)根据“第12天的售价为32元/千克,第26天的售价为25元/千克”可知,x =12时,y=32;x=26时,y=25,将它们代入y关于x的函数解析式中即可求出m,n的值.(2)根据“在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克”可知,第x天的销售量为20+4(x-1)=4x+16,于是由“当天利润=当天销售量×每千克的销售利润”求得W关于x的函数关系式,注意是分段函数,然后利用二次函数的最值问题和一次函数的增减性讨论求解.(3)就是要求出使W ≥870的整数x值有多少个,即为多少天.这需要根据(2)中的计算结果,结合二次函数与一元二次方程的关系及一元一次不等式知识求解.【解答】解:(1)m=-12,n=25.(2)第x天的销售量为20+4(x-1)=4x+16.当1≤x<20时,W=(4x+16)(-12x+38-18)=-2x2+72x+320=-2(x-18)2+968.∴当x=18时,W最大值=968.当20≤x≤30时,W=(4x+16)(25-18)=28x+112.∵28>0,∴W随x的增大而增大.∴当x=30时,W最大值=952.∵968>952,∴当x=18时,W最大值=968.即第18天当天的利润最大,最大利润为968元.(3)当1≤x<20时,令-2x2+72x+320=870,解得x1=25,x2=11.∵抛物线W=-2x2+72x+320的开口向下,∴11≤x≤25时,W≥870.∴11≤x<20.∵x为正整数,∴有9天利润不低于870元.当20≤x≤30时,令28x+112≥870,解得x≥27114.∴27114≤x≤30.∵x为正整数,∴有3天利润不低于870元.综上所述,当天利润不低于870元的共有12天.12.(2018威海)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式; (2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?【分析】:(1)先用待定系数法求出直线AB 与BC 的函数表达式,然后在4≤x ≤6与6≤x ≤8时,根据“每月利润=销售单价×每月销售量-工资及其他费用”列出W 与x 之间的函数表达式;(2)先求出每月的最大利润,然后求出最快还款的时间.【解答】解:(1)设直线AB 的函数表达式为y AB =kx +b ,代入A (4,4),B (6,2),得 4426k b k b =+⎧⎨=+⎩,解得18k b =-⎧⎨=⎩.∴直线AB 的函数表达式为y AB =-x +8. 设直线BC 的函数表达式为y BC =k 1x +b 1,代入B (6,2),C (8,1),得 11112618k b k b =+⎧⎨=+⎩,解得11125k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为y BC =-21x +5. 工资及其他费用为0.4×5+1=3(万元).当4≤x ≤6时,∴()()1483W x x =--+-,即211235W x x =-+-. 当6≤x ≤8时,∴()214532W x x ⎛⎫=--+- ⎪⎝⎭,即2217232W x x =-+-.(2)当4≤x ≤6时,()221123561W x x x =-+-=--+,∴当6x =时,1W 取得最大值1.当6≤x ≤8时,()2221137237222W x x x =-+-=--+,∴当x =7时,2W 取得最大值1.5.∴1020261.533==,即第7个月可以还清全部贷款.13(2018·吉林)如图,在平面直角坐标系中,抛物线y =ax 2+2ax -3a(a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=-1时,抛物线顶点D的坐标为________,OE=________;(2)OE的长是否与a值无关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【分析】(1)当a=-1时,得到抛物线的解析式,求出相应顶点D和与y轴的交点坐标;进而求出OE的长;(2)与(1)类似,将字母a当作已知数即可;(3)分别求出β=45°和β=60°时a的值,进而确定a的取值范围;(4)利用等腰直角三角形构造三角形全等(或一线三直角),得出m与n的关系式.【解答】解:(1)(-1,4),3;(2)OE长与a值无关.理由:如图①,∵y=ax2+2ax-3a,∴C(0,-3a),D(-1,-4a).∴直线CD的解析式为y=ax-3a.当y=0时,x=3.∴OE=3.∴OE的长与a值无关.(3)当β=45°时,在Rt△OCE中,OC=OE.∵OE=3,OC=-3a,∴-3a=3.∴a =-1.当β=60°时,在Rt△OCE中,OC=3OE.∵OE=3,OC=-3a,∴-3a=33.∴a=-3.∴当45°≤β≤60°时,-3≤x≤-1.(4)n=-m-1(m<1).(如图②)过点P向抛物线的对称轴作垂线,过点P向x轴作垂线,垂足分别为M、N.则∠MPN=90°.∴∠NPE+∠MPE=90°.∵△PDE是等腰直角三角形,∴PD=PE,∠DPE=90°;∴∠DPM+∠MPE=90°,∴∠DPM=∠NPE,∴Rt△DPM ≌Rt△EPN,∴PM=PN.∵P(m,n),D(-1,-4a),E(3,0),∴-1-m=n.即n=-m -1(m<1).14(2018河南)如图,抛物线y =ax 2+6x +c 交x 轴于A ,B 两点,交y 轴于点C ,直线y =x -5经过点B ,C . (1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P(不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【分析】(1)先利用一次函数解析式计算出B ,C 两点的坐标,再代入y =ax 2+6x +c 中即可求得抛物线的解析式;(2) ①当A ,M ,P ,Q 为顶点的四边形是平行四边形时,注意要分“点P 在直线BC 上方”和“点P 在直线BC 下方”两种情况进行讨论求解;②提示:作AC 的垂直平分线,交BC 于点1M ,连接1AM ,过点A 作AN ⊥BC 于点N ,将1ANM ∆沿AN 翻折,得到2ANM ∆,点1M 、2M 的坐标即为所求.【解答】解:(1)∵直线5y x =-交x 轴于点B ,交y 轴于点C ,∴ B(5,0),C(0,-5).图②Q图①∵抛物线26y ax x c =++过点B ,C ,∴025305a c c =++⎧⎨-=⎩,∴15a c =-⎧⎨=-⎩, ∴抛物线的解析式为:265y x x =-+-.(2)∵OB =OC =5,∠BOC =90°,∴∠ABC =45°,∵抛物线265y x x =-+-交x 轴于A ,B 两点,∴A(1,0),∴AB =4,∵AM ⊥BC ,∴AM =,∵PQ ∥AM ,∴PQ ⊥BC ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,则PQ =AM =,过点P 作PD ⊥x 轴交直线BC 于点D ,则∠PDQ =45°,∴PD PQ =4.设P(m ,265m m -+-),则D(m ,5m -).分两种情况讨论如下:(ⅰ)当点P 在直线BC 上方时,PD =()2265554m m m m m -+---=-+=,∴11m =(舍去),24m = (ⅱ)当点P 在直线BC 下方时,PD =()2256554m m m m m ---+-=-=,∴1m =,2m =.综上,点P 的横坐标为4. ②M(136,176-)或(236,76-). 15(2018•日照)如图,已知点A (-1,0),B (3,0),C (0,1)在抛物线y =ax 2+bx +c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC =∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.【分析】(1)由待定系数法求抛物线解析式;(2)作PD⊥x轴交直线BC于D,将△PBC转化为S△PDC+S△PDB列方程求解;(3)由∠BQC=∠BAC推出点Q在△ABC外接圆上,外接圆圆心是弦AC与对称轴的交点,从而确定外接圆圆心坐标及半径长,进而求得点Q坐标.【解答】解:(1)把点A(-1,0),B(3,0),C(0,1)代入y=ax2+bx+c,得0 9301a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得13231aac⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,所以抛物线的解析式为y=-13x2+23x+1.(2)∵B(3,0),C(0,1),∴直线BC的解析式为y=-13x+1.过点P作PE⊥x轴于点E,交BC于D.设P(x,-13x2+23x+1),则D(x,-13x+1).∴PD=-13x2+23x+1-(-13x+1)=-13x2+x.∴S△PBC=S△PDC+S△PDB=12PD(x B-x C)=12(-13x2+x)(3-0)=-12x2+32x.又∵S△PBC=1,∴-12x2+32x=1,∴x2-3x+2=0,解得x1=1,x2=2.∴P1(1,43),P2(2,1).(3)答:存在.理由:如图,∵A(-1,0),C(0,1),∴OC=OA=1,∴∠BAC=45°.∵∠BAC =∠BQC,∴∠BQC=45°.∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,∵线段AC的垂直平分线为直线:y=-x,线段AB的垂直平分线为:x=1.∴点M为直线y=-x与直线x=1的交点,即M(1,-1),∴∠BMC=2∠BQC=90°,又∵MQ=MB=Ry Q=-(11Q在直线x=1上,∴x Q =1,∴Q (1,-1.16.. (2018福建)已知抛物线2y ax bx c =++过点A (0,2),且抛物线上任意不同两点11(,)M x y ,22(,)N x y 都满足:当120x x <<时,1212()()0x x y y -->;当120x x <<时,1212()()0x x y y --<,以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在C 的左侧,△ABC 有一个内角为60°.(1)求抛物线的解析式;(2)若MN 与直线y =-平行,且M ,N 位于直线BC 的两侧,12y y >,解决以上问题:①求证:BC 平分∠MBN ;②求△MBC 外心的纵坐标的取值范围.【分析】(1)依据题中已知条件可知抛物线的增减性变化特征为当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.此时b =0,c =2,即可得到抛物线的解析式;(2)①先根据点M 坐标为211(,2)x x -+,点N 坐标为222(,2)x x -+,求出直线MN 的解析式,然后分别构造Rt △BEM 与Rt △BFN ,求出tan ∠MBE 与tan ∠NBF 的值,从而得到∠MBE =∠MBE 即可.②先确定△MBC 外心位置,然后利用垂直平分线的性质和勾股定理求解.【解答】解:(1)∵抛物线过点A (0,2),∴c =2,当120x x <<时,120x x -<,由1212()()0x x y y -->得120y y -<,∴当x <0时,y 随x 的增大而增大;同理可得,当x >0时,y 随x 的增大而减小.∴抛物线的对称轴为y 轴且开口向下,则b =0.∵O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,∴△ABC 是等腰三角形,又∵△ABC 有一个内角为60°,故△ABC 为等边三角形,且OC =OA =2.设线段BC 与y 轴的交点为D ,则BD =CD ,且∠OBD =30°,所以BD =OB·cos30°,OD =OB·sin30°=1,∵点B 在点C 的左侧,所以点B坐标为(1)-.∵点B 在抛物线2y ax bx c =++上,且c =2,b =0,所以3a+2=-1,解得a =-1,所以所求抛物线的解析式为22y x =-+.(2)①由(1)知,点M 坐标为211(,2)x x -+,点N 坐标为222(,2)x x -+,∵MN 与直线y=-平行,设直线MN 的解析式为y=m -+,则212x -+=1m -+,即m=2112x -++,∴直线MN 的解析式为2112y x =-++,将2112y x =-++代入22y x =-+得,2211x x -=-+化为221((x x +=,解得1x x =-,或1x x =-,∴21x x =-,则2y=21(2x --+=21110x -+-,作ME ⊥BC ,NF ⊥BC ,垂足分别为E ,F ,∵点M ,N 位于直线BC 的两侧,且12y y >,则2112y y <-<≤,且12x x <<,∴ME =1y -(-1)=213x -+,BE=1(x -=1x +, NF =(-1)-2y=2119x -+,BF=21(x x -=-, 在Rt △BEM 中,tan ∠MBE =ME EB=211133x x x -+=-+, 在Rt △BFN 中,tan ∠NBF =NF BF1x ===, ∵tan ∠MBE = tan ∠NBF ,∴∠MBE = ∠NBF ,即BC 平分∠MBN .②∵y 轴为BC 的垂直平分线,∴可设△MBC 的外心为P (0,0y ),则PB =PM ,即22PB PM =.由勾股定理可得22220101(1)()y x y y ++=+-因为2112x y =-,∴220010124(2)()y y y y y ++=-+-,即1012y y =-.由①知,112y -<≤,∴0302y -<≤,即△MBC 的外心的纵坐标的取值范围为0302y -<≤.。
初三数学二次函数知识点总结及经典习题含答案

初三数学二次函数知识点总结及经典习题含答案初三数学二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b,c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax2的性质:当a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小;当x=0时,y有最小值。
当a>0时,向上开口,对称轴为y轴;当a<0时,向下开口,对称轴为y轴。
2.y=ax2+c的性质:上加下减。
a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。
当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小;当x=0时,y有最小值c。
当a>0时,向上开口,对称轴为y轴;当a<0时,向下开口,对称轴为y轴。
3.y=a(x-h)的性质:左加右减。
a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。
当x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;当x=h时,y有最小值。
当a>0时,向上开口,对称轴为x=h;当a<0时,向下开口,对称轴为x=h。
4.y=a(x-h)+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。
当x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;当x=h时,y有最小值k。
当a>0时,向上开口,对称轴为x=h;当a<0时,向下开口,对称轴为x=h。
三、二次函数图象的平移1.平移步骤:将抛物线解析式转化成顶点式y=a(x-h)+k,确定其顶点坐标(h,k)处。
保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:向上平移|k|个单位,当k>0时;向下平移|k|个单位,当k<0时。
中考数学思维方法讲义【第10讲】二次函数的综合运用

状元廊数学思维方法讲义之十 年级:九年级§第10讲 二次函数的综合运用【知识概述】二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。
有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。
【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。
【典例精析】专题一 知识回顾【例1】1、已知二次函数c bx ax y ++=2的图象的对称轴是直线 2=x ,且有最大值2,其图象在x 轴上截得的线段长为2,求这个二次函数的解析式。
2、已知二次函数y=ax 2+bx +c 满足a -b +c =0,其图像过点A(2, -3),并且以x =1为对称轴,求此二次函数的解析式。
3、已知二次函数24y ax x c =-+的图象与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C ,tan ∠ACO =15,CO =BO , △ABC 的面积为15。
求该二次函数的解析式。
专题二 能力提升题型1:利用一元二次方程根与系数的关系求二次函数的解析式【例2】已知二次函数b ax x y ++-=2与x 轴从左到右交于A 、B 两点,与y 轴正半轴交于C 点,∠ACB =90°,且tan ∠BAC -tan ∠ABC =2,求此二次函数的解析式。
2019年全国各地中考数学解析汇编20 二次函数的应用

2019年全国各地中考数学解析汇编20 二次函数的应用(2018北海,7,3分)7.已知二次函数y =x 2-4x +5的顶点坐标为: ( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)【解析】二次函数的顶点坐标公式为(ab ac a b 44,22--),分别把a ,b ,c 的值代入即可。
【答案】B【点评】本题考查的是二次函数顶点公式,做题时要灵活把握,求纵坐标时,也可以把横坐标的值代入到函数中,求y 值即可,属于简单题型。
(2018山东省滨州,1,3分)抛物线234y x x =--+ 与坐标轴的交点个数是( ) A .3 B .2 C .1 D .0【解析】抛物线解析式234x x --+,令x=0,解得:y=4,∴抛物线与y 轴的交点为(0,4),令y=0,得到2340x x --+=,即2340x x +-=,分解因式得:(34)(1)0x x +-= ,解得:143x =-, 21x =, ∴抛物线与x 轴的交点分别为(43-,0),(1,0), 综上,抛物线与坐标轴的交点个数为3. 【答案】选A【点评】本题考查抛物线的性质,需要数形结合,解出交点,即可求出交点的个数.此题也可用一元二次方程根的判别式判定与x 轴的交点个数,与y 轴的交点就是抛物线中C 的取值.( 2019年四川省巴中市,8,3)对于二次函数y=2(x+1)(x-3)下列说法正确的是( ) A.图象开口向下 B.当x >1时,y 随x 的增大而减小 C.x <1时,y 随x 的增大而减小 D.图象的对称轴是直线x= - 1【解析】y=2(x+1)(x-3)可化为y=(x -1)2-8,此抛物线开口向上,可排除A,对称轴是直线x=1可排除D,根据图象对称轴右侧部分, y 随x 的增大而减小,即x <1时,故选C. 【答案】C【点评】本题考查将二次函数关系式化成顶点式的方法及图象性质.12.(2018湖南衡阳市,12,3)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法: ①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x <3时,y >0 其中正确的个数为( )A .1B .2C .3D .4解析:由抛物线的开口方向判断a 与0的关系,由x=1时的函数值判断a+b+c >0,然后根据对称轴推出2a+b 与0的关系,根据图象判断﹣1<x <3时,y 的符号. 答案:解:①图象开口向下,能得到a <0; ②对称轴在y 轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y >0,则a+b+c >0; ④由图可知,当﹣1<x <3时,y >0. 故选C .点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.(2018呼和浩特,9,3分)已知:M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=x+3上,设点M 的坐标为(a,b ),则二次函数y= –abx 2+(a+b)xA. 有最大值,最大值为 –92B. 有最大值,最大值为92 C. 有最小值,最小值为92D. 有最小值,最小值为 –92【解析】M(a,b),则N(–a,b),∵M 在双曲线上,∴ab=12;∵N 在直线上,∴b=–a+3,即a+b=3; ∴二次函数y= –abx 2+(a+b)x= –12x 2+3x= –12(x –3)2+92,∴有最大值,最大值为92【答案】B【点评】本题考查了轴对称的性质,利用点在函数图象上,把点代入的解析式中求得ab 和a+b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届数学中考复习资料§第10讲 二次函数的综合运用【知识概述】二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。
有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。
【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。
【典例精析】专题一 知识回顾【例1】1、已知二次函数c bx ax y ++=2的图象的对称轴是直线 2=x ,且有最大值2,其图象在x 轴上截得的线段长为2,求这个二次函数的解析式。
2、已知二次函数y=ax 2+bx +c 满足a -b +c =0,其图像过点A(2, -3),并且以x =1为对称轴,求此二次函数的解析式。
3、已知二次函数24y ax x c =-+的图象与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C ,tan ∠ACO =15,CO =BO , △ABC 的面积为15。
求该二次函数的解析式。
专题二 能力提升题型1:利用一元二次方程根与系数的关系求二次函数的解析式【例2】已知二次函数b ax x y ++-=2与x 轴从左到右交于A 、B 两点,与y 轴正半轴交于C 点,∠ACB =90°,且tan ∠BAC -tan ∠ABC =2,求此二次函数的解析式。
-变式:在直角坐标平面内,点O 为坐标原点,二次函数)4()5(2+--+=k x k x y 的图象交x 轴于点 A )0,(1x 、B )0,(2x ,且8)1)(1(21-=++x x 。
(1)求此二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积。
题型二: 二次函数的综合运用【例3】如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形? 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.专题三 思维拓展【例4】已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【例5】如图,已知抛物线y =-x 2+bx +c与一直线相交于A (-1,0),C (2,3)两点,与y 轴交与点N 。
其顶点为D 。
(1)求抛物线及直线A 、C 的函数关系式;(2)设点M (3,m ),求使MN +MD 的值最小时m 的值;(3)若抛物线对称轴与直线AC 相交于点B ,E 为直线AC 上任意一点,过E 作EF ∥BD ,交抛物线于点F ,以B 、D 、E 、F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若点P 是该抛物线上位于直线AC 上方的一动点,求△APC 面积的最大值.【例6】(2012成都)如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A (3-,0),与y 轴交于点C .以直线x =1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y ,,222M ()x y ,两点,试探究2121M M PM P M ∙是否为定值,并写出探究过程.【课后测试】(成都各区、县2012—2013年度期末调研试卷28小题选编) 1、(高新区28)如图,二次函数21122y x mx m =-+++的图象与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于C 点,顶点D 在第一象限。
过点D 作x 轴的垂线,垂足为H 。
(1) 当32m =时,求tan ∠ADH 的值;(2) 是否存在这样的m ,使得△ACO ∽△CBO ?若存在,求出m 的值,若不存在,请说明理由。
(3) 设△BCD 和△ABC 的面积分别为12S S 、当满足12=S S 时,求点D 到直线BC 的距离。
2、(金牛区28)如图,已知抛物线2y ax bx c =++的图像于x 轴交于点B (3,0),与y 轴交于点C (0,-3),且图像经过点A (2,-3). (1)求该抛物线的解析式及顶点坐标;(2)点P 从A 点出发以每秒0.1个单位的速度沿线段AC 向C 点运动,点Q 从O 点出发以相同的速度沿线段OB 向B 点运动,其中一个动点到达端点时,另一个也随之停止运动。
设运动时间为t 秒(t >0).①当t 取何值时,四边形ABQP 为等腰梯形;②设PQ 与对称轴的交点为M ,过M 点作x 轴的平行线交AB 于点N ,设四边形BNPQ 的面积为S ,求面积S 关于时间t 的函数解析式,并指出t 的取值范围;当t 为何值时,S 有最大值或最小值,并求出最值。
3、(武侯28)已知两直线1l、2l分别经过点A(3,0),点B(-1,0),并且当两条直线同时相交于y轴负半轴的点C时,恰好有1l⊥2l,经过点A、B、C的抛物线的对称轴与直线2l交于点K,如图所示.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于△ABC的面积的32倍?若存在,求出点P的坐标;若不存在,请说明理由.(3)将直线1l按顺时针方向绕点C旋转α°(0<α<90°),与抛物线的另一个交点为M.求在旋转过程中△MCK为等腰三角形时的α的值.4、(青羊28)如图,抛物线2y ax bx c=++与x轴有两个不同的交点A(x1,0)、B(x2,0)(x1<x2),与y轴的正半轴交于点C(0,3)。
已知该抛物线的顶点横坐标为1,A、B两点间的距离为4。
(1)求这条抛物线的解析式;(2)求△ABC外接圆的圆心M的纵坐标;(3)在抛物线上是否存在一点P,使△PBD(PD垂直于x轴,垂足为D)被直线BM分成的面积为1:2两部分?若存在,请求出点P的坐标;若不存在,请说明理由。
5、(成华区28)如图,已知点C(-4,2),Rt△AOB≌Rt△OCD,直角边OB、OD在x轴上.抛物线经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点M为线段OC上一个动点,过点M作y轴的平行线交抛物线于点G,问是否存在这样的点M,使得四边形ABMG为等腰梯形?若存在,求出此时点M的坐标;若不存在,请说明理由;(3)在(2)的情况下,抛物线的对称轴上是否存在一点Q,使QB+QM的值最小?若存在,请求出Q点坐标;若不存在,请说明理由.第28题图答案与提示:【例3】解:(1)设抛物线的解析式为:y=ax 2+bx+c 。
∵直线33+=x y 交x 轴于A 点,交y 轴于B 点, ∴A 点坐标为(-1,0)、B 点坐标为(0,3). 又∵抛物线经过A 、B 、C 三点,∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩, ∴抛物线的解析式为:y=-x 2+2x+3.(2)∵y=-x 2+2x+3= 2(1)4x --+,∴该抛物线的对称轴为x=1. 设Q点坐标为(1,m ),则AQ BQ ==AB=当AB=AQ 时,=m =,∴Q 点坐标为(1)或(1,);当AB=BQ =,解得:120,6m m ==,∴Q 点坐标为(1,0)或(1,6);当AQ=BQ =,解得:1m =, ∴Q 点坐标为(1,1).∴抛物线的对称轴上是存在着点Q (1)、(1,)、(1,0)、(1,6)、(1,1),使△ABQ 是等腰三角形.【例4】解:(1)由题意得129302b a a b c c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ 解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ························································ 5分 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭, (3)S 存在最大值理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =即223m OE -= ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ∵304-<∴当1m =时,333424S =-+=最大 方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+EF∵304-< ∴当1m =时,34S =最大【例5】解:设直线AC 的解析式为:y =kx +n ,点 A (-1,0),C (2,3)在A \C 上,可得:⎩⎨⎧+=+-=nk nk 230 解得:k =1,n =1 ∴AC 的解析式为:y =x +1;把A (-1,0),C (2,3)y =-x 2+bx +c⎩⎨⎧++-=+--=c b cb 24310解得b =2,c =3, ∴抛物线的解析式为y = -x 2+2x +3, ∴N (0,3)D (1,4).(2) 作N 关于x =3的对称点N 1,连接DN 1,则N 1(6,3).设直线D N 1的解析式为y =px +q ,则有:⎩⎨⎧+=+=qp q p 634,∴p =51-,q =521,∴D N 1的解析式y =51-x +521,当M (3,m )在D N 1上时,MN +MD 的值最小,∴m =51-×3+521=518;(3)易知B (1,2),又D (1,4)∴BD =2.因为点E 在AC 上,设点E (x ,x +1),1°当点E 在线段AC 上时,点F (x .x +3),代入y = -x 2+2x +3,得x +3=-x 2+2x +3, 解得x =0或=1(不符合题意舍去),∴E ;2°当点E 在线段AC (或CA )延长线上时,点F (x .x -1),代入y = -x 2+2x +3,得x -1=-x 2+2x +3,解得x =2171±,所以E (2171-,2171--)E (2171+,2171+-) 综上所述,当点E (0, 1)、(2171-,2171--)或(2171+,2171+-)时以B 、D 、E 、F 为顶点的四边形能否为平行四边形;(4)作CQ ⊥x 轴于Q ,作PG ⊥x 轴,交AC 于H 。