东北大学操作系统实验三报告
操作系统实验报告3

操作系统实验报告3一、实验目的本次操作系统实验的主要目的是深入了解和掌握操作系统中进程管理、内存管理以及文件系统等核心概念和相关技术,并通过实际的实验操作,提高对操作系统原理的理解和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程管理实验1、创建进程使用 C++语言编写程序,通过调用 Windows API 函数`CreateProcess`来创建一个新的进程。
在创建进程时,设置进程的优先级、环境变量等参数,并观察进程的创建过程和相关的系统资源使用情况。
```cppinclude <windowsh>include <iostream>int main(){STARTUPINFO si;PROCESS_INFORMATION pi;ZeroMemory(&si, sizeof(si));sicb = sizeof(si);ZeroMemory(&pi, sizeof(pi));//设置进程的优先级为 HIGH_PRIORITY_CLASS DWORD priorityClass = HIGH_PRIORITY_CLASS;//创建进程if (!CreateProcess(NULL, //应用程序名称"notepadexe",//命令行参数NULL, //进程安全性NULL, //线程安全性FALSE, //不继承句柄priorityClass, //进程优先级NULL, //环境变量NULL, //当前目录&si,&pi)){std::cout <<"CreateProcess failed Error code: "<<GetLastError()<< std::endl;return 1;}//等待进程结束WaitForSingleObject(pihProcess, INFINITE);//关闭进程和线程的句柄CloseHandle(pihProcess);CloseHandle(pihThread);return 0;}```2、进程同步与互斥编写一个多线程程序,模拟生产者消费者问题。
操作系统实验报告

实验名称:操作系统进程管理实验实验目的:1. 理解操作系统进程管理的概念和原理。
2. 掌握进程的创建、调度、同步和通信机制。
3. 通过实验加深对进程管理算法的理解和应用。
实验环境:1. 操作系统:Windows 102. 编程语言:C/C++3. 开发环境:Visual Studio实验内容:一、实验一:进程的创建与终止1. 实验目的了解进程的创建和终止机制,掌握进程控制块(PCB)的结构和功能。
2. 实验步骤(1)创建一个进程,使用系统调用创建子进程;(2)设置子进程的属性,如优先级、名字等;(3)终止子进程,释放资源;(4)查看进程信息,确认进程创建和终止过程。
3. 实验代码```c#include <stdio.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;printf("Parent process: %d\n", getpid());pid = fork(); // 创建子进程if (pid == 0) {printf("Child process: %d\n", getpid());printf("Child process is running...\n");sleep(5); // 子进程延时5秒exit(0);} else {printf("Child process created: %d\n", pid);wait(NULL); // 等待子进程结束printf("Child process terminated.\n");}return 0;}```4. 实验结果在运行实验代码后,首先输出父进程的进程号,然后输出子进程的进程号,子进程运行5秒后结束,父进程输出子进程终止信息。
操作系统实验报告三

操作系统实验报告三一、实验目的本次实验的目的是通过设计和实现一个简单的操作系统,加深对操作系统内核设计的理解,并学习操作系统内核的基本构建和运行原理。
二、实验背景操作系统是计算机系统中最核心的软件之一,它负责管理计算机的各种资源以及协调和控制应用程序的执行。
操作系统的设计和实现使计算机能够高效地运行并提供友好的用户接口。
操作系统也为应用程序提供了统一的软硬件访问接口,方便开发人员进行软件开发。
操作系统的设计和实现是计算机科学与技术领域中重要的研究方向之一。
通过操作系统的实验,可以深入了解操作系统的内部原理和机制,加深对操作系统的理解和认识。
三、实验内容本次实验需要设计和实现一个简单的操作系统,完成以下功能:1. 实现一个简单的内存管理模块,包括内存分配和释放的功能。
2. 实现一个简单的进程管理模块,包括进程的创建、撤销和切换的功能。
3. 实现一个简单的文件系统模块,包括文件的读写和目录的管理功能。
4. 实现用户与操作系统之间的交互界面,方便用户进行操作系统的使用。
四、实验步骤1. 设计和实现内存管理模块:a. 设计内存分配算法,根据系统的需要分配和释放内存空间。
b. 实现内存分配和释放的功能函数,确保能够正确地分配和释放内存空间。
2. 设计和实现进程管理模块:a. 设计进程控制块(PCB),记录进程的相关信息。
b. 实现进程的创建、撤销和切换的功能函数,确保进程能够正确地被创建、撤销和切换。
3. 设计和实现文件系统模块:a. 设计文件控制块(FCB),记录文件的相关信息。
b. 实现文件的读写和目录的管理功能函数,确保文件能够正确地被读写和目录能够正确地被管理。
4. 实现用户与操作系统之间的交互界面:a. 设计用户界面,包括命令解释器等。
b. 实现用户输入命令的解释和执行函数,确保用户能够正确地与操作系统进行交互。
五、实验结果与分析经过实验,我们成功地设计和实现了一个简单的操作系统,并完成了内存管理、进程管理和文件系统的功能实现。
操作系统实验实验报告

操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
东北大学linux实验报告

东北大学linux实验报告东北大学Linux实验报告引言:在当今信息技术高速发展的时代,计算机科学与技术已经成为了各个领域不可或缺的一部分。
作为计算机领域的重要组成部分,操作系统在实际应用中起着至关重要的作用。
Linux作为一种开源的操作系统,具有稳定性、安全性和灵活性等优势,因此在学术界和工业界均得到了广泛的应用和研究。
本文将对东北大学Linux实验进行总结和分析,以期对Linux操作系统有更深入的了解。
一、实验背景东北大学开设的Linux实验课程旨在帮助学生掌握Linux操作系统的基本原理和应用技巧。
通过实验,学生能够了解Linux的启动过程、文件系统管理、用户权限管理、网络配置等关键概念和操作。
实验采用了虚拟机技术,使得学生可以在实验室或家中的个人电脑上进行实验,提高了实验的灵活性和便捷性。
二、实验内容1. Linux的安装与启动在本实验中,我们首先需要在虚拟机中安装Linux操作系统。
通过选择适当的Linux发行版和版本,进行分区、格式化、安装等步骤,最终完成Linux的安装。
安装完成后,我们需要了解Linux的启动过程,包括BIOS、MBR、GRUB等关键环节。
2. 文件系统管理Linux操作系统以文件为中心,因此文件系统管理是Linux实验的重要内容之一。
通过实验,我们学会了使用命令行和图形界面两种方式来管理文件和目录,包括创建、删除、复制、移动、重命名等操作。
此外,还学习了文件权限和所有权的概念,掌握了chmod、chown等命令的使用方法。
3. 用户权限管理在Linux系统中,用户权限管理是非常重要的一部分。
通过实验,我们学会了创建用户、设置密码、分配权限等操作。
同时,还了解了Linux的用户组概念,学习了添加用户到用户组、设置用户组权限等操作。
4. 网络配置网络配置是Linux实验中的另一个重要内容。
通过实验,我们了解了网络接口的配置和管理,包括IP地址、子网掩码、网关等参数的设置。
《操作系统》实验报告

《操作系统》实验报告一、实验目的操作系统是计算机系统中最为关键的组成部分之一,本次实验的主要目的是深入理解操作系统的基本原理和功能,通过实际操作和观察,熟悉操作系统的核心概念,包括进程管理、内存管理、文件系统和设备管理等,提高对操作系统的实际应用能力和问题解决能力。
二、实验环境本次实验在以下环境中进行:操作系统:Windows 10开发工具:Visual Studio 2019编程语言:C++三、实验内容1、进程管理实验进程是操作系统中最基本的执行单元。
在这个实验中,我们使用C++编写程序来创建和管理进程。
通过观察进程的创建、执行和结束过程,理解进程的状态转换和资源分配。
首先,我们编写了一个简单的程序,创建了多个子进程,并通过进程标识符(PID)来跟踪它们的运行状态。
然后,使用等待函数来等待子进程的结束,并获取其返回值。
在实验过程中,我们发现进程的创建和销毁需要消耗一定的系统资源,而且进程之间的同步和通信需要谨慎处理,以避免出现死锁和竞争条件等问题。
2、内存管理实验内存管理是操作系统的核心功能之一,它直接影响系统的性能和稳定性。
在这个实验中,我们研究了动态内存分配和释放的机制。
使用 C++中的 new 和 delete 操作符来分配和释放内存。
通过观察内存使用情况和内存泄漏检测工具,了解了内存分配的效率和可能出现的内存泄漏问题。
同时,我们还探讨了内存分页和分段的概念,以及虚拟内存的工作原理。
通过模拟内存访问过程,理解了页表的作用和地址转换的过程。
3、文件系统实验文件系统是操作系统用于管理文件和目录的机制。
在这个实验中,我们对文件的创建、读写和删除进行了操作。
使用 C++的文件流操作来实现对文件的读写。
通过创建不同类型的文件(文本文件和二进制文件),并对其进行读写操作,熟悉了文件的打开模式和读写方式。
此外,还研究了文件的权限设置和目录的管理,了解了如何保护文件的安全性和组织文件的结构。
4、设备管理实验设备管理是操作系统与外部设备进行交互的桥梁。
《操作系统》课内实验报告

《操作系统》课内实验报告一、实验目的本次《操作系统》课内实验的主要目的是通过实际操作和观察,深入理解操作系统的基本原理和功能,掌握常见操作系统命令的使用,提高对操作系统的实际应用能力和问题解决能力。
二、实验环境本次实验在计算机实验室进行,使用的操作系统为 Windows 10 和Linux(Ubuntu 发行版)。
实验所使用的计算机配置为:Intel Core i5 处理器,8GB 内存,500GB 硬盘。
三、实验内容1、进程管理在 Windows 系统中,通过任务管理器观察进程的状态、优先级、CPU 使用率等信息,并进行进程的结束和优先级调整操作。
在 Linux 系统中,使用命令行工具(如 ps、kill 等)实现相同的功能。
2、内存管理使用 Windows 系统的性能监视器和资源监视器,查看内存的使用情况,包括物理内存、虚拟内存的占用和分配情况。
在 Linux 系统中,通过命令(如 free、vmstat 等)获取类似的内存信息,并分析内存的使用效率。
3、文件系统管理在 Windows 系统中,对文件和文件夹进行创建、复制、移动、删除等操作,了解文件的属性设置和权限管理。
在 Linux 系统中,使用命令(如 mkdir、cp、mv、rm 等)完成相同的任务,并熟悉文件的所有者、所属组和权限设置。
4、设备管理在 Windows 系统中,查看设备管理器中的硬件设备信息,安装和卸载设备驱动程序。
在 Linux 系统中,使用命令(如 lspci、lsusb 等)查看硬件设备,并通过安装内核模块来支持特定设备。
四、实验步骤1、进程管理实验(1)打开 Windows 系统的任务管理器,切换到“进程”选项卡,可以看到当前系统中正在运行的进程列表。
(2)选择一个进程,右键点击可以查看其属性,包括进程 ID、CPU 使用率、内存使用情况等。
(3)通过“结束任务”按钮可以结束指定的进程,但要注意不要随意结束系统关键进程,以免导致系统不稳定。
东北大学操作系统实验三报告

东北大学操作系统实验三报告SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#操作系统实验报告班级物联网1302班学号姓名实验3 进程同步和通信-生产者和消费者问题模拟1. 目的:调试、修改、运行模拟程序,通过形象化的状态显示,使学生理解进程的概念,了解同步和通信的过程,掌握进程通信和同步的机制,特别是利用缓冲区进行同步和通信的过程。
通过补充新功能,使学生能灵活运用相关知识,培养创新能力。
2. 内容及要求:1) 调试、运行模拟程序。
2) 发现并修改程序中不完善的地方。
3) 修改程序,使用随机数控制创建生产者和消费者的过程。
4) 在原来程序的基础上,加入缓冲区的写互斥控制功能,模拟多个进程存取一个公共缓冲区,当有进程正在写缓冲区时,其他要访问该缓冲区的进程必须等待,当有进程正在读取缓冲区时,其他要求读取的进程可以访问,而要求写的进程应该等待。
5) 完成1)、2)、3)功能的,得基本分,完成4)功能的加2分,有其它功能改进的再加2分3. 程序说明:本程序是模拟两个进程,生产者(producer)和消费者(Consumer)工作。
生产者每次产生一个数据,送入缓冲区中。
消费者每次从缓冲区中取走一个数据。
缓冲区可以容纳8个数据。
因为缓冲区是有限的,因此当其满了时生产者进程应该等待,而空时,消费者进程应该等待;当生产者向缓冲区放入了一个数据,应唤醒正在等待的消费者进程,同样,当消费者取走一个数据后,应唤醒正在等待的生产者进程。
就是生产者和消费者之间的同步。
每次写入和读出数据时,都将读和写指针加一。
当读写指针同样时,又一起退回起点。
当写指针指向最后时,生产者就等待。
当读指针为零时,再次要读取的消费者也应该等待。
为简单起见,每次产生的数据为0-99的整数,从0开始,顺序递增。
两个进程的调度是通过运行者使用键盘来实现的。
4. 程序使用的数据结构进程控制块:包括进程名,进程状态和执行次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实验报告班级物联网1302班学号姓名实验 3 进程同步和通信-生产者和消费者问题模拟1. 目的:调试、修改、运行模拟程序,通过形象化的状态显示,使学生理解进程的概念,了解同步和通信的过程,掌握进程通信和同步的机制,特别是利用缓冲区进行同步和通信的过程。
通过补充新功能,使学生能灵活运用相关知识,培养创新能力。
2. 内容及要求:1) 调试、运行模拟程序。
2) 发现并修改程序中不完善的地方。
3) 修改程序,使用随机数控制创建生产者和消费者的过程。
4) 在原来程序的基础上,加入缓冲区的写互斥控制功能,模拟多个进程存取一个公共缓冲区,当有进程正在写缓冲区时,其他要访问该缓冲区的进程必须等待,当有进程正在读取缓冲区时,其他要求读取的进程可以访问,而要求写的进程应该等待。
5) 完成1) 、2) 、3)功能的,得基本分,完成4)功能的加2 分,有其它功能改进的再加2 分3. 程序说明:本程序是模拟两个进程,生产者(producer)和消费者(Consumer)工作。
生产者每次产生一个数据,送入缓冲区中。
消费者每次从缓冲区中取走一个数据。
缓冲区可以容纳8 个数据。
因为缓冲区是有限的,因此当其满了时生产者进程应该等待,而空时,消费者进程应该等待;当生产者向缓冲区放入了一个数据,应唤醒正在等待的消费者进程,同样,当消费者取走一个数据后,应唤醒正在等待的生产者进程。
就是生产者和消费者之间的同步。
每次写入和读出数据时,都将读和写指针加一。
当读写指针同样时,又一起退回起点。
当写指针指向最后时,生产者就等待。
当读指针为零时,再次要读取的消费者也应该等待。
为简单起见,每次产生的数据为0-99 的整数,从0 开始,顺序递增。
两个进程的调度是通过运行者使用键盘来实现的。
4. 程序使用的数据结构进程控制块:包括进程名,进程状态和执行次数。
缓冲区:一个整数数组。
缓冲区说明块:包括类型,读指针,写指针,读等待指针和写等待指针。
5. 程序使用说明启动程序后,如果使用0键则运行一次生产者进程,使用'c'键则运行一次消费者进程。
通过屏幕可以观察到两个进程的状态和缓冲区变化的情况。
6. 实验流程图源程序#include<stdio.h>#include<stdlib.h> #include<string.h> #define PIPESIZE 8 enum Status { RUN, WAIT, READY };#define NORMAL 0 #define SLEEP 1 #define AWAKE 2 struct PCB{char name[3];enum Status status;int time;};struct waitqueue{struct PCB pcb;struct waitqueue *next;};struct PCB *producer; /* write wait point */struct PCB *consumer; /* read wait point */struct waitqueue *headerqueue, *tailqueue;int writeptr;int readptr;int writein, readout;int buffer[PIPESIZE];int empty, full;void runp(char in[3]), runc(char in[3]), print();int main(){char in[3]; writeptr = 0; readptr = 0; writein = 0; empty = PIPESIZE;full = 0;producer = (struct PCB *)malloc(sizeof(struct PCB)); consumer = (struct PCB*)malloc(sizeof(struct PCB)); headerqueue = (struct waitqueue *)malloc(sizeof(struct waitqueue)); headerqueue->next = NULL;tailqueue = headerqueue; producer->status = READY; consumer->status = WAIT;producer->time = consumer->time = 0;printf("Now starting the program!\n");printf("Press 'p1' to run PRODUCER1,Press 'p1' to run PRODUCER2 \n"); printf("Press 'c1' to run CONSUMER1,Press 'c2' to run CONSUMER2 \n"); printf("Press 'e' to exit from the program.\n");while (1){strcpy(in, "N");while (!strcmp(in, "N")){printf("\n");scanf("%s", in);if (strcmp(in, "e") && strcmp(in, "p1") && strcmp(in, "p2") && strcmp(in, "c1") && strcmp(in, "c2")){printf("error,please input again!!!\n");strcpy(in, "N");}}if ('p' == in[0]){runp(in);producer->time++;}else if ('c' == in[0]){runc(in);consumer->time++;}else{//printf("PRODUCER product %d times\n", producer->time);//printf("CONSUMER consumer %d times\n", consumer->time); exit(0);}print();printf("\n");}}void runp(char in[3]){if (full >= 8){struct waitqueue *search;search = headerqueue->next;while (search != NULL){ if (!strcmp(in, search->)) {printf("error!!!\n"); exit(1);}search = search->next;}producer->status = WAIT;printf("PRODUCER %s process is waiting, can't be scheduled.\n", in); struct waitqueue *p = (struct waitqueue *)malloc(sizeof(struct waitqueue));strcpy(p->, in);p->pcb.status = WAIT;p->pcb.time = producer->time + 1; p->next = NULL;tailqueue->next = p;tailqueue = p;full++;}else{writein = (writein + 1) % 100;producer->status = RUN;printf("run PRODUCER %s process . product %d ", in, writein); buffer[writeptr] = writein;if (empty>8){struct waitqueue *p; p = headerqueue->next; printf("run CONSUMER %s process. use %d", p->, buffer[writeptr]);if (tailqueue == p) {tailqueue = headerqueue;} headerqueue->next = p->next; free(p);consumer->status = WAIT; empty--;}else{if (writeptr > readptr){writeptr++;if (writeptr >= PIPESIZE){writeptr = 0;if (readptr == 0) producer->status = WAIT;else producer->status = READY;}}else{writeptr++;if (writeptr == readptr) producer->status = WAIT;else producer->status = READY;}consumer->status = READY;empty--;full++;}}}void runc(char in[3]){if (empty >= 8){struct waitqueue *search; search = headerqueue->next; while (search != NULL) { if (!strcmp(in, search->)){printf("error!!!\n");exit(1);}search = search->next;}consumer->status = WAIT;printf("CONSUMER %s is waiting, can't be scheduled.\n",in); struct waitqueue *p = (struct waitqueue *)malloc(sizeof(struct waitqueue));strcpy(p->, in);p->pcb.status = WAIT;p->pcb.time = consumer->time + 1;p->next = NULL; tailqueue->next = p; tailqueue = p; empty++;} else{ consumer->status = RUN; readout = buffer[readptr]; printf("run CONSUMER %s process. use %d ", in, readout); if (full>8){ writein = (writein + 1) % 100; buffer[writeptr] = writein; struct waitqueue *p; p = headerqueue->next;printf("run PRODUCER %s process. product %d ", p->,buffer[writeptr]);if (tailqueue == p) {tailqueue = headerqueue;} headerqueue->next = p->next; free(p);producer->status = WAIT; full--;writeptr++;readptr++;} else{ if (readptr > writeptr) {readptr++;if (readptr >= PIPESIZE){ readptr = 0; if (writeptr == 0) consumer->status = WAIT; elseconsumer->status = READY;} else consumer->status = READY;} else{readptr++;if (readptr == writeptr){consumer->status = WAIT; writeptr = readptr = 0;}else consumer->status = READY; producer->status = READY;}full--;empty++;}}}void print(){int i = 0;int j = 0;int low = 0;int high = 0;printf("\n");for (i; i < PIPESIZE; i++) printf(" ");printf("\n");if (readptr < writeptr){for (low = 0; low < readptr; low++)printf("| |");for (low = readptr; low < writeptr; low++){printf("| %2d |", buffer[low]);}for (low = writeptr; low <PIPESIZE; low++) printf("| |");}else if (readptr > writeptr){for (low = 0; low < writeptr; low++)printf("| %2d |", buffer[low]); for (low = writeptr; low < readptr; low++) printf("| |");for (low = readptr; low < PIPESIZE; low++) {printf("| %2d |", buffer[low]);}else if (producer->status == WAIT){for (low = 0; low < PIPESIZE; low++){printf("| %2d |", buffer[low]);}}else{for (low = 0; low < PIPESIZE; low++){printf("| |");}} printf("\n");for (i = 0; i < PIPESIZE; i++) printf(" ");printf("\n");if (producer->status == WAIT && NULL !=headerqueue->next){struct waitqueue *p = headerqueue->next;while (NULL != p){printf(" PRODUCER %s process are waitting\n", p->); p = p->next;}}else printf("PRODUCER ready \n");if (consumer->status == WAIT &&headerqueue->next){struct waitqueue *p = headerqueue->next;while (NULL != p){printf(" CONSUMER %s process are waitting\n", p->); p = p->next;}}else printf("CONSUMER ready\n ");} 实验结果:。