第4章图形认识初步检测题及答案
第四章 图形的初步认识《原创新课堂》2016秋单元检测题(含答案)

第4章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.数轴是一条()A.射线B.直线C.线段D.以上都是2.下列几何图形是六棱柱的是()3.借助一副三角尺,你能画出下面度数为()的角.A.65°B.75°C.85°D.95°4.(2016·济宁)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(D)5.如图,已知AD>BC,则AC与BD的关系()A.AC>BD B.AC=BD C.AC<BD D.无法确定6.(2016春·曹县校级月考)如果OC是∠AOB的平分线,则下列结论不正确的是() A.∠AOC=∠BOC;B.2∠AOC=∠AOB;C.∠AOB=2∠BOC;D.∠AOB=∠AOC 7.下列说法错误的是()A.两个互余的角都是锐角B.一个角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.互为补角的两个角不可能都是钝角8.(2016·资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()9.(2015秋·开江县期末)用一个平面截去正方体的一个角,则截面不可能是( )A .等腰直角三角形B .等腰三角形C .锐角三角形D .等边三角形10.(2016春·盐城校级月考)下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分) 11.写出下列立体图形的具体名称:12.判断如图所示的图形中球体有______________;多面体有______________.13.(2016春·重庆校级月考)如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由____个小正方形搭建而成.第14题图)14.(2016春·曹县校级月考)已知,如图,点A ,O ,C 在同一直线上,OE 平分∠AOB ,OF平分∠BOC ,则∠EOF =____°.15.P 为线段AB 上一点,且AP =25AB ,M 是AB 的中点,若PM =2 cm ,则AB =____cm .16.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画____条.17.(2016·萧山区模拟)如图,是一个包装盒的三视图,则这个包装盒的表面积是___________________.(结果保留π)18.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为____.三、解答题(共66分)19.(8分)已知平面上四点A,B,C,D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB,CD相交于点E;(4)连结AC,BD相交于点F.20.(8分)如图,(1)∠AOC是哪两个角的和;(2)∠AOB是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC与∠DOB相等吗?21.(8分)(2015秋·南江县期末)如图,由若干个完全相同的小正方体堆成的一个几何体放置在平整的地面上.(1)请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上红色的漆,则在所有的小正方体中,有__1__个小正方体只有一个面是红色,有__2__个小正方体只有两个面是红色,有__3__个小正方体只有三个面是红色.22.(10分)已知如图,B,C两点把线段AD分成2∶4∶3三部分,CD=6 cm.(1)求AD的长;(2)若M是AD的中点,求线段MC的长.23.(10分)一个正方体六个面分别标有字母A,B,C,D,E,F,其展开图如图所示,已知:A=x2-2xy,B=A-C,C=3xy+y2,若该正方体相对两个面上的多项式的和相等,试用x,y的代数式表示多项式D,并求当x=-1,y=-2时,多项式D的值.24.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOC的度数;(2)通过计算判断OE是否平分∠BOC.25.(12分)(2015秋·开江县期末)如图①,已知线段AB=16 cm,点C为线段AB上的一个动点,点D,E分别是AC和BC的中点.(1)若点C恰为AB的中点,求DE的长;(2)若AC=6 cm,求DE的长;(3)试说明不论AC取何值(不超过16 cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=130°,过角的内部任一点C画射线OC,若OD,OE分别平分∠AOC和∠BOC,试说明∠DOE的大小与射线OC的位置无关.参考答案一、选择题(每小题3分,共30分)1.数轴是一条(B)A.射线B.直线C.线段D.以上都是2.下列几何图形是六棱柱的是(D)3.借助一副三角尺,你能画出下面度数为(B)的角.A.65°B.75°C.85°D.95°4.(2016·济宁)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是(D)5.如图,已知AD>BC,则AC与BD的关系(A)A.AC>BD B.AC=BD C.AC<BD D.无法确定6.(2016春·曹县校级月考)如果OC是∠AOB的平分线,则下列结论不正确的是(D) A.∠AOC=∠BOC;B.2∠AOC=∠AOB;C.∠AOB=2∠BOC;D.∠AOB=∠AOC 7.下列说法错误的是(B)A.两个互余的角都是锐角B.一个角的补角大于这个角本身C.互为补角的两个角不可能都是锐角D.互为补角的两个角不可能都是钝角8.(2016·资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是(C)9.(2015秋·开江县期末)用一个平面截去正方体的一个角,则截面不可能是( A )A .等腰直角三角形B .等腰三角形C .锐角三角形D .等边三角形10.(2016春·盐城校级月考)下列说法:①对顶角相等;②过直线外一点有且只有一条直线与这条直线平行;③直线外一点与直线上各点连接的所有线段中,垂线段最短;④一个角的余角比它的补角大90°.其中正确的个数为( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分) 11.写出下列立体图形的具体名称:12.判断如图所示的图形中球体有__②③④__;多面体有__①⑤⑦__.13.(2016春·重庆校级月考)如图是由若干个小正方形搭建的几何体的三视图,那么此几何体由__6__个小正方形搭建而成.第14题图)14.(2016春·曹县校级月考)已知,如图,点A ,O ,C 在同一直线上,OE 平分∠AOB ,OF平分∠BOC ,则∠EOF =__90__°.15.P 为线段AB 上一点,且AP =25AB ,M 是AB 的中点,若PM =2 cm ,则AB =__20__cm .16.经过一点A 画直线,可以画__无数__条;过不在同一直线上三点中的任意两点画直线,一共可能画__3__条.17.(2016·萧山区模拟)如图,是一个包装盒的三视图,则这个包装盒的表面积是__600π_cm 2__.(结果保留π)18.有一个圆形钟面,在7点30分时,时针与分针所成角的大小为__45°__.三、解答题(共66分)19.(8分)已知平面上四点A,B,C,D,如图:(1)画直线AB;(2)画射线AD;(3)直线AB,CD相交于点E;(4)连结AC,BD相交于点F.解:略20.(8分)如图,(1)∠AOC是哪两个角的和;(2)∠AOB是哪两个角的差;(3)如果∠AOB=∠COD,那么∠AOC与∠DOB相等吗?解:(1)∠AOC是∠AOB与∠BOC的和(2)∠AOC与∠BOC的差或∠AOD与∠BOD的差(3)∠AOC=∠BOD.理由如下:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC.即∠AOC=∠BOD21.(8分)(2015秋·南江县期末)如图,由若干个完全相同的小正方体堆成的一个几何体放置在平整的地面上.(1)请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上红色的漆,则在所有的小正方体中,有__1__个小正方体只有一个面是红色,有__2__个小正方体只有两个面是红色,有__3__个小正方体只有三个面是红色.解:(1)如图所示:(2)只有一个面是红色的应该是第一列正方体中最底层中间那个,共1个;有2个面是红色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是红色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个.故答案为:1,2,322.(10分)已知如图,B ,C 两点把线段AD 分成2∶4∶3三部分,CD =6 cm .(1)求AD 的长;(2)若M 是AD 的中点,求线段MC 的长.解:(1)∵AB ∶BC ∶CD =2∶4∶3,∴CD =39AD =13AD ,∵CD =6,∴AD =3CD =18 cm(2)由(1)知AD =18,∵M 是AD 的中点,∴MD =12AD =12×18=9 cm ,∴MC =MD -CD =9-6=3 cm23.(10分)一个正方体六个面分别标有字母A ,B ,C ,D ,E ,F ,其展开图如图所示,已知:A =x 2-2xy ,B =A -C ,C =3xy +y 2,若该正方体相对两个面上的多项式的和相等,试用x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.解:由图形可知A 与C 相对,B 与D 相对,∴B +D =A +C ,又∵A =x 2-2xy ,B =A -C ,C =3xy +y 2,则D =A +C -B =A +C -(A -C )=2C =2(3xy +y 2)=6xy +2y 2,当x =-1,y =-2时,6xy +2y 2=12+8=20,故当x =-1,y =-2时,多项式D 的值是2024.(10分)如图,O 为直线AB 上一点,∠AOC =50°,OD 平分∠AOC ,∠DOE =90°,(1)求∠BOC 的度数;(2)通过计算判断OE 是否平分∠BOC .解:(1)∠BOC =180°-∠AOC =180°-50°=130°(2)∵OD 平分∠AOC ,∴∠COD =12∠AOC =12×50°=25°,∵∠DOE =90°,∴∠COE =90°-∠COD =90°-25°=65°,∴∠BOE =∠BOC -∠COE =130°-65°=65°,∴∠COE =∠BOE =65°,因此OE 平分∠BOC25.(12分)(2015秋·开江县期末)如图①,已知线段AB =16 cm ,点C 为线段AB 上的一个动点,点D ,E 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求DE 的长;(2)若AC =6 cm ,求DE 的长;(3)试说明不论AC 取何值(不超过16 cm ),DE 的长不变;(4)知识迁移:如图②,已知∠AOB =130°,过角的内部任一点C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC ,试说明∠DOE 的大小与射线OC 的位置无关.解:(1)∵点C 恰为AB 的中点,∴AC =BC =12AB =8 cm ,∵点D ,E 分别是AC 和BC 的中点,∴DC =12AC =4 cm ,CE =12BC =4 cm ,∴DE =8 cm (2)∵AB =16 cm ,AC =6 cm ,∴BC =10 cm ,由(1)得,DC =12AC =3 cm ,CE =12CB =5 cm ,∴DE =8 cm (3)∵点D ,E 分别是AC 和BC 的中点,∴DC =12AC ,CE =12BC ,∴DE =12(AC +BC )=12AB =8,∴不论AC 取何值(不超过16 cm ),DE 的长不变 (4)∵OD ,OE 分别平分∠AOC 和∠BOC ,∴∠DOC =12∠AOC ,∠EOC =12∠BOC ,∴∠DOE =∠DOC +∠EOC =12(∠AOC +∠BOC )=12∠AOB =65°,∴∠DOE =65°与射线OC 位置无关。
《易错题》人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(包含答案解析)(3)

一、选择题1.(0分)[ID :68657]如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.(0分)[ID :68652]已知线段AB 、CD ,<AB CD ,如果将AB 移动到CD 的位置,使点A 与点C 重合,AB 与CD 叠合,这时点B 的位置必定是( ) A .点B 在线段CD 上(C 、D 之间) B .点B 与点D 重合C .点B 在线段CD 的延长线上D .点B 在线段DC 的延长线上3.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D4.(0分)[ID :68648]图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A 沿着正方体的棱长爬行到点B 的长度为( )A .0B .1C .2D .35.(0分)[ID :68636]平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ).A .点C 在线段AB 上 B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定6.(0分)[ID :68633]已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm7.(0分)[ID :68632]如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个8.(0分)[ID :68629]如图∠AOC=∠BOD=90︒,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD ;乙:图中小于平角的角有6个;丙:∠AOB+∠COD =90︒;丁:∠BOC+∠AOD = 180︒ .其中正确的结论有( ).A .4个B .3个C .2个D .1个9.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°10.(0分)[ID :68626]如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOC C .∠BOE=2∠CODD .∠DOE 的度数不能确定11.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒12.(0分)[ID :68598]如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定13.(0分)[ID:68583]已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.4cm或10cm D.6cm或10cm 14.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′15.(0分)[ID:68572]下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.二、填空题16.(0分)[ID:68715]长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π).17.(0分)[ID:68711]如图,能用O,A,B,C中的两个字母表示的不同射线有____条.18.(0分)[ID:68696]下午3:40时,时钟上分针与时针的夹角是_________度.19.(0分)[ID:68694]如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.20.(0分)[ID:68689]如图所示,填空:∠=∠+_________;(1)AOB AOC∠=∠-_________=_________-_________;(2)COB COD∠+∠-∠=_________.(3)AOB COD AOD21.(0分)[ID:68686]用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n棱柱,最多可以截得________边形.22.(0分)[ID :68683]把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .23.(0分)[ID :68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.24.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
第4章 《几何图形初步》检测题

第四章:《几何图形初步》检测题一.选择题(共10小题)1.下列图形不能围成正方体的是()A B C D 2.下列说法正确的是()A.平角是一条直线B.反向延长射线OA就得到一个平角C.周角是一条射线D.画一条射线就是一个周角3.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.立方体B.圆柱C.圆锥D.三棱柱4.下列说法正确的是()A.直线BA与直线AB是同一条直线B.直线AB的长为2cmC.射线BA与射线AB是同一条射线D.延长直线AB5.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短6.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm7.下列说法中,正确的有()①角的大小随边的长度变化而变化②一个有理数不是整数就是分数③若AD是∠BAC的平分线,则∠BAD=∠DAC④若一个角既有余角又有补角,则它的补角一定比它的余角大.A.1个B.2个C.3个D.4个8.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC 的中点,则线段MN的长度是()A.7cm B.3cm C.7cm或3cm D.5cm9.如图是一个正方体的表面展开图,则这个正方体是()A B C.D.10.如图,一个长方体木块的长、宽、高分别为5cm、4cm、3cm.有一只蚂蚁从A点出发沿着长方体的棱爬行,最后又回到A点(爬行的路线不重复),则蚂蚁最多爬行()A.24cm B.25cm C.34cm D.48cm二.填空题(共6小题)11.一个棱柱有8个面,则这个棱柱有___________条侧棱.12.从点A看点B是南偏北30°,则点B看点A是________________.13.长方形硬纸片绕它的一边所在的直线旋转一周,形成的几何体是,这说明___________.14.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是.15.将两个同样大小的正方体粘合成一个长方体,粘合成的长方体的表面积是60cm2,那么正方体的每个面的面积是cm2.16.如图,一个边长为2的正方形和等腰直角三角形的一边重合,组成了一个平面图形,如果将它绕AB所在直线按逆时针方向旋转180°,得到一个几何体,则这个几何体的体积为.=h)(圆锥的体积公式为:V圆锥17.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有种.三.解答题(共9小题)18.如下图,第一行的图形绕虚线旋转一周,便形成第二行的某个几何体,请你用线连起来.19.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.(3)点F在直线AB上.20.在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是;点B对应的数是.(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.21.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,AB=10.(1)画出AB上高CD;※(2)求CD的长.22.如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出3种与此不同的展开图.23.一张长方形纸片宽为4厘米,长为6厘米.如果把这张长方形纸片绕它的长边所在直线旋转一周,得到一个几何体,请说出这个几何体的名称,并计算出它的表面积.参考答案与试题解析一.选择题(共10小题)1.如图,一个长方体木块的长、宽、高分别为5cm、4cm、3cm.有一只蚂蚁从A点出发沿着长方体的棱爬行,最后又回到A点(爬行的路线不重复),则蚂蚁最多爬行()A.24cm B.25cm C.34cm D.48cm【分析】根据长方体长、宽、高的关系,多走长宽,少走高,可得路线A﹣B﹣C﹣D1﹣C1﹣B1﹣A1﹣A,可得答案.【解答】解:如图沿着A﹣B﹣C﹣D﹣﹣D1﹣C1﹣B1﹣A1﹣A,5+4+5+3+5+4+5+3=34(cm).故选:C.【点评】本题考查了认识立方体,走四个长,三个宽,两个高,得出答案.2.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.【分析】同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,依据折叠后所得到正方体,即可得到结论.【解答】解:A选项中,折叠后所得到正方体中,三个面的对角线交于一个顶点,不合题意;B选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;C选项中,折叠后所得到正方体中,三个面的对角线组成一个三角形,符合题意;D选项中,折叠后所得到正方体中,三个面的对角线中一条与其它两条无公共点,不合题意;故选:C.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.3.下列图形不能围成正方体的是()A.B.C.D.【分析】依据正方体的展开图的特征,即可得到不能围成正方体的图形.【解答】解:A选项中,折叠时有2个面重合,不能围成正方体;而B,C,D选项中,能围成正方体.故选:A.【点评】本题主要考查了展开图折成几何体,解题时注意:当六个正方形组成“田”字,“凹”字状时,不能折成正方体.4.如图,是一个正方体纸盒的展开图,将它折成正方体后与“美”字相对的面上的字是()A.我B.丽C.汇D.川【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“美”字相对的面上的汉字是“川”.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5.用一个平面去截一个几何体,截面形状为四边形,则这个几何体不可能为()A.立方体B.圆柱C.圆锥D.三棱柱【分析】根据圆锥、圆柱、棱柱的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.【解答】解:A、用一个平面去截一个立方体,得到的图形可能是四边形,故A选项不合题意;B、用一个平面去截一个圆柱,得到的图形可能是四边形,故B选项不合题意;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项符合题意;D、用一个平面去截一个三棱柱,得到的图形可能是四边形,故D选项不合题意;故选:C.【点评】本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.6.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2cm【分析】依据直线的概念、线段的概念以及射线的概念进行判断即可.【解答】解:A.直线BA与直线AB是同一条直线,故本选项正确;B.延长线段AB,故本选项错误;C.射线BA与射线AB不是同一条射线,故本选项错误;D.线段AB的长为2cm,故本选项错误;故选:A.【点评】本题主要考查了直线、射线和线段的概念,射线是直线的一部分,注意:用两个字母表示时,端点的字母放在前边.7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:D.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm【分析】由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.【解答】解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选:A.【点评】首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.10.下列说法中,正确的有()①角的大小随边的长度变化而变化②若AD是∠BAC的平分线,则∠BAD=∠DAC③一个有理数不是整数就是分数④若一个角既有余角又有补角,则它的补角一定比它的余角大.A.1个B.2个C.3个D.4个【分析】根据角的定义和角平分线的定义可以判断①和②的正确性,再根据有理数的概念可以判断③的正确性,由角的补角和余角的定义可判断④的正确性.【解答】解:①角的大小与边的长短无关,故角的大小随边的长度变化而变化说法错误;②根据角平分线的定义:角平分线将一个角分成大小相等的两个角,若AD是∠BAC的平分线,则∠BAD=∠DAC,说法正确;③有理数包括整数和分数;故一个有理数不是整数就是分数,③说法正确;④一个角有余角,说明这个角是锐角,所以它的补角一定比它的余角大,故④正确.故选:C.【点评】本题主要考查的是角的定义和角平分线的定义,以及理数的概念和角的补角、余角的定义,掌握概念是解题的关键.二.填空题(共6小题)11.五棱柱有7个面.【分析】据五棱柱有2个底面,5个侧面,可得五棱柱的面数.【解答】解:∵五棱柱有2个底面,5个侧面,∴五棱柱的面数为7.故答案为:7.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.12.长方形硬纸片绕它的一边所在的直线旋转一周,形成的几何体是圆柱,这说明面动成体.【分析】一个长方形围绕它的一条边旋转一周,根据面动成体的原理即可求解.【解答】解:一个长方形绕着它的一条边所在的直线旋转一周,得到的几何体是圆柱,说明面动成体.故答案为:圆柱,面动成体.【点评】本题考查了平面图形旋转可以得到立体图形,体现了面动成体的运动观点,注意点动成线,线动成面,面动成体.13.将两个同样大小的正方体粘合成一个长方体,粘合成的长方体的表面积是60cm2,那么正方体的每个面的面积是6cm2.【分析】设正方体的每个面的面积为x,根据粘合后有两个面重合,在长方体的内部,然后列出方程求解即可.【解答】解:如图,设正方体的每个面的面积为x ,∵粘合后有两个面重合,∴长方体的表面积比两个正方体的表面积减少两个面,∴(6×2﹣2)x=60,解得x=6cm 2.故答案为:6.【点评】本题考查了几何体的表面积,明确粘合后减少两个面是解题的关键,作出图形更形象直观.14.如图,已知BC 是圆柱的底面直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,若展开图中,金属丝与底面周长围成的图形的面积是5πcm 2,该圆柱的侧面积是 10π cm 2.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题. 【解答】解:如图,圆柱的侧面展开图为长方形,AC=A'C ,且点C 为BB'的中点,∵AA'∥BB',四边形ABB'A'是矩形,∴S △AA'C =S 长方形ABB'A ',又∵展开图中,S △AA'C =5πcm 2,∴圆柱的侧面积是10πcm 2.故答案为:10π.【点评】此题主要考查圆柱的展开图,以及学生的立体思维能力.解题时注意:圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形15.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有2种.【分析】利用正方体的展开图即可解决问题,共2种.【解答】解:如图所示,不同的选法有2处,故答案为:2.【点评】本题主要考查了正方体的展开图.解题的关键是掌握四棱柱的特征及正方体展开图的各种情形.16.已知正方体的一个平面展开图如图所示,则在原正方体上“明”的对面是建.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在此正方体上与“明”字相对的面上的汉字是“建”.故答案为:建.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.三.解答题(共9小题)17.如下图,第一行的图形绕虚线旋转一周,便形成第二行的某个几何体,请你用线连起来.【分析】根据面动成体:梯形绕底边旋转得中间圆柱、上下圆锥,半圆绕直径旋转得球,矩形绕边旋转得圆柱,直角三角形绕直角边旋转得圆锥,可得答案.【解答】解:第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来为:【点评】本题考查了点、线、面、体,熟记各种平面图形旋转得到的立体图形是解题关键.18.一张长方形纸片宽为4厘米,长为6厘米.如果把这张长方形纸片绕它的长边所在直线旋转一周,得到一个几何体,请说出这个几何体的名称,并计算出它的表面积.【分析】点动成线,线动成面,面动成体.依据圆柱的表面积等于底面面积加侧面面积,进行计算即可.【解答】解:把长方形纸片绕它的长边所在直线旋转一周,得到一个高为6厘米,底面半径为4厘米的圆柱,∴表面积=2×π×42+6×2π×4=32π+48π=80π(平方厘米).【点评】本题主要考查了圆柱的表面积,圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高).19.如图是一个棱柱形状的食品包装盒的侧面展开图.(1)请写出这个包装盒的几何体的名称:三棱柱;(2)若AC=3,BC=4,AB=5,DF=6,计算这个多面体的侧面积.【分析】(1)根据图示可知有三个长方形和2个三角形组成,故可知是三棱柱;(2)这个多面体的侧面积是三个长方形的面积和.【解答】解:(1)共有3个长方形组成侧面,2个三角形组成底面,故是三棱柱;故答案为:三棱柱;(2)∵AB==5,AD=3,BE=4,DF=6∴侧面积为3×6+5×6+4×6=18+30+24=72.【点评】主要考查了三棱柱的展开图与几何体之间的联系和侧面积的求法.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.20.如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.【分析】(1)依据直线,射线以及线段的定义,即可画出直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E即可.【解答】解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.【点评】此题主要考查了基本作图中的线段、射线、直线作法等,解答此题,要熟悉直线、射线、线段的概念,并熟悉基本工具的用法.21.在一条不完整的数轴上,从左到右有A,B,C三点,若以点B为原点,则点A表示的数是﹣3;点C表示的数是2;(1)若以点C为原点,则点A对应的数是﹣5;点B对应的数是﹣2.(2)A,B两点间的距离是3;B,C两点间的距离是2;A,C之间的距离是5.(3)当原点在点B处时,三个点到原点的距离之和最小,最小距离是5.【分析】(1)根据数轴上A、B、C三点的位置,可得A和B表示的数;(2)根据数轴上两点的距离公式=|x1﹣x2|,可得结论;(3)根据两点的距离公式分情况计算可得结论.【解答】解:(1)若以点C为原点,则点A对应的数是﹣5,点B对应的数是﹣2;故答案为:﹣5;﹣2.(2)∵点B为原点,则点A表示的数是﹣3;点C表示的数是2;∴AB=0﹣(﹣3)=3,BC=2﹣0=2,AC=2﹣(﹣3)=5,∴A,B两点间的距离是3;B,C两点间的距离是2,A,C之间的距离是5,故答案为:3;2;5.(3)①当原点在点A处时,三个点到原点的距离之和=0+3+5=8,②当原点在点B处时,三个点到原点的距离之和=3+0+2=5,③当原点在点C处时,三个点到原点的距离之和=5+2+0=7,∴当原点在点B处时,三个点到原点的距离之和最小,最小距离是5;故答案为:点B;5.【点评】本题考查了数轴和两点的距离,熟练掌握数轴上两点的距离是关键.22.已知:∠AOB及边OB上一点C.求作:∠OCD,使得∠OCD=∠AOB.要求:1.尺规作图,保留作图痕迹,不写作法;(说明:作出一个即可)2.请你写出作图的依据.【分析】(1)以点C为顶点,作∠OCD=∠COA,交AO于点D;(2)作一个角等于已知角的依据为SSS.【解答】解:(1)如图所示,∠OCD即为所求;(2)作图的依据为SSS.【点评】本题主要考查了基本作图,解决此类题目的关键是熟悉基本几何图形的性质,基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.23.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,AB=10.(1)画出AB上高CD;(2)求CD的长.【分析】(1)过点A作AB的垂线段CD即可;(2)依据直角△ABC中,∠C=90°,CD⊥AB,即可得到AC×BC=AB×CD,进而得出CD的长.【解答】解:(1)如图所示,CD即为AB上的高;(2)∵直角△ABC中,∠C=90°,CD⊥AB,∴AC×BC=AB×CD,即CD===4.8.【点评】本题主要考查了三角形的面积,解决问题的关键是运用面积法求得直角三角形斜边上的高.24.如图所示的是一个无盖正方体形状盒子的表面沿某些棱剪开,展成一个平面图形后,在3×5方格中,画出的一种平面展开图.请在答题卡上的方格中画出4种与此不同的展开图.【分析】由平面图形的折叠及无盖正方体的展开图就可以求出结论.【解答】解:将一个无盖正方体形状盒子的表面沿某些棱展开后得到的平面图形是:【点评】本题考查了正方体的平面展开图,解答时熟悉四棱柱的特征及无盖正方体展开图的各种情形是关键.25.用圆规、直尺作图,不写作法,但要保留作图痕迹.一个缺角的三角形残片如图所示,请你利用尺规画一个与它一样的(全等的)三角形.【分析】作∠C=∠A,作CD=AB,再作∠CDE=∠B,交于点E,依据ASA即可得到△CDE 与原三角形全等.【解答】解:如图所示,△CDE即为所求.【点评】此题考查作图﹣应用与设计作图,熟记全等三角形的判定方法和基本作图的思路与方法是解题的关键.。
《第4章几何图形初步》单元测试含答案解析

《第4章几何图形初步》一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为度.10.一个角的补角等于它的余角的6倍,则这个角的度数为.11.13°30'=°;(2)0.5°='= ″.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画条直线.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?《第4章几何图形初步》参考答案与试题解析一、选择题1.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.2.下列图形中,∠1和∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】根据余角、补角的定义计算.【解答】解:根据余角的定义,两角之和为90°,这两个角互余.D中∠1和∠2之和为90°,互为余角.故选D.【点评】根据余角的定义来判断,记住两角之和为90°,与两角位置无关.3.如图,点A位于点O的()方向上.A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°【考点】方向角.【专题】应用题.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:点A位于点O的北偏西65°的方向上.故选B.【点评】结合图形,正确认识方位角是解决此类问题的关键.4.如图所示,一个斜插吸管的盒装饮料从正面看的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到一个矩形右上角有一条线段,故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线【考点】线段的性质:两点之间线段最短.【分析】根据直线的性质,线段的性质,以及线段的大小比较对各选项分析判断即可得解.【解答】解:A、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项错误;B、把弯曲的公路改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项正确;C、利用圆规可以比较两条线段的大小关系,是线段的大小比较,故本选项错误;D、植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故本选项错误.故选B.【点评】本题考查了线段的性质,直线的性质,是基础题,熟记各性质是解题的关键.6.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60° B.80° C.120°D.150°【考点】钟面角.【专题】计算题.【分析】早上8时,时针指向8,分针指向12.钟表12个数字,每相邻两个数字之间的夹角为30°.分针与时针之间有四个格,可求解.【解答】解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.7.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60° B.75° C.90° D.95°【考点】翻折变换(折叠问题).【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等.【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选C.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.8.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活【考点】专题:正方体相对两个面上的文字.【分析】根据正方形展开图相对的面应相隔一个面作答.【解答】解:和“崇”相隔一个面的面为“低”,故选A.【点评】解决本题的关键是理解正方体侧面展开图相对的面之间应相隔一个面.二、填空题9.已知∠A与∠B互余,若∠A=70°,则∠B的度数为20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.10.一个角的补角等于它的余角的6倍,则这个角的度数为72°.【考点】余角和补角.【分析】利用题中的关系“一个角的补角等于这个角的余角的6倍”作为相等关系列方程求解即可.【解答】解:设这个角为x,则它的补角为(180°﹣x)余角为(90°﹣x),由题意得:180°﹣x=6(90°﹣x),180°﹣x=540°﹣6x,6x﹣x=540°﹣180°,5x=360°,x=72°.答:这个角的度数为72°.故答案为:72°.【点评】主要考查了利用余角和补角的定义和一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.互为余角的两角的和为90°,互为补角的两角之和为180度.11.13°30'=13.5 °;(2)0.5°=30 '= 1800 ″.【考点】度分秒的换算.【分析】(1)根据度分秒的换算,将30′换算成0.5°即可得出结论;(2)根据度分秒的换算,将0.5°换算成30′,再将30′换算成1800″即可得出结论.【解答】解:(1)13°30'=13°+()°=13.5°;(2)0.5°=(0.5×60)′=30′=(30×60)″=1800″.故答案为:(1)13.5;(2)30;1800.【点评】本题考查了度分秒的换算,熟练的掌握度分秒的进率是解题的关键.12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条条直线.【考点】直线、射线、线段.【专题】规律型.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.三、解答题(共52分)13.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【考点】度分秒的换算.【专题】计算题.【分析】(1)先进行度、分、秒的除法计算,再算加法.(2)先进行度、分、秒的乘法计算,再算减法.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.【点评】此类题是进行度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可.14.在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?【考点】方向角.【分析】分别建立找到图书馆在学校的东北方向,在医院的南偏东60°方向,两直线的交点即是图书馆的位置.【解答】解:在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AO,在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BO,则AO与BO的交点为点O,则点O就是图书馆的位置.【点评】此题考查了方向角的知识,注意东北方向指的是东偏北45°这个知识点,难度一般.15.已知:C为线段AB的中点,D在线段BC上,且AD=7,BD=5,求:线段CD的长度.【考点】比较线段的长短.【专题】计算题.【分析】根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.【解答】解:∵AD=7,BD=5∴AB=AD+BD=12∵C是AB的中点∴AC=AB=6∴CD=AD﹣AC=7﹣6=1.【点评】此题主要考查学生对比较线段的长短的掌握情况,比较简单.16.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.【考点】角的计算.【专题】计算题.【分析】设∠COD=x,则∠AOD可表示为60°﹣x,于是∠AOB=90°+60°﹣x=150°﹣x,再根据∠AOB 是∠DOC的3倍得到150°﹣x=3x,解得x=37.5°,然后计算3x即可.【解答】解:设∠COD=x,∵∠AOC=60°,∠BOD=90°,∴∠AOD=60°﹣x,∴∠AOB=90°+60°﹣x=150°﹣x,∵∠AOB是∠DOC的3倍,∴150°﹣x=3x,解得x=37.5°,∴∠AOB=3×37.5°=112.5°.【点评】本题考查了角的计算:会利用角的倍、分、差进行角度计算.17.把一副三角板的直角顶点O重叠在一起.(1)如图(1),当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图(2),当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?【考点】角平分线的定义.【分析】已知一副三角板的直角顶点O重叠在一起,就是已知图形中的两个三角形各角的度数,这样重叠时存在的角的关系是:∠AOD=∠AOB+∠COD﹣∠COB.【解答】解:(1)∵OB平分∠COD,∴∠COB=∠BOD=45°,∴∠COA=90°﹣45°=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°,∴∠AOD和∠BOC的和是180°.(2)∵∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC∴∠AOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=90°+90°=180°.∴∠AOD和∠BOC的和是180°.【点评】根据角平分线定义得出所求角与已知角的关系转化求解.注意一副三角板的直角顶点O重叠在一起时角的关系.。
《常考题》人教版初中七年级数学上册第四章《几何图形初步》模拟检测卷(含答案解析)

一、选择题1.(0分)[ID :68656]给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 3.(0分)[ID :68641]如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-4.(0分)[ID :68640]α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 5.(0分)[ID :68637]观察下列图形,其中不是正方体的表面展开图的是( ) A . B .C .D .6.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°7.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 8.(0分)[ID :68609]平面内有两两相交的七条直线,若最多有m 个交点,最少有n 个交点,则m+n 等于( )A .16B .22C .20D .189.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 11.(0分)[ID :68593]如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 12.(0分)[ID :68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种13.(0分)[ID :68579]如图,图中射线、线段、直线的条数分别为( )A.5,5,1 B.3,3,2C.1,3,2 D.8,4,114.(0分)[ID:68576]下列平面图形中不能围成正方体的是()A.B.C.D.15.(0分)[ID:68559]如图,点O在直线AB上,图中小于180°的角共有()A.10个B.9个C.11个D.12个二、填空题16.(0分)[ID:68718]线段AB=12cm,点C在线段AB上,且AC=13BC,M为BC的中点,则AM的长为_______cm.17.(0分)[ID:68695]已知,如图,点M,N分别是线段AB,BC的中点,且9MN=,线段1143BD AB CD==,则线段BD的长为________.18.(0分)[ID:68683]把棱长为1cm的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm.19.(0分)[ID:68675]下面的图形是某些几何体的表面展开图,写出这些几何体的名称.20.(0分)[ID :68668]钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.21.(0分)[ID :68663]将下列几何体分类,柱体有:______(填序号).22.(0分)[ID :68662]8点15分,时针与分针的夹角是______________。
第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。
中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。
人教版七年级上第四章几何图形初步点、线、面、体同步练习题含答案

【分析】利用雨刷可看成线,扇面是面,即可求出答案.
【详解】汽车的雨刷在挡风玻璃上画出一个扇面,这说明线动成面的数学原理.
故答案为:线动成面.
【点睛】本题考查了点,线,面、体,此题较简单,解题时要灵活应用点、线、面、体之间的关系.
12.②
【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看到的图形.
8.由4个面围成;面与面相交形成6条线,直线有5条,曲线有1条.
【分析】由题意直接根据立体图形的基本知识结合图形进行分析即可得出答案.
【详解】解:由图可知,该几何体由4个面围成;
面与面相交形成6条线,直线有5条,曲线有1条.
【点睛】本题考查认识立体图形的知识,比较简单,注意基本知识的掌握.
9.见解析.
12.将图所示的Rt△ABC绕AB旋转一周所得的几何体的主视图是图中的________(只填序号).
参考答案:
1.C
【分析】观察截面形状可发现,长方体内部的圆自上而下由大圆逐渐变成小圆、点,符合圆锥截面的性质.
【详解】解:观察截面形状可知,这个长方体的内部构造是长方体中间有一圆锥状空洞,
故选:C.
【点睛】本题考查了截一个几何体,解答的关键是熟悉常见的几何体的截面,由截面的形状想象复杂几何体的组成.
【详解】解:Rt△ABC绕斜边AB旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图②.
故答案为②.
【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键.
【分析】根据生活中常见的几何体的特征进行求解即可得到答案.
七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。
我们把这些图形称为几何图形。
1)立体图形长方体、正方体、球、圆柱、圆锥等。
2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。
注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。
4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。
现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。
(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《图形认识初步》综合测试题
一、选择题(每小题3分,共30分)
1.下列空间图形中是圆柱的为()
2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()
A.①②③④B.①③②④C.②④①③D.④③①②
3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()
4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()
5.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用事实“两点之间,线段最短”来解释的现象有()
A.①②B.①③C.②④D.③④
A
C D
第2题图
A. B. C. D.
B
A
C
图2
A B C D
图 3
6.已知∠α=35°19′,则∠α的余角等于( )
A .144°41′
B .144°81′
C . 54°41′
D . 54°81′
7.线段12AB cm =,点C 在AB 上,且
1
3
AC BC =,M 为BC 的中点,则
AM 的长为
(
)
A.4.5cm
B. 6.5cm
C. 7.5cm
D. 8cm
8.如图,下列说法中错误的是( )
A.OA 方向是北偏东30º B.OB 方向是北偏西15º C.OC 方向是南偏西25º D.OD 方向是东南方向
二、填空题(每小题2分,共20分)
1.长方体由 个面, 条棱, 个顶点.
2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.
3.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线_________条。
4.(1)=0
48.32 度 分 秒。
(2)//
/
422372= 度。
5.如图,OB 平分∠AOC ,∠AOD=78°,∠BOC=20°,则∠COD 的度数为_______.
6.把一张长方形纸条按图的方式折叠后,量得∠AOB '=110°,则∠B 'OC=______. 7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.
O A
B
C
D
北
东
南
西
︒
75︒
30︒
45︒
25第10题图
8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面...
涂色的小立方体共有 个.
三、解答题 1.计算:
(1)22°18′×5;(2)90°-57°23′27″.
2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-3
1
∠β的值
3. 一个角的补角加上0
10后等于这个角的余角的3倍,求这个角.
4.⑴已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,求MN 的长度。
⑵根据⑴的计算过程与结果,设AC +BC =a ,其它条件不变,你能猜想出MN 的长度吗?请用一句简洁的语言表达你发现的规律.
⑶若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论又如何?请说明理由。
5.如图,O 为直线AB 上一点,∠AOC=50°,OD 平分∠AOC ,
∠DOE=90°
(1)请你数一数,图中有多少个小于平角的角; (2)求出∠BOD 的度数;
(3)请通过计算说明OE 是否平分∠BOC.
6.下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的图形。
仔细观察图形可知:
图1中有1块黑色的瓷砖,可表示为1=
2
1
)11(⨯+; 图2中有3块黑色的瓷砖,可表示为1+2=2
2
)21(⨯+;
图3中有6块黑色的瓷砖,可表示为1+2+3=2
3
)31(⨯+;
实践与探索:
(1)请在图4中的虚线框内画出第4个图形
(2)第10个图形有 块黑色的瓷砖;第n 个图形有 块黑色的瓷砖.
图
1 图
2 图
3 图
4
参考答案
一、选择题
1.A 2.A 3.D 4.A 5.D 6.C 7.C 8.A 二、填空题
1. 6,12,8 2.四棱锥,圆柱,三楞柱 3.4 4.\\\0482832,0
395.72 5.38° 6.35° 7.5 8.8n -4 三、解答题
1.(1)111°30′;(2)32°36′33″.
2. 45°.
3. 这个角为40度。
(提示:设这个角为0x ,则它的余角为0)90(x -,补角为0
)180(x -,
根据题意,得)90(310)180(x x -=+-,解得40=x )
4.⑴8.(提示:因为点M 、N 分别是AC 、BC 的中点,所以1
2
MC AC =
,12CN BC =,
MN MC CN =+538=+=)
⑵12MN a =.若点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,则1
2
MN AB =;
⑶若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论不成立.因为射线CA 、CB
没有中点. 5.(1)图中有9个小于平角的角;
(2)155°(提示:因为OD 平分∠AOC ,∠AOC =50°,所以∠AOD =
AOC ∠2
1
=25°
,所以∠BOD=180°-25°=155°) (3)因为 ∠BOE =180°-∠DOE -∠AOD=180°-90°-25°=65°,∠COE = 90°-25°=65 ,所以 ∠BOE =∠COE ,即OE 平分∠BOE . 6.(1)略,(2)55,
2
1
n (n+1),(n 为正整数).。