共射放大电路的特性分析与仿真

合集下载

实验四晶体管共射放大电路设计、仿真与测试(I)资料

实验四晶体管共射放大电路设计、仿真与测试(I)资料

Av
vo vi
集电极总电阻 发射极总电阻
RC' RE'
RC PRL re RE1
RE1使增益下降,输入电阻增加,增益稳定性提高。
2、静态工作点与失真
静态工作点选得过高或 过低都易产生非线性失真。
过高:如Q1,稍大的输 入信号正半周将使晶体管进 入饱和区,因而ic波形将出 现顶部压缩、输出电压vce波 形将在底部压缩,这称为饱 和失真。
太低:如Q2 ,稍大的输入信号负半周将使晶体管进入截止区, 因而ic波形将出现底部压缩、输出电压vce波形将在顶部压缩,这称 为截止失真。
要使放大器不失真地放大,工作点必须选择合适。 初选静态工作点时,可以选取直流负载线的中点,即VCE=0.5VCC 或IC=0.5ICS,这样便可获得较大输出动态范围。
电子电路设计方法
电 子 电 路 设 计 的 一 般 流 程
1、数学方法:根据理论知识、经验值等手算 2、CAA:计算机辅助分析(OrCAD、Multisim等) 3、物理实验:
实验四 晶体管共射放大电路 设计、仿真与测试(I)
一、共射放大电路分析与设计
1、电路分析计算
分立电路普遍采用、 带射极电流负反馈、 阻容耦合共射放大电路
Ri R1 PR2 P1 re RE1 Ro RC
Av
vo vi
集电极总电阻 发射极总电阻
RC' RE'
RC PRL re RE1
(5)电容值确定( fL )
:1 1 34 4、 电路设计的一些原则和经验公式
IE
VBB RE
VBE
RBB
1
(1)小信号放大或前置放大器设计时需要考虑晶体管噪声系数。
VBB

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理图3.2.1 共射极单管放大器电阻分压式共射极单管放大器电路如图3.2.1所示。

它的偏置电路采用(R W+R1)和R2组成的分压电路,发射极接有电阻R4(R E),稳定放大器的静态工作点。

在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R1和R2的电流远大于晶体管T的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC为电源电压):CC 21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。

例如,只要测出U E ,即可用EEE C ≈R U I I =计算出I C (也可根据CC CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,U CE = U C -U E 。

单级共射放大电路Pspice分析

单级共射放大电路Pspice分析

单级共射放大电路Pspice 分析要求:放大电路有合适静态工作点,输入正弦信号幅值为30mV电压放大倍数为30左右,输入阻抗大于1K Q ,输出阻抗小于5.1K Q及通频带大于1Mhz。

步骤一:绘制电路原理图单级共射放大电路电路图步骤二:对电路进行仿真1 、仿真并查阅电路的静态工作点分析:由表中参数可得,其VBE = 649mV、IB = 25.2nA 、IC = 1.17mA 、VCE = 4.8V。

仿真静态点输出文件2、仿真输入/ 输出电压波形分析:因为系统为单级放大电路,故输出电压Vo 与输入电压Vs 的相位相差90 °。

同时,由其幅值可得A=Vo- Vs=1 - 0.03〜33.33。

3、仿真作幅频特性曲线分析:根据波形可计算得其通频带f = fh - fl = 14 - 0.027 =14Mhz。

4、仿真作相频特性曲线Dd5、仿真电路求解输入阻抗特性曲线6、仿真电路求解输出阻抗特性曲线a.修改电路图如图输出阻抗测量电路原理图b・仿真输出阻抗特性曲线输出阻抗特性曲线分析:从图中可得其输出电阻Ro〜5K Q。

同时,我们同样可以观察得到,该系统的输出阻抗在频率为50hz-1.0Mhz区间时比较稳^定。

总结:为了使系统的稳定性增加,即输入阻抗和输出阻抗能基本保持不变,我们选择的工作频率尽量应该在500hz-100Khz间。

PSpice 实践练习二:设计与仿真一个共射共集放大电路要求:放大电路有合适静态工作点,其电压放大倍数Av>60,输入电阻Ri>1K Q,输出电阻Ro<0.5k Q及频带Fh>1Mhz,负载电阻RL 为5.1K Q。

步骤一:绘制电路原理图实验电路图步骤二:对电路进行仿真1、仿真并查阅电路的静态工作点分析:由表中参数可得,其Q_Q1:VBE = 647mV 、IB = 16.1nA、IC = 1.11mA、VCE = 5.14V。

其Q_Q2:VBE = 644mV 、IB = 29.4nA、IC = 2.07mA、VCE = 5.07V。

共射放大电路实验报告

共射放大电路实验报告

共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。

本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。

一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。

二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。

晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。

当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。

三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。

四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。

通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。

通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。

五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。

当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。

这是由于晶体管的频率响应特性所决定的。

此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。

六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。

通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。

通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。

共射极放大电路实验报告

共射极放大电路实验报告

共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。

本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。

一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。

二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。

在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。

1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。

注意连接正确,避免短路和接反等问题。

2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。

通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。

3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。

四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。

通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。

2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。

3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。

通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。

通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。

实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。

共射共基和共集三种基本放大电路特性的仿真研究

共射共基和共集三种基本放大电路特性的仿真研究

共射共基和共集三种基本放大电路特性的仿真研究共射、共基、共集是三种基本的放大器电路配置,它们分别使用了不同的极性连接方式和输入/输出端子的位置。

本文将对这三种基本放大器电路的特性进行仿真研究,并进行详细的分析和比较。

首先,我们来研究共射放大器电路。

共射放大器是最常用的放大器配置之一,能够提供较大的电压增益和较低的输出阻抗。

在仿真研究中,我们将使用半导体器件模型和电源来构建共射放大器电路。

我们可以通过调整电阻和电容的数值来改变电路的特性,例如增益、频率响应和输入/输出阻抗。

通过仿真结果,我们可以得到共射放大器的电压增益和频率响应曲线。

接下来,我们将进行共基放大器电路的仿真研究。

共基放大器是一种低噪声、高频率放大器配置,常用于射频电路中。

在仿真研究中,我们可以观察到共基放大器具有较高的电流增益和较低的输入/输出阻抗。

我们可以通过调整电容和电感的数值来改变电路的特性。

通过仿真结果,我们可以得到共基放大器的频率响应和输入/输出阻抗曲线。

最后,我们将进行共集放大器电路的仿真研究。

共集放大器是一种高输入/输出阻抗、低电压增益的放大器配置。

在仿真研究中,我们可以观察到共集放大器具有较高的输入/输出阻抗和较低的电压增益。

我们可以通过调整电容和电感的数值来改变电路的特性。

通过仿真结果,我们可以得到共集放大器的频率响应和输入/输出阻抗曲线。

通过对共射、共基和共集放大器电路的仿真研究,我们可以得到它们各自的特性,并对它们进行比较。

共射放大器具有较高的电压增益和较低的输出阻抗,适用于一般的放大器应用。

共基放大器具有较高的电流增益和较低的输入/输出阻抗,适用于高频率放大器应用。

共集放大器具有较高的输入/输出阻抗和较低的电压增益,适用于电压跟随器和缓冲放大器应用。

总结来说,共射、共基和共集是三种基本的放大器电路配置,它们具有不同的特性和应用场景。

通过仿真研究,我们可以更好地理解它们的特性,并选择合适的电路配置来满足我们的需求。

共射放大电路实验报告

共射放大电路实验报告

共射放大电路实验报告实验目的,通过实验,掌握共射放大电路的基本原理、特性及其应用。

实验仪器设备,示波器、信号发生器、直流稳压电源、电压表、电流表、共射放大电路实验箱等。

实验原理,共射放大电路是由一个NPN型晶体管组成的放大电路。

在共射放大电路中,输入信号加在晶体管的基极上,输出信号则是从集电极上取出。

当输入信号变化时,基极-发射极间的电压也会相应地变化,从而引起集电极-发射极间的电流发生变化。

由于集电极电流的变化,集电极电压也会相应地变化,从而得到输出信号。

实验步骤:1. 将示波器、信号发生器、直流稳压电源等设备连接好。

2. 调节信号发生器的频率和幅度,使其输出一个正弦波信号。

3. 将正弦波信号输入到共射放大电路的输入端,观察输出端的波形。

4. 调节直流稳压电源的电压,观察输出端波形随电压的变化情况。

5. 记录实验数据,并绘制输入输出特性曲线。

实验结果与分析:通过实验,我们得到了共射放大电路的输入输出特性曲线。

在实验中,我们发现当输入信号的幅度较小时,输出信号的幅度基本与输入信号一致;当输入信号的幅度较大时,输出信号的幅度出现了明显的失真。

这说明共射放大电路在一定范围内可以实现较好的放大效果,但是在过大的输入信号下会出现失真。

结论:通过本次实验,我们深入了解了共射放大电路的基本原理和特性。

共射放大电路作为一种常见的放大电路,在实际应用中具有重要的意义。

通过对其特性的了解,我们可以更好地应用它,设计出更加稳定和可靠的电路。

实验总结:本次实验使我们对共射放大电路有了更深入的了解,也提高了我们的动手能力和实验操作技能。

在今后的学习和工作中,我们将更加注重理论与实践相结合,不断提高自己的专业能力。

以上就是本次共射放大电路实验的报告内容,希望对大家有所帮助。

单管共射放大电路仿真分析

单管共射放大电路仿真分析

也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),
是在此期间,欧阳修在滁州留下了不逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验项目共射放大电路的特性分析与仿真
实验时间实验台号
预习成绩报告成绩
一、实验目的
1、借助PSpice软件平台,通过实例分析更进一步理解静态工作点对放大器动态性能的影响。

2、了解晶体管等器件的参数对放大电路的高频响应特性的影响。

3、熟悉并掌握放大电路主要性能指标的测量与估算方法。

二、实验原理
1、产生仿真曲线,改变静态工作点,对放大器动态性能进行测量。

【例1】共发射极放大电路如图1-1所示。

设晶体管的β=100,r bbˊ=80Ω。

输入正弦信号,f=1kHz。

(1)调节R B使I CQ≈1mA,求此时输出电压υ0的动态围。

(2)调节R B使I CQ≈2.5mA,求此时输出电压υ0的动态围。

(3)为使υ0的动态围最大,I CQ应为多少mA?此时R B为
何值?
图1-1 单管共发射极放大电路
2、产生仿真曲线,测量放大器的高频参数。

【例2】图1-2所示为单管共发射极放大电路的原理图。

设晶体管的参数为:
β=100,r bbˊ=80Ω,C b′C=1.25PF,f T=400MHZ,V A=∞。

调解偏置电压V BB使I CQ≈1mA。

(1)计算电路的上限截止频率f H和增益-带宽积G•BW。

(2)将r bbˊ改为200Ω,其它参数不变,重复(1)中的计算。

(3)将R S改为1KΩ,其它参数不变,重复(1)的计算。

(4)将C b′C改为4.5PF,其它参数不变,重复(1)的计算。

图1-2 共发射级放大电路的原理图
三、预习容
1、复习共射放大器的工作原理及高频响应特性与各参数的关系;
2、对例1进行电路的静态、动态的仿真分析,并用数据回答有关问题;
3、对例2写出进行频率特性分析的输入网单文件;
4、对例2进行电路的频率特性的仿真分析,并用数据回答有关问题。

四、实验容
1、对例1写出进行静态工作点调整和放大器动态围测量的输入网单文件;
2、对例1进行电路的静态、动态的仿真分析,并用数据回答有关问题;
3、对例2写出进行频率特性分析的输入网单文件;
4、对例2进行电路的频率特性的仿真分析,并用数据回答有关问题。

五、实验步骤
【例1】参考的输入网单文件如下:
A CE AMP 1
C1 1 2 20U
RB 2 4 RMOD 1
*RB 2 4 450K ;IC=2.5MA
*RB 2 4 562.5K ;IC=2MA
*RB 2 4 1.128MEG ;IC=1MA
RC 3 4 4K
Q1 3 2 0 MQ
VI 1 0 AC 1 SIN(0 80M 1K)
C2 3 5 20U
RL 5 0 4K
VCC 4 0 12
.MODEL MQ NPN IS=1E-15 BF=100
RB=80
.MODEL RMOD RES(R=600K)
.OP
.DC RES RMOD(R) 200K 1.5MEG 10K
.TRAN 1E-5 3E-2 2E-3 1E-5
.PROBE
.END
注:电阻扫描需定义语句
RB 2 4 RMOD 1
.MODEL RMOD RES(R=600K)
.DC RES RMOD(R)200K 1.5MEG 10K
图1-3 集电极电流IC与电阻RB的关系曲线
1、运行.DC 语句,可获得I C(Q1)-R B的曲线,如图1-3所示。

从图中可测出,I CQ=1mA,2.5mA时,R B分别约为1.128MΩ和450KΩ。

2、运行.TRAN语句,可获得:
(1)R B=1.128MΩ节点电压波形如图1-4所示。

图中上面的一条水平直线代表3节点的直流电压V CEQ,约为8V(从输出文件中可得到晶体管的静态工作点)。

由图可以看出,输出电压波形出现正半周限幅,即为截止失真,可测出其动态围峰值约为2V。

(2)当R B=450KΩ,I CQ=2.5mA,3,5节点波形如图1-5所示。

可见,输出电压波形出现负半周限幅,
即为饱和失真,可测出其动态围峰值约为2V(此时3节点的直流电压V CEQ约为1.99V)。

(3)为使υ0的动态围最大,应使I CQ R Lˊ≈V CEQ-VCE(Sat),即2 I CQ≈12-4I CQ(I CQ≈2mA)。

由图
1-3可测出R B≈562.5KΩ。

输出波形如图1-6所示,可见,动态围峰值近于4V。

图1-4 ICQ=1mA的输出电压波形图1-5 ICQ=2.5mA的输出电压波形
图1-6 ICQ=2mA的输出电压波形
【例2】参考的输入网单文件如下:
图1-7 ICQ与VBB的关系曲线
A CE AMP 3
VS 1 0 AC 1
RS 1 2 200
C1 2 3 10U
RB 3 4 20K
VBB 4 0 0.92
Q1 5 3 0 MQ
RC 6 5 2K
VCC 6 0 12
.MODEL MQ NPN IS=1E-15
+RB=80 CJC=1.25P TF=3.7E-10 BF=100 图1-8 AVS的幅频特性曲线
.OP
.DC VBB 0 2 0.01
AC DEC 10 1k 100MEG
.PROBE
.END
1、用直流扫描功能对电压源V BB实行扫描,I CQ- V BB曲线如图1-7所示。

可以测出,当V BB=0.92V时,
I CQ=1mA(由输出文件电路静态工作点,可以确定出V BB的精确值)。

2、运行.AC语句可得到:
(1)电压增益A VS的幅频特性曲线如图1-8中以符号□标示的曲线所示,可测出中频增益A VS≈70.4,
f H≈6.21MHZ,因而G•BW≈440.3MHZ。

(2)将r bbˊ由80Ω增加到200Ω,其它参数不变,其A VS的幅频特性曲线如图1-8中的符号■标示的曲
线所示。

(3)将R S由200Ω该为1KΩ时,其A VS的幅频曲线如图1-8中的以符号◇标示的曲线所示。

(4)将C bˊC由1.25PF增大到4.5PF时,A VS的幅频特性曲线如图1-8中的以符号◆标示的曲线所示。

请读者分析以上结果说明什么问题。

数据处理:
例一:
1、运行.DC 语句,可获得I C(Q1)-R B的曲线,如图一所示。

从图中可测出,I CQ=1mA,2.5mA时,R B分别约为1.128MΩ和450KΩ。

相关文档
最新文档