什么是数学建模

合集下载

什么是数学建模?

什么是数学建模?

1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。

数学建模可以帮助我们更好地理解、分析、解决实际问题。

它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。

数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。

在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。

2. 建立模型。

在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。

模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。

3. 求解模型。

在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。

4. 验证模型。

在这个阶段,我们需要根据模型的求解结果,进行模型的验证。

验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。

5. 应用模型。

在这个阶段,我们需要将模型的结果应用于实际问题的解决中。

根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。

数学建模具有广泛的应用领域和重要性。

在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。

在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。

在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。

在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。

总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。

什么是数学建模3篇

什么是数学建模3篇

什么是数学建模第一篇:数学建模基础数学建模是指利用数学方法及其它学科的知识和技术,对实际问题进行抽象、分析和求解的一种综合性学科。

数学建模的目的是通过对实际问题的建模进行定量分析和解决,从而为实际问题提供可行的解决方案,为现代社会的发展提供技术和理论支持。

数学建模可以分为三个阶段:问题分析阶段、建模阶段和求解阶段。

在问题分析阶段,需要对实际问题进行详细的调查和分析,了解实际问题的背景以及运作模式。

在建模阶段,需要对实际问题进行抽象、量化并建立数学模型,确定模型的参数、变量及其相互关系。

在求解阶段,需要运用数学方法和技术对建立的数学模型进行求解,并给出实际问题的解决方案。

数学建模是一门综合性的学科,需要掌握数学、物理学、工程学等多学科的知识。

在数学方面,需要熟练掌握微积分、线性代数、统计学等数学基础知识,并能够灵活运用这些知识;在其它学科方面,需要了解相关学科的基本知识和应用技术,如电子技术、通信技术等。

此外,数学建模还需要高超的计算机应用技术,能够用计算机模拟实际问题的过程,并对其进行分析和求解。

总之,数学建模是一门综合性、学科交叉性强的学科,对全面培养学生的综合素质提出了更高的要求。

通过学习数学建模,可以培养学生的创新思维能力和解决实际问题的能力,提高综合应用数学知识解决实际问题的能力,并为未来走向各个领域和专业打下坚实基础。

第二篇:数学建模与实际应用数学建模是数学和实际应用之间的桥梁,主要应用于工程、自然科学和社会科学等领域。

在工程领域,数学建模可以应用于各种工程设计和工程管理中,如市政供水、排水、高速公路等。

在自然科学领域,数学建模可以应用于气象、生态学、地理学、天文学等领域,如预测天气、分析生态系统破坏的原因等。

而在社会科学领域,数学建模可以应用于经济、管理学、政治学等领域中,如预测股票市场走势、企业管理优化等。

数学建模与实际应用密不可分,具有卓越的应用价值和广阔的应用前景。

随着科技和工业的不断发展,实际问题的规模和复杂性也在不断提高,对数学建模提出了更高的要求。

什么是数学建模

什么是数学建模

新手入门:什么是数学建模数学建模数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

建模示例:椅子能在不平的地面上放稳吗日常生活中一件普通的事实:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍挪支几次,就可以使四只脚同时着地,放稳了。

这个看来似乎与数学无关的现象能用数学语言给以表述,并用数学工具来证实吗?模型假设对椅子和地面应该作一些必要的假设:1. 椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈正方形。

2. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。

3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。

假设1显然是合理的。

假设2相当于给出了椅子能放稳的条件,因为如果地面高度不连续,譬如在有台阶的地方是无法使四只脚同时着地的。

至于假设3是要排除这样的情况:地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,出现深沟或凸峰(即使是连续变化的),致使三只脚无法同时着地。

模型构成中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来。

首先要用变量表示椅子的位置。

数学专业的数学建模

数学专业的数学建模

数学专业的数学建模数学建模是数学专业中重要的一门课程,它通过数学的方法和技巧解决实际问题。

本文将介绍数学建模的定义、应用领域、建模过程以及数学专业学生在数学建模中的作用。

一、数学建模的定义数学建模是将实际问题转化为数学问题,并应用数学方法和工具解决这些问题的过程。

它是数学与现实世界之间的桥梁,通过数学的抽象和建模能力,解决现实问题,提高生产效益和科学研究水平。

二、数学建模的应用领域数学建模广泛应用于各个领域,包括经济、生态、环境、物理、工程等。

在经济领域,数学建模可以帮助企业分析市场需求,制定最优营销策略;在生态领域,数学建模可以评估生物多样性,分析环境问题;在物理领域,数学建模可以解释物质运动规律;在工程领域,数学建模可以优化工艺流程,提高工程效率。

三、数学建模的过程数学建模的过程一般包括问题的分析、建立数学模型、求解模型和对结果的验证。

首先,需要对实际问题进行充分的分析,明确问题的要求和限制条件;其次,根据问题的特点,运用数学知识建立数学模型,将实际问题抽象为数学符号和方程;然后,对建立的数学模型进行求解,可以使用数值计算、优化算法等方法得到解析结果;最后,对结果进行验证,比较实际情况和模型预测,评估模型的准确性和可行性。

四、数学专业学生在数学建模中的作用数学专业学生在数学建模中发挥着重要的作用。

首先,他们具备扎实的数学基础和数学思维能力,能够快速理解和应用数学方法解决问题;其次,数学专业学生熟练掌握常用的数学工具和软件,能够高效地进行数学计算和模型求解;此外,他们对数学理论有深入的研究,能够通过对数学模型的优化和改进提升模型的准确性和可靠性。

总结:数学建模作为数学专业中重要的课程,对于培养学生的数学思维和解决实际问题的能力具有重要意义。

通过数学建模,学生能够将所学的数学知识应用到实际中,提升自己的综合素质。

希望广大学生能够重视数学建模的学习,不断提高自己的数学建模能力,为社会的发展做出贡献。

数学建模简介1

数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。

具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。

什么是数学建模

什么是数学建模

什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。

一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。

例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。

今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。

特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。

因此数学建模被时代辅予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。

赛题来源于实际问题。

比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。

数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。

以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。

他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。

这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。

我国自1989年起陆续有高校参加美国大学生数学建模竞赛。

1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。

什么是数学建模

什么是数学建模

数学建模与数学建模竞赛在说数学建模之前,首先来说一下什么是数学模型:数学模型,就是用数学语言(可能包括数学公式)去描述和模仿实际问题中的数量关系、空间形式等。

这种模仿当然是近似的,但又要尽可能逼真。

实际问题中有许多因素,在建立数学模型时你不可能、也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素。

数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具、数学方法去解答这个实际问题。

数学建模(Mathematical Modelling)简单的来说就是建立数学模型的一个过程。

是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。

”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。

顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模的创造又带有一定的艺术的特点。

而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。

把实践结果与仿真结果、理论结果做比较,再修改理论、仿真程序、论文,再做实验、做仿真,再比较,再修改,递归到时间的完结,这是数学建模的思想和方法。

建模是一种十分复杂的创造性劳动,现实世界中的事物形形色色,五花八门,不可能用一些条条框框规定出各种模型如何具体建立,这里只是大致归纳一下建模的一般步骤和原则:1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息.2)模型假设:为了利用数学方法,通常要对问题做必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。

3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系把问题化4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

数学近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。

数学模型数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学建模应用数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。

数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。

经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。

培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。

这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

数学模型一般是实际事物的一种数学简化。

它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。

为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。

有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

应用数学模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。

数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之一。

为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。

为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。

通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。

数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。

培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件模型准备了解问题的实际背景,明确其实际意义,掌握对象的各种信息。

用数学语言来描述问题。

模型假设根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

模型建立在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

模型求解利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

模型分析对所得的结果进行数学上的分析。

模型检验将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。

如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。

如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

模型应用应用方式因问题的性质和建模的目的而异。

进入西方国家大学数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。

经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。

大学生数学建模竞赛最早是1985年在美国出现的,1989年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。

可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。

在中国1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。

教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。

十几年来这项竞赛的规模以平均年增长25%以上的速度发展。

2009 年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)!全国大学生数学建模竞赛全国大学生数学建模竞赛是国家教育部高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。

题目有较大的灵活性供参赛者发挥其创造能力。

参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。

竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月末的三天内举行;大学生以队为单位参赛,每队3人,专业不限。

全国大学生数学建模竞赛章程(2008年)第一条总则全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

第二条竞赛内容竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。

题目有较大的灵活性供参赛者发挥其创造能力。

参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。

竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

相关文档
最新文档