大学物理计算题

合集下载

大学物理计算题_08[1]

大学物理计算题_08[1]
大学物理自测练习
计算题练习
一 计算题 (共156分) 1. (本题 5分)(0265)
有一质点沿 x 轴作直线运动,t 时刻的坐标为 x = 4.5 t2 – 2 t3 (1) 第 2 秒内的平均速度; (2) 第 2 秒末的瞬时速度; (3) 第 2 秒内的路程.
(SI) .试求:
2. (本题 5分)(0513)
O m,r
m′, r′
A
B
一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知 r = 10 cm.求:
(1) 组合轮的角加速度β;
(2) 当物体 A 上升 h=40 cm 时,组合轮的角速度ω.
10. (本题 5分)(5427)
电荷为 q1=8.0×10-6 C 和 q2=-16.0×10-6 C 的两个点电荷相距 20 cm,求 离它们都是 20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C2N-1m-2 )
质点 M 在水平面内的运动轨迹如图所示,
MB
OA 段为直线,AB、BC 段分别为不同半径的
两个 1/4 圆周.设 t =0 时,M 在 O 点,已知运 S
15 m
动学方程为
A
30 m
S =30t+5t2 (SI)
15 m C
求 t =2 s 时刻,质点 M 的切向加速度和法向加 O
速度.
3. (本题 5分)(0516)
如图所示线框,铜线横截面积 S = 2.0 mm2,其中 OA 和 DO'两段保持水平不动,ABCD 段是边长为 a O
v
A
B
D
O'
的正方形的三边,它可绕
导线放在匀强磁场
v B
中,

大学物理 力学计算题汇总

大学物理 力学计算题汇总

力学计算题质量为0.25 kg 的质点,受力i t F= (SI)的作用,式中t 为时间.t = 0时该质点以j2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是______________.j t i t 2323+ (SI) 1 (0155)如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 1 (0155)解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M ) 4 匀质杆长为l ,质量为m ,可绕过O 点且与杆垂直的水平轴在竖直面内自由转动。

如图所示,OA =13l ,杆对轴的转动惯量I =19m l 2,开始静止。

现用一水平常力F =2mg 作用于端点A ,当杆转角6πθ=时撤去力F 。

求:(1)过程中力F 做功;(2)杆转到平衡位置时的角速度。

a解:(1)力F 对轴的力矩为 F13 l cos θ = 2 m g 13l cos θ, 所以 A =62cos 3l M d Md mg d πθθθθ⋅==⎰⎰⎰=13mgl(2)撤去力F 后机械能守恒,设平衡位置势能为零212I A ω=,ω=== 2((0561)质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.0561)解:受力分析如图. 2分 mg -T 2 = ma 2 1分 T 1-mg = ma 1 1分T 2 (2r )-T 1r = 9mr 2β / 2 2分2r β = a 2 1分 r β = a 1 1分 解上述5个联立方程,得: rg192=β 2分1.(本题10分)(5270)如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为2321r m .1. (10分)aa 1解:对两物体分别应用牛顿第二定律(见图),则有m 1g -T 1 = m 1a ① T 2 – m 2g = m 2a ②2分 对滑轮应用转动定律,则有ββ⋅==-'-'232121r m J M r T r T f ③ 2分 对轮缘上任一点,有 a = β r④ 1分又: 1T '= T 1, 2T '= T 2 ⑤则联立上面五个式子可以解出rm r m r m M gr m gr m a f3212121++--==2 m/s 2 2分T 1=m 1g -m 1a =156 NT 2=m 2g -m 2 a =118N 3分计算题:(共40分)1.(本题10分)(0141)一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)12 2'T221211. (本题10分)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ 3分式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= 3分因碰撞前后角动量守恒,所以L m mL 022112/7v =ω 3分∴ ω = 6v 0 / (7L) 1分1.(本题10分)(0452)如图,水平地面上一辆静止的炮车发射炮弹.炮车质量为M ,炮身仰角为α ,炮弹质量为m ,炮弹刚出口时,相对于炮身的速度为u ,不计地面摩擦:(1) 求炮弹刚出口时,炮车的反冲速度大小; (2) 若炮筒长为l ,求发炮过程中炮车移动的距离.1.(0452)(本题10分)解:(1) 以炮弹与炮车为系统,以地面为参考系,水平方向动量守恒.设炮车相对于地面的速率为V x ,则有0)cos (=++x x V u m MV α 3分)/(cos m M mu V x +-=α 1分即炮车向后退.(2) 以u (t )表示发炮过程中任一时刻炮弹相对于炮身的速度,则该瞬时炮车的速度应为)/(cos )()(m M t mu t V x +-=α3分积分求炮车后退距离 ⎰=∆tx t t V x 0d )(⎰+-=tt t u m M m 0d cos )()/(α2分)/(cos m M ml x +-=∆α即向后退了)/(cos m M ml +α的距离.1分1.(5264)一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分2.(0211)质量为M =0.03 kg ,长为l =0.2 m 的均匀细棒,在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动.细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02 kg .开始时,两小物体分别被固定在棒中心的两侧且距棒中心各为r =0.05 m ,此系统以n 1=15 rev/ min 的转速转动.若将小物体松开,设它们在滑动过程中受到的阻力正比于它们相对棒的速度,(已知棒对中心轴的转动惯量为Ml 2 / 12)求:(1) 当两小物体到达棒端时,系统的角速度是多少?(2) 当两小物体飞离棒端,棒的角速度是多少? 解:选棒、小物体为系统,系统开始时角速度为 ω1 = 2πn 1=1.57 rad/s .(1) 设小物体滑到棒两端时系统的角速度为ω2.由于系统不受外力矩作用,所以角动量守恒. 2分故 2221222112212ωω⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+ml Ml mr Ml 3分 2212222112212ml Ml ml Ml +⎪⎪⎭⎫ ⎝⎛+=ωω=0.628 rad/s 2分(2) 小物体离开棒端的瞬间,棒的角速度仍为ω2.因为小物体离开棒的瞬间内并未对棒有冲力矩作用.(本题10分)(0699)如图,绳CO与竖直方向成30°角,O为一定滑轮,物体A与B用跨过定滑轮的细绳相连,处于平衡状态.已知B的质量为10 kg,地面对B的支持力为80N.若不考虑滑轮的大小求:(1) 物体A的质量.(2) 物体B与地面的摩擦力.(3) 绳CO的拉力.(取g=10 m/s2)一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用m、r、t和S表示).m OrC OA B 30°1.(5039)(本题10分)如图所示,质量为M 的滑块正沿着光滑水平地面向球水平向右飞行,以速度v1右滑动.一质量为m 的小(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为t ∆,试计算此过程中滑块v 2(对地).若碰撞时间为对地的平均作用力和滑块速度增量的大小.1. 解:(1) 小球m 在与M 碰撞过程中给M 的竖直方向冲力在数值上应等于M 对小球的竖直冲力.而此冲力应等于小球在竖直方向的动量变化率即:tm f ∆=2v 2分 由牛顿第三定律,小球以此力作用于M ,其方向向下.1分对M ,由牛顿第二定律,在竖直方向上0=--f Mg N , f Mg N += 1分又由牛顿第三定律,M 给地面的平均作用力也为Mg tm Mg f F +∆=+=2v 1分 方向竖直向下. 1分 (2) 同理,M 受到小球的水平方向冲力大小应为 ,tm f ∆='1v 方向与m 原运动方向一致 2分根据牛顿第二定律,对M 有 ,tv ∆∆='M f 利用上式的f ',即可得 M m /1v v =∆ 2分mM2.(0562)(本题10分)质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.2解:撤去外加力矩后受力分析如图所示. 2分 m 1g -T = m 1a 1分 Tr =J β 1分a =r β 1分 a = m 1gr / ( m 1r + J / r ) 代入J =221mr , a =mm gm 2111+= 6.32 ms -2 2分 ∵ v 0-at =0 2分 ∴ t =v 0 / a =0.095 s 1分质量为0.25 kg 的质点,受力i t F= (SI)的作用,式中t 为时间.t = 0时该质点以j2=v(SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是 j t i t2323+ (SI) 3分1.(0713)(本题10分)质量为1 kg的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?1. 解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 2分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 2分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分2.(0564)(本题10分)如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.2解:作示力图.两重物加速度大小a 相同,方向如图.示力图 2分 m 1g -T 1=m 1a 1分T 2-m 2g =m 2a 1分设滑轮的角加速度为β,则 (T 1-T 2)r =J β 2分且有 a =r β 1分 由以上四式消去T 1,T 2得: ()()Jr m m grm m ++-=22121β 2分开始时系统静止,故t 时刻滑轮的角速度. ()()Jr m m grtm m t ++-==22121 βω 1分1. 如图所示,在光滑水平面上有一质量为m B 的静止物体B ,在B 上又有一个质量为m A 的静止物体A .今有一小球从左边m射到A 上被弹回,此时A 获得水平向右的速度A v(对地),并逐渐带动B ,最后二者以相同速度一起运动。

大学物理计算题汇总

大学物理计算题汇总

【例题】火车驶过车站时,站台边上观察者测得火车鸣笛声的频率由1200 Hz 变为1000 Hz ,已知空气中声速为330 米/ 秒,求火车的速度。

【例题】在地球大气层外测得太阳辐射谱,它的极值波长为490 nm,设太阳为黑体,求太阳表面温度T 。

【例题】. 试计算能通过光电效应从金属钾中打出电子所需的光子最小能量及其相应的最小频率(阈值频率)和最大波长。

已知金属钾的逸出功为2.25电子伏特,hc =1240 nm · eV 。

339,2.897105.91049010mbT Kλ--⨯===⨯⨯由维恩位移公式得【例题】:试计算能通过光电效应从金属钾中打出0.25电子伏特的电子,必须使用多少波长的电磁波辐射?【例题】巳知紫光的波长λ= 400 nm,其光子的能量、动量各为多少?【例题】求能量 E = 1.0 keV 光子的波长λ与频率ν。

【例题】 已知氢原子两个能级为-13.58eV 和-3.4eV ,氢原子从基态受激吸收到高能级,所吸收光子的波长应该是多少(组合常数:hc =1240 nm · eV )【例题】. 试计算下列各粒子的德布罗意波长:1)能量为 150eV 的自由电子; 2)能量为 0.2eV 的自由中子;3)能量为 0.5eV 质量为2.5克的质点( mec2=511keV ,hc =1240nm ·ev )21hE E ν=玻尔公式 -【例题】. 在电子显微镜中假定电子的波长是0.01nm(比可见光小4个量级,比原子尺度小一个量级),求相应的电子动能是多少电子伏特。

【例题】设子弹的质量为0.01㎏,枪口的直径为0.5㎝, 试求子弹射出枪口时的横向速度的不确定量?【例题】:π- 介子是一种不稳定的粒子,从它产生到它衰变为μ- 介子经历的时间即为它的寿命,已测得静止π- 介子的平均寿命τ0 = 2 ⨯ 10-8s 。

某加速器产生的π-介子以速率u = 0.98 c 相对实验室运动。

大学物理一计算题

大学物理一计算题
解:在细棒上距O点y取电荷元dq=λdy,由运动电荷的磁场公式
方向垂直向里
3、在半径为a和b的两圆周之间,有一总匝数为N的均匀密绕平面螺线圈(即单位长度半径上的匝数为 ,通以电流I,如图所示。求线圈中心O点处的磁感应强度。
解:取半径为r宽为dr的圆环,
4、一半径R的圆盘,其上均匀带有面密度为σ的电荷,圆盘以角速度ω绕通过盘心垂直于盘面的轴转动,试证其磁矩的大小为 。
解:
7、如图球形电容器,内外半径分别为R1和R2,二球面间充满相对介电常数为εr的均匀介质,当该电容器充电量为Q时,求:(1)介质内 的大小;(2)内外球壳之间的电势差Δ ;(3)球形电容器的电容C;(4)它储有的电能We。
解:
8、圆柱形电容器,长度为L,半径分别为R1和R2,二柱面间充满相对介电常数为εr的均匀介质,当该电容器充电量为Q时,求:
解:(1)
(2)0
10、如图,长直圆柱面半径为R,单位长度带电为λ,试用高斯定理计算圆柱面内外的电场强度。
解:
( )
( )
11、电荷Q均匀分布在长为l的细杆AB上,P点位于AB的延长线上,且与B相距为d,求P点的电场强度。
解:
12、电荷Q均匀分布在长为l的细杆AB上,P点位于AB的延长线上,且与B相距为d,求P点的电势。
(1)试用高斯定理求P点的电场强度 ;
(2)由 求P点的电势V。
解:
5、金属球半径为R1,带电q1,外有一同心金属球壳,半径分别为R2、R3,金属球壳带电q2,求金属球和球壳之间一点P的电势。
解:
6、如图所示,平板电容器(极板面积为S,间距为d)中间有两层厚度各为d1和d2、电 容率各为ε1和ε2的电解质,试计算其电容。
解:
13、电荷Q均匀分布在半径为R的半圆周上,求曲率中心O处的电场强度。

(完整word)大学物理习题册计算题及答案

(完整word)大学物理习题册计算题及答案

大学物理习题册计算题及答案三 计算题1. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点。

弹簧的劲度系数k = 25N ·m -1。

(1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相. (3) 写出振动的数值表达式。

解:(1) 1s 10/-==m k ω 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7。

5 cm,v 0 〈 0 由 2020)/(ωv +=x A得 3.1220-=--=x A ωv m/s π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 , ∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI )振动方程为)310cos(1015)cos(2πϕω+⨯=+=-t t A x (SI )﹡2. 在一平板上放一质量为m =2 kg 的物体,平板在竖直方向作简谐振动,其振动周期为T = 21s ,振幅A = 4 cm ,求 (1) 物体对平板的压力的表达式.(2) 平板以多大的振幅振动时,物体才能离开平板。

解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π4cos = (SI)t A x ππ4cos 162-=(SI ) (1) 对物体有 x m N mg=- ① t A mg x m mg N ππ4cos 162+=-= (SI) ② 物对板的压力为 t A mg N F ππ4cos 162--=-= (SI )t ππ4cos 28.16.192--= ③(2) 物体脱离平板时必须N = 0,由②式得 04cos 162=+t A mg ππ (SI )A qt 2164cos π-=π 若能脱离必须 14cos ≤t π (SI )即 221021.6)16/(-⨯=≥πg A m三 计算题﹡1。

大学物理计算题

大学物理计算题

m x 100=00=v 00=x 00=v m x 100=物理复习题总编三、计算题★1、一质点沿x 轴运动,其加速度为a=4t (SI),已知t=0时,质点位于 处,初速度。

试求其位置和时间的关系式。

★2、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI)。

如果质点在原点处的速度为零,试求其在任意位置处的速度。

★ 3、已知一质点绕半径为0.2米的圆周运动,其转过的弧长随时间变化的关系式是S=2t 2+3t+1(式中t 以秒计,S 以米计)。

求:(1)前2秒内质点的平均速率;(2)质点在第2秒末的瞬时速率;(3)质点在第2秒末的切向加速度、法向加速度和总加速度的大小。

★4、质点m=2kg 的物体沿x 轴作直线运动,所受合外力F=10+6x 2(SI)。

如果在处时速度 ;试求该物体运动到x=4m 处时速度的大小。

★5、已知质点的运动方程为x=5-3t 3,y=3t 2+2t-8(SI)求:(1)任意时刻质点的位置矢量、速度和加速度;(2)质点在第二秒内的位移、平均速度和平均加速度。

★6、质量为2.0kg 的质点沿x 轴运动,其速度v=5+t2,当t=0时,质点坐标为 。

试求:(1) t=3s 时质点的加速度和加速度和所受的力(2) 质点的运动方程(3) 前2秒内,力对质点所作的功。

★7、有一个水平的弹簧振子,振幅A=2.0×10-2米,周期为0.5秒,当t=0时,(1)物体经过x=1.0×10-2米处,且向负方向运动,(2)物体过x=-1.0×10-2米处,且向正方向运动。

请分别用旋转矢量图来表示它们各自运动的初相位,同时分别写出以上两种运动情况下的振动表达式;振动速度表达式;振动加速度表达式。

★8、如果所示,以P点在平衡位置向正方向运动作计时零点,已知圆频率为ω,振幅A,简谐波以速度u向x轴的正方向传播,试求:(1)P点振动方程。

(2)波动方程。

大学物理练习题

大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。

求物体的加速度。

2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。

3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。

4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。

5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。

二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。

2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。

3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。

4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。

5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。

三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。

2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。

3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。

4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。

5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。

四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。

2. 一束光从水中射入空气,折射角为45°,求入射角。

3. 一平面镜反射一束光,入射角为60°,求反射角。

4. 一凸透镜焦距为10cm,物距为20cm,求像距。

5. 一凹透镜焦距为15cm,物距为30cm,求像距。

大学物理计算题

m x 100=00=v 00=x 00=v m x 100=物理复习题总编三、计算题★1、一质点沿x 轴运动,其加速度为a=4t (SI),已知t=0时,质点位于 处,初速度。

试求其位置和时间的关系式。

★2、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a=2+6x 2(SI)。

如果质点在原点处的速度为零,试求其在任意位置处的速度。

★ 3、已知一质点绕半径为0.2米的圆周运动,其转过的弧长随时间变化的关系式是S=2t 2+3t+1(式中t 以秒计,S 以米计)。

求:(1)前2秒内质点的平均速率;(2)质点在第2秒末的瞬时速率;(3)质点在第2秒末的切向加速度、法向加速度和总加速度的大小。

★4、质点m=2kg 的物体沿x 轴作直线运动,所受合外力F=10+6x 2(SI)。

如果在处时速度 ;试求该物体运动到x=4m 处时速度的大小。

★5、已知质点的运动方程为x=5-3t 3,y=3t 2+2t-8(SI)求:(1)任意时刻质点的位置矢量、速度和加速度;(2)质点在第二秒内的位移、平均速度和平均加速度。

★6、质量为2.0kg 的质点沿x 轴运动,其速度v=5+t2,当t=0时,质点坐标为 。

试求:(1) t=3s 时质点的加速度和加速度和所受的力(2) 质点的运动方程(3) 前2秒内,力对质点所作的功。

★7、有一个水平的弹簧振子,振幅A=2.0×10-2米,周期为0.5秒,当t=0时,(1)物体经过x=1.0×10-2米处,且向负方向运动,(2)物体过x=-1.0×10-2米处,且向正方向运动。

请分别用旋转矢量图来表示它们各自运动的初相位,同时分别写出以上两种运动情况下的振动表达式;振动速度表达式;振动加速度表达式。

★8、如果所示,以P点在平衡位置向正方向运动作计时零点,已知圆频率为ω,振幅A,简谐波以速度u向x轴的正方向传播,试求:(1)P点振动方程。

(2)波动方程。

大学物理计算题汇总

2m3.0x 10s n?/5550xl0^9m【例题】火车驶过车站时,站台边上观察者测得火车鸣笛声的频率由 变为1000 Hz ,已知空气中声速为330米/秒,求火车的速度。

u V R uv = u — Vs u — Vs【例题】在地球大气层外测得太阳辐射谱,它的极值波长为 490 nm ,设太阳为 黑体,求太阳表面温度 T 。

由维恩位移公式,得【例题】■试计算能通过光电效应从金属钾中打出电子所需的光子最小能量及其 相应的最小频率(阈值频率)和最大波长。

已知金属钾的逸出功为 2.25电子伏 特,he = 1240 nm eV 。

解:—mv 2^hv — W 一— W ——h^— — W9 mtniTiihe 1240/7w - eV2.25eV550 nm1200 Hz 观察者静止V R =O , 当火车迎面而来时,互相靠近,v s 取正 U — : 1200 u —V s当火车掠过观察者而去时,互相远离,V s取负2u +V sV1u vs >1200 330 V s V 2u - V s1000 330-v sVs ,0 m s2.897 10 3490 1095.9 103【例题】:试计算能通过光电效应从金属钾中打出 0.25电子伏特的电子,必须使 用多少波长的电磁波辐射?he _1240??m -eV1口,+附=°-25少 + 2.25 羽 2=496 nm2.5eP【例题】巳知紫光的波长入=400 nm,其光子的能量、动量各为多少?h 6,63x10 34 入“ p 二——二 =L66xlO 21N -s A 400x10^ pc] h v—mv 22血 6.63x10 -x3xl084阴X1O5400x10 9斫竺=1240呦"“四 A400呦【例题】求能量 E = 1.0 keV 光子的波长入与频率vleK = 1.6xlO _19J【例题】 已知氢原子两个能级为-13.58eV 和-3.4eV ,氢原子从基态受激吸收到高能级,所吸收光子的波长应该是多少(组合常数: he = 1240 nm • eV )玻尔公式 h 」E 2- E ih e— E 2- Ei九he1240nm eV扎 =____________________ =_______________________________________________________________E 2-巳 3.4eV (13.58eV) 1240nm eV 一 小110nm(3.4 13.58)eV【例题】■试计算下列各粒子的德布罗意波长:1)能量为150eV 的自由电子;2)能量为0.2eV 的自由中子;3)能量为0.5eV 质量为 2.5 克的质点(mec2= 511keV, hc = 1240nm • ev )JS _xlofix=兀锻 x JI®17 7/?/x£ _ 3xlldD 8 v -必船滅II ⑪昨=1 ②t x jl®_s ,m = )L34»^E = h^1/Mimmie¥z 1240 nm eV 、21( ) -----------------------------------0.01nm 2 511000eV-1.5 103eV【例题】设子弹的质量为0.01 kg,枪口的直径为0.5 cm ,试求子弹射出枪口时的 横向速度的不确定量?hep ■ 2m e E k2m e e 2E k1240 nm eVhe2,2gE k 「,2 m n e 2 E k 一、2 511000eV 150eV二 0.10 nm1240 nm eV 2 939.57 106eV 0.2eV二 0.064 nm3)能量为0.5eV 质量为2.5克质点的德布罗意波长;h 「2mEk= _______ 6.626 江 10‘J s、、2 2.5 10‘kg 0.5 1.6 10'19J二 3.31 10^3m【例题】.在电子显微镜中假定电子的波长是 0.01nm (比可见光小4个量级, 比原子尺度小一个量级),求相应的电子动能是多少电子伏特。

大学物理复习计算

大学物理复习计算题1 一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:(1) 物体能够上升的最大高度h ;(2) 该物体达到最高点后,沿斜面返回到原出发点时的速率v .2 如图所示,在与水平面成α角的光滑斜面上放一质量为m 的物体,此物体系于一劲度系数为k 的轻弹簧的一端,弹簧的另一端固定.设物体最初静止.今使物体获得一沿斜面向下的速度,设起始动能为E K 0,试求物体在弹簧的伸长达到x 时的动能.3 某弹簧不遵守胡克定律. 设施力F ,相应伸长为x ,力与伸长的关系为 F =52.8x +38.4x 2(SI )求:(1)将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率.(3)此弹簧的弹力是保守力吗?24 一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).5 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).6 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功.(普适气体常量R =8.31 11K mol J --⋅)3)57 两导体球A 、B .半径分别为R 1 = 0.5 m ,R 2 =1.0 m ,中间以导线连接,两球外分别包以内半径为R =1.2m 的同心导体球壳(与导线绝缘)并接地,导体间的介质均为空气,如图所示.已知:空气的击穿场强为3×106 V/m ,今使A 、B 两球所带电荷逐渐增加,计算:(1) 此系统何处首先被击穿?这里场强为何值?(2) 击穿时两球所带的总电荷Q 为多少?(设导线本身不带电,且对电场无影响.) (真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 )8 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为εr 的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章
1.将一平行板电容器充电后切断电源,用相对介电常量为r的各向同性均匀电介质充满其内.下列有关说法是否正确?如有错误请改正.九
(1)极板上的电荷保持不变.
(2)介质中的场强是原来的1 /r倍.
(3)介质中的电场能量是原来的1 /r2倍.
第七章
3.一无限长圆柱形铜导体(磁导率0),半径为R,通有均匀分布的电流I.今取一矩形平面S(长为1 m,宽为2R),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.四
10.如图所示,一半径为R,质量为m的水平圆台,正以角速度0绕通过其中心的竖直固定光滑轴转动,转动惯量J= .台上原站有2人,质量各等于转台质量的一半,一人站于台边A处,另一人站于距台中心 的B处.今A处的人相对于圆台以速率v顺着圆台转向沿圆
周走动,同时B处的人相对于圆台以速率2v逆圆台转向沿圆周走动.求圆台这时的角速度.六
(1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?
(2)链条刚离开桌面时的速率是多少?十二
12.由 有人把一物体由静止开始举高h时,物体获得速度v,在此过程中,若人对物体作功为W,这可以理解为“合外力对物体所作的功等于物体动能的增量与势能的增量之和”吗?为什么?一Fra bibliotek第四章
1.为求一半径R=50 cm的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m1=8 kg的重锤.让重锤从高2 m处由静止落下,测得下落时间t1=16 s.再用另一质量m2=4 kg的重锤做同样测量,测得下落时间t2=25 s.假定摩擦力矩是一个常量,求飞轮的转动惯量.一
(1) 圆盘对地的角速度.
(2) 欲使圆盘对地静止,人应沿着 圆周对圆盘的速度 的大小及方向?
第五章
1.图示闭合面包围了两个等量异号点电荷±q.下列说法是否正确?如有错误请改正.
(1)高斯定理 成立.
(2)因闭合面内包围净电荷∑qi=0,得到 故闭合面上场强E处处为零.
(3)通过闭合面上任一面元的电场强度通量等于零.十二
计算题
第三章
2.质量为1 kg的物体,它与水平桌面间的摩擦系数= 0.2.现对物体施以F= 10t(SI)的力,(t表示时刻),力的方向保持一定,如图所示.如t= 0时物体静止,则t= 3 s时
它的速度大小v为多少?十二
5.一质点的运动轨迹如图所示.已知质点的质量为20 g,在A、B二位置处的速率都为20 m/s, 与x轴成45°角, 垂直于y轴,求质点由A点到B点这段时间内,作用在质点上外力的总冲量.八
15.在盖革计数器中有一直径为2.00 cm的金属圆筒,在圆筒轴线上有一条直径为0.134 mm的导线.如果在导线与圆筒之间加上850 V的电压,试分别求: (1)导线表面处(2)金属圆筒内表面处的电场强度的大小.十
16.一圆柱形电容器,外柱的直径为4 cm,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E0= 200 KV/cm.试求该电容器可能承受的最高电压.(自然对数的底e = 2.7183)七
3.从牛顿运动定律出发,推导出刚体的定轴转动定律.五
4. 一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M/ 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为 M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2/ 4 )七
11.质量为M=0.03kg,长为l=0.2 m的均匀细棒,在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动.细棒上套有两个可沿棒滑动的小物体,每个质量都为m=0.02 kg.开始时,两小物体分别被固定在棒中心的两侧且距棒中心各为r=0.05 m,此系统以n1=15rev/ min的转速转动.若将小物体松开,设它们在滑动过程中受到的阻力正比于它们相对棒的速度,(已知棒对中心轴的转动惯量为Ml2/ 12)求:4-3二
4.有两块“无限大”带电导体平板平行放置.试证明:静电平衡时
1.相向两面的电荷面密度总是大小相等、符号相反的;
2.相背两面的电荷面密度总是大小相等、符号相同的.六
5.有一带电球壳,内、外半径分别为a和b,电荷体密度=A/r,在球心处有一点电荷Q,证明当A=Q/ ( 2a2)时,球壳区域内的场强 的大小与r无关.三
6.一均匀带电球面和一均匀带电球体.如果它们的半径相同且总电荷相等.问哪一种情况的电场能量大?为什么?十一
7.一均匀电场,场强大小为E=5×104N/C,方向竖直朝上,把一电荷为q=2.5×10-8C的点电荷,置于此电场中的a点,如图所示.求此点电荷在下列过程中电场力作的功.
(1)沿半圆路径Ⅰ移到右方同高度的b点, =45 cm;
因为忽略摩擦力所以M将以稳定速度V不断向前滑行.
请指出这位同学的错误,并给出正确解答.四
7.一物体按规律x=ct3在流体媒质中作直线运动,式中c为常量,t为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k,试求物体由x=0运动到x=l时,阻力所作的功四
8.一链条总长为l,质量为m,放在桌面上,并使其部分下垂,下垂一段的长度为a.设链条与桌面之间的滑动摩擦系数为.令链条由静止开始运动,则
9.一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R1= 2 cm,R2= 5 cm,其间充满相对介电常量为r的各向同性、均匀电介质.电容器接在电压U= 32 V的电源上,(如图所示),试求距离轴线R= 3.5 cm处的A点的电场强度和A点与外筒间的电势差.三
10.图示两个半径均为R的非导体球壳,表面上均匀带电,电荷分别为+Q和-Q,两球心相距为d(d>>2R).求两球心间的电势差.三
(1)芯子中的B值和芯子截面的磁通量.
(2)在r<R1和r>R2处的B值.五
6.用安培环路定理证明,图中所表示的那种不带边缘效应的均匀磁场不可能存在.

9.两根很长的平行直细导线,其间距离为d,它们与电源组成回路(如图),回路中电流为I.若保持电流I不变,使导线间的距离由d增大至d′,求磁场对单位长度直导线所作的功.二
(圆盘绕通过O的竖直轴的转动惯量为 ,忽略子弹重力造成的摩擦阻力矩)
9空心圆环可绕光滑的竖直固定轴AC自由转动,转动惯量为J0,环的半径为R,初始时环的角速度为0.质量为m的小球静止在环内最高处A点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O在同一高度的B点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r<<R.)五
4.让一根磁铁棒顺着一根竖直放置的铜管在管内空间下落,设铜管足够长.试说明即使空气的阻力可以忽略不计,磁铁棒最终也将达到一个恒定速率下降.二
5.一菱形线圈在均匀恒定磁场 中,以匀角速度绕其对角线ab逆时针方向转动,转轴与 垂直,如图所示.当线圈平面转至与 平行时,求ac边中的感应电动势.已知∠acd=,对角线dc的长度为2xc.(x坐标原点在O)十一
10. 在图示回路中,导线ab可以在相距为0.10 m的两平行光滑导线LL'和MM'上水平地滑动.整个回路放在磁感强度为0.50 T的均匀磁场中,磁场方向竖直向上,回路中电流为4.0 A.如要保持导线作匀速运动,求须加外力的大小和方向.六
11. 一半径为4.0 cm的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T,磁场的方向与环面法向成60°角.求当圆环中通有电流I=15.8 A时,圆环所受磁力的大小和方向.七
第八章
1.如图所示,长直导线AB中的电流I沿导线向上,并以dI/dt=2 A/s的变化率均匀增长.导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示.求此线框中产生的感应电动势的大小和方向.(=4×10-7T·m/A)二
3. 在无限长载流直导线产生的磁场中,有一个与导线共面的矩形平面线圈,线圈的一对边与直导线平行,其尺寸及与直导线的距离如图所示.当线圈以恒定速度v沿其平面法线方向(z轴正方向)平动时,试证明线圈中产生的感应电动势与线圈位移z的关系(设线圈起始在z= 0的平面上)为:十
(1)定滑轮的角加速度的大小和方向;
(2)定滑轮的角速度变化到=0时,物体上升的高度;
(3)当物体回到原来位置时,定滑轮的角速度的大小和方向.
7. 质量为M1=24 kg的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M2=5 kg的圆盘形定滑轮悬有m=10kg的物体.求当重物由静止开始下降了h=0.5 m时,(1)物体的速度;(2)绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为 , )二
17如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为Ra、Rb、Rc.圆柱面B上带电荷,A和C都接地.求B的内表面上电荷线密度1和外表面上电荷线密度2之比值1/2.一
18.一电偶极子的电矩为 ,放在场强为 的匀强电场中, 与 之间夹角为,如图所示.若将此偶极子绕通过其中心垂直于 、 平面的轴转180°,外力需作功多少?九
4.一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。若假想平面S可在导线直径与轴OO'所确定的平面内离开OO'轴移动至远处.试求当通过S面的磁通量最大时S平面的位置(设直导线内电流分布是均匀的).一
5.横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为,导线总匝数为N,绕得很密,若线圈通电流I,求.
6.质量为m的小物体放在质量为M的冰块的弧形斜面上,斜面下端为水平面,如图.所有接触面的摩擦力都可忽略不计.开始时m与M均静止,现在令m滑下来落入下面的凹部而相对M静止,问M可滑多远.
有位同学这么解:m滑下高度h,由机械能守恒,得mgh= mv2即m到最低位置时有水平速度v= ,然后与M碰撞后达到一共同速度V,由动量守恒mv=(M+m)V,可得
相关文档
最新文档