2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (974)
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (434).pdf

A.等腰直角三角形 B.长方形
C.正方形
D.圆
评卷人 得分
二、填空题
15.(2 分)已知等腰三角形的两边长 x 、 y 满足 x + y − 7 + (4x + 2y − 22)2 = 0 ,且底边比腰
长,则它的一腰上的高于 . 16.(2 分)在△ABC 中,∠A=90°,∠B=60°,则∠C=_______度. 17.(2 分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走 出了一条路,他们仅仅少走了 步路(假设 2 步为 l m),却踩伤了花草.
C.∠A=90°,∠B=45°
D.∠A=120°,∠B=15°
7.(2 分)如图 AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有( )
A.1 对
B.2 对
C.3 对
D.4 对
8.(2 分)如图,D 是∠BAC 内部一点,DE⊥AB,DF⊥AC,DE=DF,则下列结论不.正.确.
果直角三角形的两边是 3、4,那么斜边必是 5;③如果一个三角形的三边是 l2、25、21,那么
此三角必是直角三角形;④一个等腰直角三角形的三边是 a,b,c(a>b=c),那么 a2 :b2:
c2=2:1:1.其中正确的是( )
A.①②
B.①③
C.①④
D.②④
14.(2 分)下列轴对称图形中,对称轴条数最少的是( )
21.(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE, ∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC,DC=EC,∴△ACE≌△BCD. (2)∵△ACB 是等腰直角三角形,∴∠B=∠BAC=45°. ∵△ACE≌△BCD,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°. ∴△ADE 是直角三角形,∴AD2+AE2=DE2. 由(1)知,AE=BD,∴AD2+BD2=DE2. 22.说明∠OOC=∠BOD 23.说明 Rt△ABC≌△Rt△DCF 24.①能②不能③能 25.DE=DF,理由略 26.BC=4cm,CD=4 cm,DE=2 cm 27.共有 10 个,等边三角形共有三条对称轴,每条对称轴上有 4 个点,有 3 个点重合 28.是等腰三角形,说明∠CEB=∠B 29.陈华同学的说法正确,理由略 30.说明△ABD≌△△ACD
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (482).pdf

6.(2 分)如图,图中等腰三角形的个数为( )
A.2 个
B.3 个
C.4 个
D.5 个
7.(2 分)如果△ABC 是等腰三角形,那么∠A,∠B 的度数可以是( )
A.∠A=60°,∠B=50°
B.∠A=70°,∠B=40°
C.∠A=80°,∠B=60°
D.∠A=90°,∠B=30°
8.(2 分)在△ABC 中,AB = BC,∠A =80°, 则∠B 的度数是( )
14.(2 分)如图,若等腰三角形的两腰长分别为 x 和 2x − 6 ,则 x 的值为________.
Hale Waihona Puke 15.(2 分)如图,在长方形 ABCD 中,AB=6,BC=8,如果将该矩形沿对角线 BD 折叠,那 么图中重叠部分的面积是 .
16.(2 分)已知△ABC 的三边长分别是 8 cm,10 cm ,6 cm,则△ABC 的面积是 cm2. 17.(2 分)如图所示,在△ABC 中,∠ACB=90°,BC=5,D 是 AB 的中点,△BCD 的周 长是 l8,则 AB 的长是 .
A.∠BAD
B.∠C
C.∠CAD
D.没有这样的角
4.(2 分)如图,在△ABC 中,AB=AC,AD⊥BC 于 D,E 为 AC 的中点,AB=6,则 DE 的
长是( )
A.2
B.3
C.4
D.2.5
5.(2 分)要组成一个等边三角形,三条线段的长度可取( )
A.1,2,3
B.4,6,11 C.1,1,5 D.3.5,3.5,3.5
B.HL
C.SAS
D. AAA
2.(2 分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (363).pdf

评卷人 得分
三、解答题
22.(7 分)如图所示,一棵大树被龙卷风吹断了,折断点离地面 9 m,树顶端落在离树根 12 m 处,问这棵大树原先高度是多少?
23.(7 分)如图,OD 平分∠AOB,DC∥A0 交 0B 于点 C,试说明△OCD 是等腰三角形的 理由.
24.(7 分)如图,AB=CD,DF⊥AC 于 F,BE⊥AC 于 E,AE=CF,则 BE=DF,请你说明 理由.
29.(7 分)如图,在△ABC 中,D、E 分别是 AB、AC 上的点,且 AD=AE,DE∥BC,试 说明 AB=AC.
30.(7 分) 如图,△ABC 中,AB=AC,D、E、F 分别在 AB、BC,AC 上,且 BD=CE,∠ DEF=∠B,图中是否存在和△BDE 全等的三角形?说明理由.
【参考答案】***试卷处理标记,请不要删除
A. 1 个
B.2 个
C.3 个
D.4 个
9.(2 分)下列说法错误的是( )
A.三个角都相等的三角形是等边三角形
B.有两个角是 60°的三角形是等边三角形
C.有一个角是 60°的等腰三角形是等边三角形
D.有两个角相等的等腰三角形是等边三角形
10.(2 分)等腰三角形的“三线合一”是指( )
A.中线、高、角平分线互相重合
A.2 cm
B.8 cm
C.2 cm 或 8 cm D.以上都不对
评卷人 得分
二、填空题
13.(2 分)如图,AB⊥BC,BC⊥CD,当 时,Rt△ABC≌Rt△DCB(只需写出一个条件).
14.(2 分)在 Rt△ABC 中,∠C = 90°,∠B = 35°,则∠A = . 15.(2 分)如图,小李准备建造一个蔬菜大棚,棚宽 4m ,高 3m,长 20m,棚的斜面用塑 料布遮盖,不计墙的厚度,那么阳光透过的最大面积为 m2.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (422).pdf

A.6 cm
B.7 cm
C.8 cm
D.9 cm
12.(2 分)在△ABC 中,∠A:∠B:∠C=2:3:5,则△ABC 是( )
A.锐角三角形
B.钝角三角形 C.直角三角形 D.无法确定
13.(2 分)等腰三角形是轴对称图形,它的对称轴是( )
A.过顶点的直线
B.底边上的高所在Βιβλιοθήκη 直线C.顶角平分线所在的直线
评卷人
得分
二、填空题
15. 4 5
3
16.答案不唯一,如∠B=60°
17.49°
18.64 cm2
19.(1)40°;(2)20°
20.3
21.38.5°
22.70°,40°或 55°,55°
23.等腰
评卷人 得分
三、解答题
24.
如图放置,可求得 AP= 2 1.41 1.45 ,所以能通过 25.说明 Rt△ABC≌△Rt△DCF 26.设以 AC、AB、BC 为直径的半圆面积分别为 S1、S2、S3:.则有 S1+S3=S2;理由略 27.30s 28.10 km 29.45°或 l35° 30.共有 10 个,等边三角形共有三条对称轴,每条对称轴上有 4 个点,有 3 个点重合
()
A. a 2
B. a 3
C. a 4
D.以上结果都不对
6.(2 分)如图,△ABC 中,∠ACB=120°,在 AB 上截取 AE=AC,BD=BC,则∠DCE 等于
()
A.20°
B.30°
C.45°
D.60°
7.(2 分)下列图形中,不是轴对称图形的是( )
A.线段
B.角
C.直角三角形 D.等腰三角形
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (991)

是( )
A.
B.
C.
D.
10.(2 分)等腰三角形的一边长是 8,周长是 l8,则它的腰长是( )
A.8
B.5
C.2
D.8 或 5
评卷人 得分
二、填空题
11.(2 分)已知等腰三角形的两边长 x 、 y 满足 x + y − 7 + (4x + 2y − 22)2 = 0 ,且底边比腰
长,则它的一腰上的高于 . 12.(2 分)某同学从学校出发向南走了 10 米,接着又向东走了 5 米到达文化书店,则学校 与文化书店之间的距离是 米. 13.(2 分) 现有两根长度分别为 8cm 和 l5cm 的木棒,要钉成一个直角三角形木架,则所需 要第三根木棒的长度为 .
评卷人 得分
一、选择题
1.C 2.C 3.D 4.A 5.A 6.B 7.A 8.C 9.B
10.D 评卷人
得分二、填空题1源自. 4 5312. 125
13.17cm 或 161 cm
14. 202
15.8.4 16.20° 17.3 18.8 19.64 cm2 20.30 21.25° 22.30°或 75°
14.(2 分)如图是一个长方形公园,如果要从 A 景点走到 B 景点,至少要走 米.
15.(2 分) Rt△ARC 中,∠C=90°,若 CD 是 AB 边的中线,且 CD=4cm,则 AB= cm, AD= BD= cm. 16.(2 分)在 Rt△ABC 中,∠C=Rt∠,∠A=3∠B+10°,则∠B= .
6.(2 分)三角形的三边长 a、b、c 满足等式( (a + b)2 − c2 = 2ab ,则此三角形是( )
A.锐角三角形
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (442).pdf

△ABC 的面积为( )
A.24 cm2 B.36 cm2 C.48 cm2 D.96 cm2
6.(2 分)如图,在△ABC 中,∠BAC=90°,点 D 是 AB 的中点,BC=14 cm,则 AD 的长
是( )
A.6 cm
B.7 cm
C.8 cm
D.9 cm
7.(2 分)我们知道,等腰三角形是轴对称图形,下列说法中,正确的是( )
25.(7 分)如图,一根旗杆在离地面 9 m 处的 B 点断裂,旗杆顶部落在离旗杆底部 12 m 处,旗杆折断之前有多高?
26.(7 分)已知△ABC 中,∠C=Rt∠,BC=a,AC=b. (1)若 a=1,b=2,求 c; (2)若 a=15,c=17,求 b.
27.(7 分)在△ABC 中,如果∠A=∠B= 1 ∠C,试判断△ABC 的形状,并说明理由. 2
22.(7 分)试判断:三边长分别为 2n2 + 2n , 2n +1 、 2n2 + 2n +1(n>O)的三角形是否是直角三
角形?并说明理由. 23.(7 分)如图所示,Rt△ABC 中,∠C=90,分别以 AC、BC、AB 为直径向外画半圆,这 三个半圆的面积之间有什么关系?为什么?
24.(7 分)如图所示,铁路上 A、B 两站相距 25 km,C.D 为村庄,DA⊥AB 于 A,CB⊥ AB 于 B,已知 DA=15 km,CB=10 km,现在要在铁路的 A、B 两站间建一个土产品收购 站 E,使得 C、D 两村到 E 站的距离相等,则 E 站应建在离 A 站多远处?
A.50°
B.40°
C.25°
D.20°
2.(2 分)若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (465).pdf

2019-2020 年八年级数学上册《特殊三角形》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一
二
三 总分
得分
评卷人 得分
一、选择题
1.(2 分)等腰三角形形一个底角的余角等于 30°,它的顶角等于( )
评卷人 得分
一、选择题
1.B 2.C 3.A 4.C 5.A 6.C 7.C 8.D 9.B 10.B 11.A
评卷人
得分
二、填空题
12.答案不唯一,如 AB=CD
13. 125
14.55° 15.18° 16. 17.25° 18.53° 19.5 cm 20.3 21.6 22.3 23.11 或 l3
是.
22.(2 分)等腰三角形的对称轴最多有 条.
23.(2 分)已知等腰三角形的两条边长为 3 和 5,求等腰三角形的周长.
评卷人 得分
三、解答题
24.(7 分)如图,在 6×6 的正方形网络中,有 A、B、C 三点.分别连接 AB、BC、AC,试 判断△ABC 的形状.
25.(7 分)已知:如图,在 Rt△ABC 中,∠C=90°,AC=BC,AD 是∠A 的平分线. 试说明 AC+CD=AB 成立的理由.
26.(7 分)下列几组数能否作为直角三角形的三边,请说明理由.
①7,24,25 ② 2 ,1, 5 ③10,24,26
3
4
27.(7 分)如图,在△ABC 中,AB=AC=5,BC=6,AD⊥BC,求 AD 的长.
28.(7 分)已知:如图,AD、BE 是△ABC 的高,F 是 DE 中点,G 是 AB 的中点.试说明 GF⊥DE.
2019-2020初中数学八年级上册《特殊三角形》专项测试(含答案) (714).pdf

30.说明△ABD≌△△ACD
6.(2 分)等腰三角形的周长为 l8 cm,其中一边长为 8 cm,那么它的底边长为( )
A.2 cm 评卷人
得分
B.8 cm 二、填空题
C.2 cm 或 8 cm D.以上都不对
7.(2 分)在△ABC 中,∠A = 60°,若要使它为等边三角形,则需补充条件: (只需写出 一个条件). 8.(2 分)某同学从学校出发向南走了 10 米,接着又向东走了 5 米到达文化书店,则学校与 文化书店之间的距离是 米. 9.(2 分)如图,∠ABC = 75°,∠A = 48°,AB 的垂直平分线交 AC 于点 D,则∠
25.(7 分)如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC.说明: △EBC 是等腰三角形.
26.(7 分)如图所示,正方形 ABCD 中,E 是 AD 的中点,点 F 在 DC 上且 DF= 1 DC,试 4
判断 BE 与 EF 的关系,并作出说明.
27.(7 分)有一块菜地,地形如图,试求它的面积 s(单位:m).
30.(7 分)如图,已知∠1=∠2,∠3=∠4,说明:△ABC 是等腰三角形.
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.B 3.C 4.C 5.C 6.C
评卷人 得分
二、填空题
7.答案不唯一,如∠B=60°
8. 125
9.27°
10.60, 25 3 4
11.∠A 的平分线
cm.
14.(2 分)如图, AD 是 △ABC 的一条中线, ADC = 45 .沿 AD 所在直线把△ADC 翻折,使点 C 落在点 C 的位置.则 BC = .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学试卷
2019-2020年八年级数学上册《特殊三角形》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一 二 三 总分 得分
评卷人 得分
一、选择题
1.(2分)如图,跷跷板的支柱OC 与地面垂直,点O 是AB 的中点,AB 可以绕着点O 上下转动.当A 端落地时,∠OAC =20°,那么横板上下可转动的最大角度(即∠A′OA )是( ) A .40°
B .30°
C .20°
D .10°
2.(2分)如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到 三条公路的距离相等,则可选择的地址有( ) A .一处
B .两处
C .三处
D .四处
3.(2分)一个三角形的两条边分别为1和2,若要使这个三角形成为直角三角形,则应满足下列各个条件中的( ) A .第三边长为3
B .第三边的平方为3
C .第三边的平方为5
D .第三边的平方为3或5
4.(2分)已知等腰腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于( ) A .15°
B .75°
C .15°或75°
D .150°或30°
5.(2分)如图,在△ABC 中,AB=AC ,AD ⊥BC 于D ,E 为AC 的中点,AB=6,则DE 的长是( ) A .2
B .3
C .4
D .2.5
6.(2分)如图,CD是等腰直角三角形斜边AB上的中线,DE⊥BC于E,则图中等腰直角三角形的个数是()
A.3个B.4个C.5个D.6个
7.(2分)△ABC和△DEF都是等边三角形,若△ABC的周长为24 cm ,△DEF的边长比△ABC的边长长3 cm,则△DEF的周长为()
A.27 cm B.30 cm C.33 cm D.无法确定
8.(2分)如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()
A.B.C.D.
9.(2分)在△ABC 中,AB = BC,∠A =80°,则∠B 的度数是()
A.100°B.80°C. 20 D. 80°或 20°10.(2分)等腰三角形的顶角是底角的 4倍,则其顶角为()
A.20°B.30°C.80°D.120
11.(2分)下列轴对称图形中,对称轴条数最少的是()
A.等腰直角三角形B.长方形C.正方形D.圆
评卷人得分
二、填空题
12.(2分)等腰直角三角形的斜边上的中线长为 1,则它的面积是 .
13.(2分)在△ABC中,与∠A相邻的外角等于l35°,与∠B相邻的外角也等于l35°,则
△ABC 是三角形.
14.(2分)在Rt△ABC中,∠C=90°,∠A=41°,则∠B= .
15.(2分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了步路(假设2步为l m),却踩伤了花草.
16.(2分)如图,∠C=∠D=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的( )内写出判定全等的依据.
(1) ( );
(2) ( );
(3) ( );
(4) ( ).
17.(2分)如图,小红和弟弟同时从家中出发,小红以4 km/h的速度向正南方向的学校走去,弟弟以3 km/h的速度向正西方向的公园走去,lh后,小红和弟弟相距 km.
18.(2分)如图,将一等边三角形剪去一个角后,∠1+∠2= .
19.(2分)正三角形是轴对称图形,对称轴有条.
20.(2分)等腰三角形两边的长是两个连续的偶数,周长为20,则该等腰三角形的腰长是.
评卷人得分
三、解答题
21.(7分)如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.
我找的等腰三角形是: .
证明:
22.(7分)如图①所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2 m,房间高2.6 m,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图②中的长廊搬人房间,在图②中把你设计的方案画成草图,并通过近似计算说明按此方案可把家具搬人房间的理由.
(注:搬运过程中不准拆卸家具,不准损坏墙壁)
23.(7分)如图,已知AC=BD,AD⊥AC,BD⊥BC,则AD=BC,请说明理由.
24.(7分)阅读下列解题过程:
已知:a 、b 、c 为△ABC 一的三边,且满足222244a c b c a b −=−,试判定△ABC 的形状. 解:∵222244a c b c a b −=− (A ) ∴2222222()()()c a b a b a b −=+−,(B) ∴222c a b =+, (C ) ∴△ABC 是直角三角形.
问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号: . (2)错误的原因为: . (3)本题正确的结论是: .
25.(7分)如图所示,正方形ABCD 中,E 是AD 的中点,点F 在DC 上且DF=1
4
DC ,试
判断BE 与EF 的关系,并作出说明.
26.(7分)试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.
27.(7分)房梁的一部分如图所示,其中BC ⊥AC ,∠A=30°,AB=7.4 m ,点D 是AB 的中点,且DE ⊥AC ,求BC 、DE 的长.
28.(7分)如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C 处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?
29.(7分) 如图,△ABC 中,AB=AC,D、E、F分别在 AB、BC,AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由.
30.(7分)如图,在△ABC 中,AB=AC,∠A =30°,BD是△ABC 的高,求∠CBD 的度数.
【参考答案】***试卷处理标记,请不要删除
评卷人得分
一、选择题
1.A
2.D
3.D
4.C
5.B
6.C
7.C
8.B
9.C
10.D
11.A
评卷人得分
二、填空题
12.1
13.等腰直角
14.49°
15.4
16.(1)AD=BC,HL (2)BD=AC,HL (3)∠DAB=∠CBA,AAS (4)∠DBA=∠CAB,AAS
17.5
18.240°
19.3
20.6
评卷人得分
三、解答题
21.我所找的等腰三角形是:△ABC(或△BDC或△DAB).
证明:在△ABC中,∵∠A=36°,∠C=72°,
∴∠ABC=180°-(72°+36°)=72°.
∵∠C=∠ABC,∴AB=AC,
∴△ABC是等腰三角形.
22.
如图放置,可求得2 1.41 1.45
≈<,所以能通过
23.说明Rt△ACD≌Rt△BDC
24.(1)C;(2)220
−=可能成立;(3)△ABC为等腰三角形或直角三角形
a b
25.BE⊥EF.说明BE2+EP2=BF2
26.是直角三角形,理由略
27.BC=3.7 m,DE=1.85 m
28.陈华同学的说法正确,理由略
29.△BDE≌△CEF(ASA)
30.15°。