最新实际问题与不等式题型总结(初中数学七年级)

合集下载

七年级不等式知识点应用题

七年级不等式知识点应用题

七年级不等式知识点应用题在数学中,不等式是一个非常重要的概念,我们在七年级就学习了很多不等式的知识点和应用。

在这篇文章中,我们将学习如何应用七年级不等式知识点解决一些实际问题。

一、一元一次不等式一元一次不等式是我们在七年级学习的第一个不等式知识点。

这种不等式的形式通常是ax+b>0或者ax+b<0,其中a和b为已知数,x为未知数。

在应用中,我们通常需要根据不等式解决一些实际问题。

比如,某地区小学和初中的学生人数之比为3:2,如果该地区小学有600人,求该地区初中的最小人数。

设该地区初中的人数为x,根据题意有:(3/2)/(2/1)=600/x解得x=400,因此该地区初中的最小人数为400人。

二、一元一次不等式组如果我们需要同时考虑多个不等式的影响,那么我们就需要学习一元一次不等式组的知识。

在一元一次不等式组中,我们通常会使用消元法或者图像法来解决问题。

比如,某家庭去旅行,父亲开车100km/h,儿子骑摩托车70km/h,如果单程路程为1200km,父亲和儿子的出发时间相差2小时,求父亲和儿子出发的时间。

设父亲和儿子的出发时间分别为t和t+2,根据题意有:100t+70(t+2)=1200解得t=8,因此父亲出发时间为8时,儿子出发时间为10时。

三、二元一次不等式组当问题中涉及到两个未知数时,我们就需要使用二元一次不等式组来解决。

在解决二元一次不等式组时,我们通常会使用代数法或者图像法。

比如,有一批商贩希望批发水果,甲商贩批发苹果每斤2元,甲商贩批发橙子每斤3元;乙商贩批发苹果每斤1元,乙商贩批发橙子每斤1.5元。

如果他们共同购买30件水果并出现了次数差不超过1的情况,请问甲商贩购买几件苹果?设甲商贩购买的苹果和橙子分别为x和y,乙商贩购买的苹果和橙子分别为a和b,根据题意有:2x+3y=1a+1.5bx+y+a+b=30解得x=9,因此甲商贩需要购买9件苹果。

四、综合应用七年级不等式知识点的应用非常广泛,我们可以在各种实际问题中使用不等式来解决。

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法
初一数学不等式题型及解题方法
一、不等式的概念
什么是不等式? 不等式就是用符号表示两个数量或几个数量之间的关系和大小的算术表达式,它一般由“大于、小于、大于等于、小于等于”等符号和“=”符号两部分组成,如:
3x-5 > 6
二、不等式的解题方法
(一)解不等式的共同方法:
1.把不等式的左右两边与右边的数比较:
(1)如果比较时左边的数大于右边的数,则原式为真,所以真不等式的结果是无穷大;
(2)如果比较时左边的数小于右边的数,则原式为假,所以假不等式的结果是无穷小。

2.变形法:
(1)把不等式左边的式子变形,使其变为等式或假不等式,继续上面的比较;
(2)把不等式转化为等式,再求解出等式的解,再进行排除法,排除掉不符合要求的解或将满足要求的解组成结果。

(二)不等式的分类
1.一元一次不等式
一元一次不等式是指x的一次幂不大于1,如:2x-3≤5。

解法:求得x ≤ 4/2,故不等式的解集为 x ≤ 4/2 。

2.一元二次不等式
一元二次不等式是指x的幂不大于2,如:2x2-3x+4≥2。

解法:首先方程的左边式子求得最小值,然后再以最小值与右边比较,确定原式的真假。

3.多元一次不等式
多元一次不等式指的是有一个或多个变量,且变量的幂均不大于1,如:x+2y ≤ 4
解法:先把不等式变成一元一次不等式,然后再求解:先把不等式中的y变量消去,即 x+2y ≤ 4 → x ≤ 4-2y 。

七年级数学下册第九章不等式与不等式组题型总结及解题方法

七年级数学下册第九章不等式与不等式组题型总结及解题方法

七年级数学下册第九章不等式与不等式组题型总结及解题方法单选题1、对于实数a,如果定义[]是一种取整运算新符号,即[a]表示不超过a的最大整数.例如:[1.3]=1,[﹣1.3]=﹣2,对于后面结论:①[﹣2.3]+[2]=﹣1;②因为[1.3]+[﹣1.3]=﹣1,所以[a]+[﹣a]=﹣1;③若方程x﹣[x]=0.1有解,则其解有无数多个;④若[a+2]=2,则a的取值范围是0≤a<1;⑤当﹣1≤a<1时,则[1+a]﹣[1﹣a]的值为1或2.正确的是( )A.②③④B.①②④C.①③④⑤D.①③④答案:D分析:①根据取整函数的定义,直接求出值;②取特殊值验证,证实或证伪;③在0到1的范围内,找到一个特殊值,进而可以找到无数个解;④把方程问题转化为不等式问题;⑤分情况讨论,验证[1+a]-[1-a的所有取值.对于①,[-2.3]+[2]=-3+2=-1,故正确;对于②,当a=1时,[a]+[-a]=0,故不正确;对于③,当x=1.1,2.1,3.1,...时,方程均成立,故正确;对于④,由[a+2]=2,得2≤a+2<3,即0≤a<1,故正确;对于⑤,当a=-1时,[1+a]-[1-a]=0-2=-2;当-1<a<0时,[1+a]-[1-a]=0-1=-1;当0<a<1时,[1+a]-[1-a]=1-0=1.故[1+a]-[1-a]的值为-1或1或-2,故⑤不正确.综上所述,正确的是①③④故选:D.小提示:本题考查取整函数与一元一次不等式.解题的关键在于能够把取整函数的等式,转化为一元一次不等式问题去解决.2、斑马线前“车让人”,反映了城市的文明程度,但行人一般都会在红灯亮起前通过马路,某人行横道全长24米,小明以1.2m/s 的速度过该人行横道,行至13处时,9秒倒计时灯亮了,小明要在红灯亮起前通过马路,他的速度至少要提高到原来的( )A .1.1倍B .1.4倍C .1.5倍D .1.6倍答案:C分析:已经行至13,说明还剩24×(1−13)路程,设提速后的速度为x ,依题意列出不等式并求出解集即可. 解:设提速后的速度为x ,依题意可得9x ≥24×(1−13), 解得x ≥169,则x ÷1.2≥4027≈1.48,故选:C . 小提示:本题考查了一元一次不等式的应用,依题意能列出不等式并求出提速后的速度是解决问题的关键.3、关于x 的不等式{2(x −1)>4a −x <0的解集为x >3,那么a 的取值范围为( ) A .a >3B .a <3C .a ≥3D .a ≤3答案:D分析:先解第一个不等式得到x >3,由于不等式组的解集为x >3,则利用同大取大可得到a 的范围. 解:解不等式2(x -1)>4,得:x >3,解不等式a -x <0,得:x >a ,∵不等式组的解集为x >3,∴a ≤3.故选:D小提示:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4、关于x 的方程4x-2m+1=5x-8的解是负数,则m 的取值范围是( )A .m>92B .m<0C .m<92D .m>0答案:A解:方程4x -2m +1=5x -8的解为x =9-2m .由题意得:9-2m <0,则m >92.故选A .5、已知a <b ,下列式子不一定成立的是( )A .a −1<b −1B .−2a >−2bC .12a +1<12b +1D .ma >mb答案:D分析:根据不等式的性质解答.解:A 、不等式a <b 的两边同时减去1,不等式仍成立,即a−1<b−1,故本选项不符合题意;B 、不等式a <b 的两边同时乘以-2,不等号方向改变,即−2a >−2b ,故本选项不符合题意;C 、不等式a <b 的两边同时乘以12,不等式仍成立,即:12a <12b ,再在两边同时加上1,不等式仍成立,即12a +1<12b +1,故本选项不符合题意;D 、不等式a <b 的两边同时乘以m ,当m>0,不等式仍成立,即ma <mb ;当m<0,不等号方向改变,即ma >mb ;当m=0时,ma =mb ;故ma >mb 不一定成立,故本选项符合题意,故选:D .小提示:本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6、实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <−2B .|a |<|b |C .−a <−bD .ab >0答案:D分析:先根据数轴的性质可得−2<a <b <0,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.解:由数轴的性质得:−2<a<b<0.A、a>−2,此项错误,不符题意;B、|a|>|b|,此项错误,不符题意;C、−a>−b,此项错误,不符题意;D、ab>0,此项正确,符合题意;故选:D.小提示:本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键.7、不等式组{x−2≤0x+3>0的解集是()A.-3<x≤2B.-3≤x<2C.x≥2D.x<−3答案:A分析:分别求出各不等式的解集,再求出其公共解集即可.解:{x−2≤0①x+3>0②解不等式①得:x ⩽ 2,解不等式②得:x>−3,∴不等式组的解集为:−3<x⩽2,故选:A.小提示:本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、已知x=m+15,y=5−2m,若m>−3,则x与y的关系为()A.x=y B.x>y C.x<y D.不能确定答案:B分析:根据题意,直接利用作差法进行计算,得x−y=3m+10,比较3m+10与0的大小,即可得到答案.解:∵x−y=m+15−(5−2m)=3m+10,∵m>−3,∴3m>−9.∴3m +10>1>0.∴x >y .故选:B .小提示:本题考查了有理数的比较大小,以及代数式的变形和不等式的解法,难度适中.解题的关键是熟练掌握作差法比较大小.9、对于三个数字a ,b ,c ,用max{a ,b ,c}表示这三个数中最大数,例如max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}={a,(a ≥−1)−1,(a <−1),如果max{3,8﹣2x ,2x ﹣5}=3,则x 的取值范围是( ) A .23≤x≤92B .52≤x≤4C .23<x <92D .52<x <4答案:B分析:根据max{a ,b ,c}表示这三个数中最大数,对于max{3,8﹣2x ,2x ﹣5}=3,可得不等式组{3≥8−2x 3≥2x −5,可得结论. ∵max{3,8﹣2x ,2x ﹣5}=3,则{3≥8−2x 3≥2x −5, ∴x 的取值范围为:52≤x≤4,故选:B .小提示:本题考查了不等式的应用及新定义问题,理解新定义,得到不等式组是解题的关键.10、在数学表达式:−3<0,a +b ,x =3,x 2+2xy +y 2,x ≠5,x +2>y +3中,是一元一次不等式的有( ).A .1个B .2个C .3个D .4个答案:A分析:一元一次不等式的定义:含有一个未知数,且未知数的次数是1,未知数的系数不为0,左右两边为整式的不等式;根据一元一次不等式的定义,对各个表达式逐一分析,即可得出答案.-3<0是不等式,不是一元一次不等式;a +b 是整式,不是一元一次不等式;x=3是方程,不是一元一次不等式;x2+2xy+y2是整式,不是一元一次不等式;x≠5是一元一次不等式;x+2>y+3是二元一次不等式,不是一元一次不等式;∴是一元一次不等式的有1个故选:A.小提示:本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的定义,从而完成求解.填空题11、某种家用电器的进价为每件800元,以每件1200元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的______折出售.答案:七##7分析:设按标价的x折出售,利用利润=售价-成本,结合利润不低于5%,即可得出关于x的一元一次不等式,解出不等式取最小值即可.解:设按标价的x折出售−800≥800×5%由题意得:1200×x10解得:x≥7∴最低可按标价的7折出售故答案为7小提示:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.12、如果不等式2x-m≤0的正整数解共3个,则m的取值范围是________.答案:6≤m<8分析:先求出不等式的解集,根据已知得出关于m的不等式组,求出不等式组的解集即可.解:移项,得:2x<m,系数化为1,得:x<m,2∵不等式2x-m <0只有三个正整数解,∴3≤m 2<4, 解得:6≤m <8,故答案为6≤m <8.小提示:本题考查了解一元一次不等式,一元一次不等式组的整数解的应用,能得出关于m 的不等式组是解此题的关键.13、不等式12x −3>−14−52x 的最小负整数解______.答案:-3分析:移项,合并同类项,系数化成1,再求出不等式的最小负整数解即可.解:12x −3>−14−52x , 移项,得12x +52x >−14+3, 合并同类项,得3x >-11,系数化成1,得x >−113,所以不等式的最小负整数解是-3,所以答案是:-3.小提示:本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14、有学生若干人,住若干间宿舍,若每间住5人,则有14人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为_____.答案:39或44或49分析:可设共有x 间宿舍,则学生数有(5x +14)人,列出不等式组为0<5x +14−8(x−1)<8解出即可. 设共有x 间宿舍,则学生数有(5x +14)人,根据题意得:0<5x +14−8(x−1)<8,解得143<x <223,∵x 为整数,∴x =5或6或7,即学生有5x +14=39或5x +14=44或5x +14=49.即,学生人数是39或44人或49;所以答案是:39或44或49.小提示:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的解不等式组是需要掌握的基本能力.15、a 与b 的差是非负数,列出不等式为_______.答案:a -b ≥0.分析:先作差,然后根据非负列出不等式即可.解:由题意可得:a -b ≥0.故答案为a -b ≥0.小提示:本题主要考查了列不等式,理解非负的意义是解答本题的关键.解答题16、已知关于x 的不等式组{5x +1>3(x -1),12x ≤8-32x +2a 恰有两个整数解,求实数a 的取值范围. 答案:-4≤a<-3.试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a 的不等式组求得a 的范围.试题解析:解:由5x +1>3(x ﹣1)得:x >﹣2,由12x ≤8﹣32x +2a 得:x ≤4+a .则不等式组的解集是:﹣2<x ≤4+a .不等式组只有两个整数解,是﹣1和0.根据题意得:0≤4+a <1.解得:﹣4≤a <﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A ,B 两种型号的新型公交车,已知购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.(1)求A 型公交车和B 型公交车每辆各多少万元?(2)公交公司计划购买A 型公交车和B 型公交车共140辆,且购买A 型公交车的总费用不高于B 型公交车的总费用,那么该公司最多购买多少辆A 型公交车?答案:(1)A 型公交车每辆45万元,B 型公交车每辆60万元;(2)80分析:(1)设A 型公交车每辆x 万元,B 型公交车每辆y 万元,由题意:购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m 辆A 型公交车,则购买(140-m )辆B 型公交车,由题意:购买A 型公交车的总费用不高于B 型公交车的总费用,列出一元一次不等式,解不等式即可.(1)解:设A 型公交车每辆x 万元,B 型公交车每辆y 万元,由题意得:{x +2y =1652x +3y =270, 解得:{x =45y =60, 答:A 型公交车每辆45万元,B 型公交车每辆60万元;(2)解:设该公司购买m 辆A 型公交车,则购买(140﹣m )辆B 型公交车,由题意得:45m ≤60(140﹣m ),解得:m ≤80,答:该公司最多购买80辆A 型公交车.小提示:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.18、某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案? 答案:(1)甲型货车每辆可装载25箱材料,乙型货车每辆可装载15箱材料;(2)见解析分析:(1)设甲型货车每辆可装载x 箱材料,乙型货车每辆可装载y 箱材料,根据“若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设租用m 辆甲型货车,则租用(70−m)辆乙型货车,根据“租用的乙型货车的数量不超过甲型货车数量的3倍,且要运往工厂的这批材料不超过1245箱”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为整数,即可得出各租车方案.解:(1)设甲型货车每辆可装载x 箱材料,乙型货车每辆可装载y 箱材料,依题意得:{30x +50y =150020x +60y =1400, 解得:{x =25y =15. 答:甲型货车每辆可装载25箱材料,乙型货车每辆可装载15箱材料.(2)设租用m 辆甲型货车,则租用(70−m)辆乙型货车,依题意得:{25m +15(70−m)≤124570−m ≤3m, 解得:352≤m ≤392. 又∵m 为整数,∴m 可以取18,19,∴该公司共有2种租车方案,方案1:租用18辆甲型货车,52辆乙型货车;方案2:租用19辆甲型货车,51辆乙型货车.小提示:本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.。

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法

初一数学不等式题型及解题方法一、不等式的基本概念1.不等式符号及含义不等式是指两个数之间大小关系的一种表示方法。

不等号符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

其中,大于(>)表示左边的数比右边的数大;小于(<)表示左边的数比右边的数小;大于等于(≥)表示左边的数大于或等于右边的数;小于等于(≤)表示左边的数小于或等于右边的数。

2.不等式的解解不等式的过程就是求出不等式中未知数的取值范围。

一般情况下,我们通过对不等式进行变形、化简,再利用一些不等式性质和数轴上的图示可以求出不等式的解集。

解不等式的过程也包括反证法、分段讨论等方法。

二、不等式的性质不等式有一些特殊的性质,了解这些性质有助于我们更好地理解和运用不等式。

1.不等式的性质①两个相等的数之间没有大小关系,所以两个相等数代入一个不等式时不等式的成立与否是无法判断的。

②不等式两边同时加(减)一个相同的数,不等式仍然成立。

即如果a>b,则a+c>b+c。

③不等式两边同时乘(除)一个正数,不等式的方向不变。

即如果a>b,c>0,则a×c>b×c。

④不等式两边同时乘(除)一个负数,不等式的方向改变。

即如果a>b,c<0,则a×c<b×c。

2.不等式的转化不等式的转化是指将不等式进行变形、化简,以便更好地求解。

①不等式中可以进行加减、乘除、倒数、取对数等运算,但要注意符号的变化,需根据不等式的大小关系来进行变换。

②对于含绝对值的不等式,也可以通过转化为分段函数的方式来求解。

即根据不同的不等式形式,将绝对值进行分段讨论,再求解不等式。

三、不等式的解题方法1.一元一次不等式一元一次不等式是指只含有一个未知数和一次项的不等式,通常可以用数轴解题法、图像法、代入法等方法来求解。

①数轴解题法:首先将不等式化简,再根据不等式的方向在数轴上做出相应的标记,并根据不等式的特点来判断解集的范围。

七年级不等式知识点及题型总结(新)

七年级不等式知识点及题型总结(新)

不等式与不等式组知识要点:不等式定义:用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式不等式的解:使不等式成立的未知数的值,叫做不等式的解。

不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

不等式的基本性质:1.不等式两边加(或减)同一个数(或式子),不等号的方向不变。

如果那么2.不等式两边相乘(或除以)同一个正数,不等号的方向不变。

如果那么或3.不等式两边相乘(或除以)同一个负数,不等号的方向改变。

如果那么或延伸:1.若a>b,b>c,则a>c (不等式的传递性)2.若a>b,c>d,则a+c>b+d (同向不等式相加性质)3.若a>b>0,c>d>0,则ac>bd (同向不等式相乘性质)4.若a>b>0,则0<1a <1b(不等式的倒数性质)5.若a>b>0,则a n>b n (n∈N*) (不等式的乘方性质)6.若a>b>0 (n∈N*,n>1) (不等式的开方性质)一元一次不等式定义:只含一个未知数,并且未知数的次数是1,类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

解不等式:移项,合并同类项,系数化为一,在数轴上表示出解集去分母,去分子,去括号,移项,合并同类项,系数化为一,在数轴上表示出解集联系实际:注意“不大于”“不小于”“不超过”“超过”。

解一元一次不等式组 :不等式组的解集:同大取大,同小取小,大小小大取中间,大大小小无解。

步骤:标序号①②,解不等式,将两式的解集在数轴上表示出来,写出解集题型:一.画数轴,表示出不等式解集:二.求不等式的解:三.判定一系列式子哪些是不等式:四.利用不等式的性质答题:例题1:不等号填空:若a<b<0 ,则5a- 5b-;a 1 b 1;12-a 12-b五.求解不等式及不等式组:例题1:⎪⎩⎪⎨⎧-++≤--)12(23134122x x x x x六.数解的个数:例题1:不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D、4个七.根据文字描述写出不等式:例题1:“x 的一半与2的差不大于1-”所对应的不等式是 ( )。

部编数学七年级下册专题10《不等式与不等式组》解答题重点题型分类(解析版)含答案

部编数学七年级下册专题10《不等式与不等式组》解答题重点题型分类(解析版)含答案

专题10 《不等式与不等式组》解答题重点题型分类专题简介:本份资料专攻《不等式与不等式组》中“求一元一次不等式组中待定字母的值的情况”、“利用一元一次不等式(组)解决实际问题”、“方程组与不等式组相结合解决实际问题”、“利用不等式计算获利问题”、“运用一元一次不等式组进行方案设计”解答题重点题型;适用于老师给学生作复习培训时使用或者考前刷题时使用。

考点1:求一元一次不等式组中待定字母的值的情况方法点拨:1.已知关于x 的不等式组21321x m x m ->ìí-<-î(1)如果不等式组的解集为67x <<,求m 的值;(2)如果不等式组无解,求m 的取值范围;【答案】(1)11;(2)5m £【分析】(1)解两个不等式得出12m x +>且213m x -<,根据不等式组的解集为67x <<得1622173m m +ì=ïïí-ï=ïî,解之可得答案;(2)根据不等式组无解,利用“大大小小找不到”可得12123m m +-…,解之可得答案.【详解】解:(1)由21x m ->,得:12m x +>,解不等式321x m -<-,得:213m x -<,Q 不等式组的解集为67x <<,∴1622173m m +ì=ïïí-ï=ïî,解得11m =;(2)Q 不等式组无解,\12123m m +-…,解得5m ….【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.对于任意实数a ,b ,定义一种新运算:a #b =a ﹣3b +7,等式右边是通常的加减运算.例如:3#5=3﹣3×5+7.(1)求5#x >0解集;(2)若3m <2#x <7有解,求x 的取值范围;(3)在(2)的条件下,若x 的解集中恰有3个整数解,求m 的取值范围.【答案】(1)x <4;(2)233x m <<-;(3)-1≤m <0【分析】(1)根据新定义得出关于x 的不等式,解之即可;(2)根据新定义列出关于x 的不等式组,再分别求解即可得出其解集;(3)由不等式组整数解的个数得出关于m 的不等式组,再进一步求解即可.【详解】解:(1)由题意得5-3x +7>0,解得x <4;(2)由题意,得:32373727x m x î-+>-+<ìí①②,解不等式①,得:23x >,解不等式②,得:x <3-m ,则不等式组的解集为233x m <<-;(3)∵该不等式组有3个整数解,∴3<3-m ≤4,解得-1≤m <0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.已知不等式()132x m m ->-.()1若其解集为3x >,求m 的值;()2若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围.【答案】(1) 1.5m =;(2) 1.5m ³【分析】(1)根据已知等式求出m 的范围即可;(2)根据题意确定出m 的范围即可.【详解】解:(1)不等式整理得:63x m m ->-,解得:62,x m >-由不等式的解集为3,x >得到623,m -=解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -£,解得: 1.5m ³【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.4.若不等式组0122x a x x +³ìí->-î有3个整数解,则a 的取值范围是多少.【答案】2≤a <3【分析】先求出不等式组解集,然后再根据已知不等式组有3个整数解,列出不等式组确定a 的取值范围即可.【详解】解:0122x a x x +³ìí->-î①②解不等式①得:x ≥-a ,解不等式②x <1,∴不等式组的解集为-a ≤x <1,∵不等式组恰有3个整数解,∴-3<-a ≤-2,解得:2≤a <3.【点睛】本题主要考查了解一元一次不等式(组),不等式组的整数解等知识点,能根据不等式组的解集得出关于a 的不等式组是解答本题的关键.5.不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,求a 的取值范围.【答案】113a -<£【分析】先求出不等式组2153136215x x x +-ì-<ïíï-£î的解集为13x -<£,然后分别讨论当0a >时,当0a <时,当0a =时,不等式1ax >-的解集,然后根据不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分进行求解即可.【详解】解:2153136215x x x +-ì-<ïíï-£î①②解不等式①得:1x >-,解不等式②得:23x -££,∴不等式的解集为13x -<£,∵1ax >-,∴当0a >时,1x a>-∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴11a-£-,∴01a <£;同理当0a <时,1x a<-,∵不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴13a->,∴103-<<a ;当0a =时,01>-恒成立,即关于x 的一元一次不等式1ax >-的解集为一切实数,∴此时也满足不等式组2153136215x x x +-ì-<ïíï-£î的解集是关于x 的一元一次不等式1ax >-解集的一部分,∴综上所述,113a -<£.【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.6.已知关于x 的不等式4(x +2)﹣2>5+3a 的解都能使不等式(31)(23)32a x a x ++>成立,求a 的取值范围.【答案】115a -…【分析】先求出不等式4(x +2)-2>5+3a 的解集,再根据不等式(31)(23)32a x a x ++>用a 表示出x 的取值范围,最后解不等式组即可求出a 的取值范围.【详解】解:解不等式4(2)253x a +->+得:314a x ->,Q (31)(23)32a x a x ++>,解得:92ax >\31942a a -…解得:115a -….【点睛】本题考查的是解一元一次不等式,正确理解不等式的解集是解此题的关键.7.已知关于x 的不等式组()42127,6 1.7x x x a x ì-+>ïí-<+ïî(1)若该不等式组有且只有三个整数解,求a 的取值范围;(2)若不等式组有解,且它的解集中的任何一个值均不在5x ≥的范围内,求a 的取值范围.【答案】(1)12a £<;(2)25a £<【分析】(1)先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,得出关于a 的不等式组,从而求解;(2)结合不等式组有解及它的解集中的任何一个值均不在x ≥5的范围内,得出关于a 的不等式组,从而求解.【详解】解:(1)解不等式()42127x x -+>,得2x >.解不等式617x a x -<+,得7x a <-,∵该不等式组有且只有三个整数解,∴这三个整数解为3,4,5.∴576a <-£.∴12a £<.(2)∵该不等式组有解,由(1)知72a ->.∴该不等式组的解集为27x a <<-.又它的解集中的任何一个值均不在5x ≥的范围内,∴75a -£.解不等式组7275a a ->ìí-£î得符合题意的a 的取值范围为25a £<.【点睛】本题考查的是解一元一次不等式组和不等式的整数解,根据题意列出不等式,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.若一个不等式(组)A 有解且解集为()a x b a b <<<,则称2a b +为A 的解集中点值,若A 的解集中点值是不等式(组)B 的解(即中点值满足不等式组),则称不等式(组)B 对于不等式(组)A 中点包含.(1)已知关于x 的不等式组A :23560x x ->ìí->î,以及不等式B :15x -<£,请判断不等式B 对于不等式组A 是否中点包含,并写出判断过程;(2)已知关于x 的不等式组C :272131691x m x m +>+ìí-<-î和不等式D :43135x m x m >-ìí-<î,若D 对于不等式组C 中点包含,求m 的取值范围.(3)关于x 的不等式组E :22x n x m >ìí<î(n m <)和不等式组F :523x n x m n -<ìí->î,若不等式组F 对于不等式组E 中点包含,且所有符合要求的整数m 之和为9,求n 的取值范围.【答案】(1)不等式B 对于不等式组A 是中点包含,见解析;(2)316m -<<;(3)12n £<【分析】(1)先解不等式组A ,再按照要求求中点,再判断中点是否在B 不等式中即可.(2)先解不等式组C 、D ,再根据C 组的中点在D 不等式组中建立不等式,再解出m 取值范围.(3)先解不等式组E 、F ,再根据E 组的中点在F 不等式组中建立不等式,再解出m 取值范围,再根据符合要求的整数m 之和为9,缩小m 取值范围从而确定n 取值范围.【详解】(1)解不等式组A :23560x x ->ìí->î得46x <<,∴中点值为5x =又∵5x =在不等式B :15x -<£范围内,∴不等式B 对于不等式组A 是中点包含(2)解不等式C 得:33+5m x m -<<∴不等式组C 中点为:3+3+5=2+12m m m -解不等式D 得:51343m m x +-<<∵2m -1位于4m -和5133m +之间∴5134213m m m +-<-<解得:316m -<<(3)解不等式组E 得:2n <x <2m ,则中点值为n +m解不等式组F 得:32n m +<x <5+n ∵32n m +<n +m <5+n ∴5m n m <ìí<î∵所有符合要求的整数m 之和为9∴m 可取4,3,2∴12n £<【点睛】本题考查新定义概念的运用与求解,实际还是在考查不等式组的解法和不等式的性质,掌握好不等式组的解法和不等式性质是本题解题关键.考点2:利用一元一次不等式(组)解决实际问题方法点拨:列不等式解应用题基本步骤与列方程解应用题相类似,即:(1)审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解出所列的不等式的解集;(5)答:写出答案,并检验答案是否符合题意。

七年级 实际问题与一元一次不等式 ,最新版-带答案

七年级 实际问题与一元一次不等式 ,最新版-带答案

实际问题与一元一次不等式三只钟的故事一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。

一只旧钟对小钟说:“来吧,你也该工作了。

可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。

”“天哪!三千两百万次。

”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。

”“天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。

”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。

成功就是这样,把简单的事做到极致,就能成功。

1.在某次数学测试中,共有20道选择题,答对一题得5分,不答或答错一题扣2分,要想得60分以上,至少要答对多少道题?(只列式子)2.班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x个篮球,5x<50.乙同学说:6x>50.丙同学说:6(x﹣1)<50.你明白他们的意思吗?3.张勇从家到学校的路程为3 600m,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:m/min),求x的取值范围.试列出能反映上面关系的不等式.4.某游泳池的门票每张10元,使用一次,同时推出一种“个人月票”(个人月票从购买日起,可供持票者使用一个月).月票分A、B两类,A类月票每张132元,B类月票每张60元,但持B类月票进入游泳池时,需再购门票3元.(1)当一个月中进入该游泳池多少次时,购买B类月票与购买A类月票所花的钱相等;(2)当一个月中进入该游泳池的次数在什么范围时,购买B类月票比较合算.5.十字形的路口,东西、南北方向的行人车辆来来往往,车水马龙.为了不让双方挤在一起,红绿灯就应动而生,一个方向先过,另一个方向再过.如在南稍门的十字路口,红灯绿灯的持续时间是不同的,红灯的时间总比绿灯长.即当东西方向的红灯亮时,南北方向的绿灯要经过若干秒后才亮.这样方可确保十字路口的交通安全.那么,如何根据实际情况设置红绿灯的时间差呢?如图所示,假设十字路口是对称的,宽窄一致.设十字路口长为m米,宽为n米.当绿灯亮时最后一秒出来的骑车人A,不与另一方向绿灯亮时出来的机动车辆B相撞,即可保证交通安全.根据调查,假设自行车速度为4m/s,机动车速度为8m/s.若红绿灯时间差为t秒.通过上述数据,请求出时间差t要满足什么条件时,才能使车人不相撞.当十字路口长约64米,宽约16米,路口实际时间差t=8s时,骑车人A与机动车B是否会发生交通事故?1.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式_________.2.一家企业向银行申请了一年期贷款500万元,到期后归还银行的钱超过532.8万元,若设该项贷款的年利率为x,则x应满足的不等式为_________.3.“x与y的和大于1”用不等式表示为_________.4.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为_________.5.某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到400m外安全区域,若导火线燃烧的速度为1.1cm/秒,人跑步的速度为5m/秒,则导火线的长xcm应满足的不等式是:_________.6.如图,请任意选取一幅图,根据图上信息,写出一个关于温度x(℃)的不等式:_________.7.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于E),设AE=x,BE=y,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式_________.8.乐天借到一本有72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为_________.9.“x的一半与2的差不大于﹣1”所对应的不等式是_________.10.在一次知识竞赛中,有10道抢答题,答对一道得10分,答错一题扣5分,不答得0分,小芳有一道题没有答,成绩仍然不低于60分,若设她至少答对x道题,则可得不等式为_________.11.a的50%与b的的和除以c的2倍的商是非负数,用不等式表示为_________.12.ag糖水中有bg糖(a>b>0),则糖的质量与糖水的质量比为_________;若再添加cg糖(c>0),则糖的质量与糖水质量的比为_________;生活常识告诉我们:添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式:_________.13.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为_________cm.14.某次知识竞赛共有20道选择题,对于每一道题,答对得10分,打错或不答扣3分.若小刚希望总得分不少于70分,则他至少需答对_________道题.15.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为_________.16.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想获得不低于20%的利润,那么这种水果的售价在进价的基础上应至少提高_________%(保留三位有效数字).17.某饮料瓶上有这样的字样:Eatable Date 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为_________.18.某品牌自行车进价为每辆800元,标价为每辆1200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则最多可打_________折.19.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为362,则满足条件的x的不同值最多有_________个.20.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有_________件.21.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?22.为推进郴州市创建国家森林城市工作,尽快实现“让森林走进城市,让城市拥抱森林”的构想,今年三月份,某县园林办购买了甲、乙两种树苗共1000棵,其中甲种树苗每棵40元,乙种树苗每棵50元,据相关资料表明:甲、乙两种树苗的成活率分别为85%和90%.(1)若购买甲、乙两种树苗共用去了46500元,则购买甲、乙两种树苗各多少棵?(2)若要使这批树苗的成活率不低于88%,则至多可购买甲种树苗多少棵?23.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.晨光文具店用进货款1620元购进A品牌的文具盒40个,B品牌的文具盒60个,其中A品牌文具盒的进货单价比B品牌文具盒的进货单价多3元.(1)求A、B两种文具盒的进货单价?(2)已知A品牌文具盒的售价为23元/个,若使这批文具盒全部售完后利润不低于500元,B品牌文具盒的销售单价最少是多少元?25.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?26.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?27.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?28.今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x代数式表示)树苗类型甲种树苗乙种树苗买树苗数量(单位:棵)x买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26000元,求n 的最大值.29.2013年最新个人所得税税率表(个税起征点3500元)公民全月工薪不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累进计算.级数全月应纳税所得额税率1 不超过1500元的部分3%2 超过1500元至4500元的部分10%3 超过4500元至9000元的部分20%………依据草案规定,解答下列问题:(1)李工程师的月工薪为9000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过11000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围(取整数范围);若不能,请说明理由.30.如图,折线AC﹣BC是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.(1)求这条公路的长;(2)设甲乙出发的时间为t小时,求甲没有超过乙时t的取值范围.实际问题与一元一次不等式答案典题探究1. 解:设这个学生至少要答对x道题,则答错的题目为(20﹣x)道题.依题意得:5x﹣2(20﹣x)>602. 解:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几人(不足6人)玩另外一个篮球.3. 解:由题意得,30≤≤40.即能反映上面关系的不等式为:30≤≤40(90≤x≤120).4. 解:(1)设进入x次时,购买B类月票与购买A类月票所花的钱相等.60+3x=132,x=24.故在一个月中进入该游泳池24次时,购买B类月票与购买A类月票所花的钱相等;(2)设一个月中进入该游泳池x次时,购买B类月票比较合算.由10x>60+3x,解得x>,又由于x<24,故在一个月中进入该游泳池9到23次(包括9次和13次)时,购买B类月票比较合算.5. 解:从C1C2线到FG线的距离=+n=,骑车人A从C1C2线到K处时,另一方向绿灯亮,此时骑车人A前进距离=4tK处到FG线距离=﹣4t.骑车人A从K处到达FG线所需的时间为(﹣4t)=﹣t,D1D2线到EF线距离为.机动车B从D1D2线到EF线所需时间为×=,A通过FG线比B通过EF线要早一些方可避免碰撞事故.∴﹣t≤,即t≥,即设置的时间差要满足t≥时,才能使车人不相撞.如十字路口长约64米,宽约16米,理论上最少设置时间差为(64+16×3 )÷16=7秒,而实际设置时间差为8秒(8>7).骑车人A与机动车B不会发生交通事故.演练方阵1.解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>902.解:设该项贷款的年利率为x,由题意得:500(1+x)>532.8,故答案为:500(1+x)>532.8.3.解:x与y的和可表示为:x+y,“x与y的和大于1”用不等式表示为:x+y>1,故答案为:x+y>14.解:根据题意,得50+0.3x≤12005.解:根据题意,得5×>400.6.解:根据题意,得第一个图:x≥﹣8;第二个他图:x<30或x≤110.7.解:根据相交弦定理的推论,得CE2=AE•BE,则CE=.根据垂径定理,得CE2=AE•BE,即(CD)2=xy,∴CD=2CE=2.又AB=x+y,且AB≥CD,得x+y≥2.8.解:根据题意,得8x+2×5≥72.故答案为:8x+2×5≥729.解:根据题意,得﹣2≤﹣1.10.解:可得不等式为10x﹣5(9﹣x)≥6011.解:a的50%与b的的和除以c的2倍的商是非负数,用不等式表示为12.解:ag糖水中有bg糖(a>b>0),则糖的质量与糖水的质量比为;再添加cg糖(c>0),则糖有(b+c)g,糖水有(a+c)g,∴糖的质量与糖水质量的比为;算出前面两个比值后,实际为含糖量,∴添加的糖完全溶解后,含糖量变大,提炼出的不等式为:<.13.解:设长为3x,宽为2x,由题意,得:5x+30≤160,解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.14.解:设至少要答对x道题,总得分才不少于70分,则答错或不答的题目共有(20﹣x),依题意得:10x﹣3(20﹣x)≥70,10x﹣60+3x≥70,13x≥130,x≥10,答:至少要答对10道题,总得分才不少于70分.故答案为:10.15.解:第一个数就是直接输出其结果的:5x﹣1=144,解得:x=29,第二个数是(5x﹣1)×5﹣1=144解得:x=6;第三个数是:5[5(5x﹣1)﹣1]﹣1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x﹣1)﹣1]﹣1}﹣1=144,解得:x=(不合题意舍去)∴满足条件所有x的值是29或6.故答案为:29或6.16.解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高≈33.4%.故答案为:33.4.17.解:一般饮料和食品应在保质期内,即不超过保质期的时间内食用,那么该饮料的保质期可以用不等式表示为0<x≤18.18.解:设最多打x折,由题意得1200×﹣800≥800×5%,解得:x≥7,即最多可打7折.故答案为:七.19.解:我们用逆向思维来做:第一个数就是直接输出其结果的:3x+5=362,解得:x=119;第二个数是(3x+5)×3+5=362,解得:x=38;同理:可求出第三个数是11;第四个数是x=2,∴满足条件所有x的值是119或38或11或2共4个.故答案为:4.20.解:设共有x个小朋友,则玩具有3x+59个.∵最后一个小朋友不足4件,∴3x+59<5(x﹣1)+4,∵最后一个小朋友最少1件,∴3x+59≥5(x﹣1)+1,解得,30<x≤31.5.x取正整数31,则玩具数为3x+59=152件21.解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.22.解:(1)设购买甲、乙两种树苗各x棵和y棵,根据题意得:,解得:,答:购买甲、乙两种树苗各350棵和650棵;(2)设至多可购买甲种树苗x棵,则购买乙种树苗为(1000﹣x)棵,根据题意得,≥88%,解得x≤400,答:至多可购买甲种树苗400棵.23.解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.24.解:(1)设A品牌文具盒的进价为x元/个,依题意得:40x+60(x﹣3)=1620,解得:x=18,x﹣3=15.答:A品牌文具盒的进价为18元/个,B品牌文具盒的进价为15元/个.(2)设B品牌文具盒的销售单价为y元,依题意得:(23﹣18)×40+60(y﹣15)≥500,解得:y≥20.答:B品牌文具盒的销售单价最少为20元.25.解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;(2)由题意,得:1680+80x>1920+64x,解得:x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.26.解:(1)设在市区销售了x千克,则在园区销售了(3000﹣x)千克,则6x+4(3000﹣x)=16000,解得x=2000,3000﹣x=1000.故今年5月份该青椒在市区销售了2000千克,在园区销售了1000千克.(2)依题意有6(1﹣a%)×2000(1+30%)+4(1﹣a%)×1000(1+20%)≥18360,20400(1﹣a%)≥18360,1﹣a%≥0.9,a≤10.故a的最大值是10.27.解:(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤33,∵m是整数,∴m最大可取33.答:这所中学最多可以购买篮球33个树苗类型甲种树苗乙种树苗500﹣x买树苗数量(单位:棵)50x 80(500﹣x)买树苗的总费用(单位:元)解得x=480,500﹣x=20.答:甲种树苗买了480棵,乙种树苗买了20棵.(2)90%x+95%(n﹣x)≥92%×n,解得x≤n50x+80(n﹣x)=26000,解得x=,∴≤n,∴n≤419∵n为正整数∴n的最大值=419.29.解:(1)李工程师每月纳税:1500×3%+3000×10%+(9000﹣8000)×20%=45+300+200=545(元);(2)设该纳税人的月工薪为x元,则当x≤5000时,显然纳税金额达不到月工薪的8%,当5000<x≤9000时,由1500×3%+(x﹣5000)×10%>8%x得x>22750,不满足条件;当9000<x≤11000时,由1500×3%+3000×10%+(x﹣9000)×20%>8%x,解得x>10459,故10459<x≤11000,答:若该纳税人月工薪大于10459元且不超过11000元时,他的纳税金额能超过月工薪的8%.30.解:(1)设这条公路的长为xkm,由题意得,,解这个方程得,x=12.答:这条公路的长12km.(2)由题意得,40t≤10t+8,解这个不等式得:.答:当时,甲没有超过乙.。

(完整版)初一数学七下不等式所有知识点总结和常考题型练习题

(完整版)初一数学七下不等式所有知识点总结和常考题型练习题

不等式知识点1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。

6.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

不等式练习一、选择题1. 若m>n,下列不等式不一定成立的是()(A )m +2>n +2 (B )2m >2n (C ) (D )2.把不等式组⎩⎨⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D3.不等式组1011x x +>⎧⎨-⎩≤的解集是: ( ) A 、2x ≤ B 、1x >- C 、1x -<≤2 D 、无解4. 下列说法不一定成立的是( )A .若,则B .若,则C .若,则D .若,则 5.关于x 的不等式组⎩⎨⎧1a x >>x 的解集为x >1 ,则a 的取值范围是( ) A . a >1 B . a <1 C . a ≥1 D . a ≤16.已知:y 1=2x -5,y 2=-2x +3.如果y 1<y 2,则x 的取值范围是( )A .x >2B .x <2C .x >-2D .x <-27. 不等式组的整数解的个数是( ) A . 3 B . 5 C . 7 D . 无数个8. 已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限A .一B .二C .三D .四9.不等式组的解集在数轴上表示正确的是( )A .B .C .D .10.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题( )A .18题B .19题C .20题D .21题11. 某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x 千米,出租车费为15.5元,那么x 的最大值是( )A .11B .8C .7D .5二、填空题 1-100-110-110-111. 已知a >b ,用“<”或“>”填空: (1)1-a 1-b ; (2)m 2a m 2b (m ≠0). 2. 不等式组的解集是 .3.不等式组⎩⎨⎧x -1≤0,-2x <3的整数解...是 . 4. 不等式组的所有整数解的积为 .5. 关于x 的方程kx -1=2x 的解为正实数,则 k 的取值范围是_______________.三、解答题1. 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32+1≤3x -14 ,并把它的解集在数轴上表示出来.2. 已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.3.已知A =﹣(1)化简A ; (2)当x 满足不等式组,且x 为整数时,求A 的值.4.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?5. 每年的5月20日是中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?6. “六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.7. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与不等式题型总结
一、数字问题
1. 有一个两位数,其十位数字比个位数字大2,这个两位数在50和70之间,你能求出这个两位数吗?
2. 有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,求这个两位数
二、盈亏问题
1. 学校将若干间宿舍分配给七一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下
5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

有多少间宿舍,多少名女生?
2. 四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每
个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间?这批灾民有多少人?
三、综合问题
1. 为了保护环境,某造纸厂决定购买20台污水处理设备,现有A,B两种型号的设备,其中每台的价
格、日处理污水量如下表:
经预算,该纸厂购买设备的资金不能高于410万元.
(1)该企业有几种购买方案;
(2)若纸厂每日排出的污水量大于8060吨而小于8172吨,为了节约资金,该厂应选择哪种购买方案?
2. 足球比赛的记分规则为:胜1场得3分,平1场得1分,负1•场得0分,一支足球队在某个赛季中
共需比赛14场,现已比赛8场,负了1场,得17分,请问:
(1)前8场比赛中,这支球队共胜了多少场?
(2)这支球队打满了14场比赛,最高能得多少分?
(3)通过对比赛情况的分析,这支球队打满14场比赛得分不低于29分,就可以达到预期目标,请你分析一下,在后面的6场比赛中这支球队至少要胜几场,才能达到预期目标?
3. 某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格
如下表:
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并且购买甲、乙两种原料的费用不超过72元,
(1)设需用x千克甲种原料,写出x应满足的不等式组。

(2)按上述的条件购买甲种原料应在什么范围之内?
4. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞
赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550
元,则学校最多可以购买多少个足球?
5. 长沙市某公园的门票价格如下表所示:
某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
6. 学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:(8分)
用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
四、方案设计问题
1. 某饮料厂开发新产品,用甲、乙两种果汁原料各360㎏、290㎏试制A、B两种饮料共50箱,已知
生产一箱A种产品,需要甲种果汁原料9㎏,乙种果汁原料3㎏,生产一箱B种产品,需要甲种果汁原料4㎏,乙种果汁原料10㎏,在安排生产时,必须保证原料够用或有余。

(1)按要求安排A、B两种饮料的生产箱数,共几种方案?
(2)请你把方案设计出来。

2. 某地区为筹备一项庆典,利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A,B两种园艺造型共
50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆,且搭配一个A种造型的成本是200元,搭配一个B种造型的成本是300元,则有多少种搭配方案?这些方案中成本最低的是多少元?
3. 某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.公务员制度讲座形考作业
一、单项选择
12 、2005年4月27日,第十届全国人大常委会第十五次会议通过了(),这标志着我国的公务员制度迈入了一个新的发展阶段。

(难度系数:1.00)
A、《国家公务员暂行条例》
B、《中华人民共和国公务员法》
C、《国家机关工作人员法》
D、《国家行政机关工作人员条例》
学生答案:B
参考答案:B
2 、我国公务员的管理机构是( ) 。

(难度系数:1.00)
A、各级监督部门
B、各级人大部门
C、各级事业部门
D、各级人事部门
学生答案:D
参考答案:D
6 、现代公务员制度创立于19世纪中叶的()。

(难度系数:1.00)
A、英国
B、德国
C、美国
D、中国
学生答案:A
参考答案:A
13 、下列哪项公务员权利是其他行业职员一般来说所没有的()。

(难度系数:1.00)
A、职业保障
B、辞职
C、申诉控告
D、言论自由
学生答案:C
参考答案:C
4 、以下()不属于我国公务员管理机构的职能。

(难度系数:1.00)
A、决策职能
B、执行职能
C、监督仲裁职能
D、制定公务员法的职能
学生答案:D
参考答案:D
11 、以下可引起公务员权利义务产生的法律事实是()。

(难度系数:1.00)
A、参加公务员录用考试而成为公务员
B、公务员晋升
C、公务员降职
D、公务员培训
学生答案:A。

相关文档
最新文档