离散数学2

合集下载

离散数学2联结词(否定、合取)

离散数学2联结词(否定、合取)

联结词----否定、合取复合命题是用“联结词”将原子命题联结起来构成的.归纳自然语言中的联结词,定义了六个逻辑联结词:(1)否定“⌝”(2)合取“∧”(3) 析取“∨”和异或“”∨(4) 条件(蕴涵)“→”(5)双条件(等价)“∆”或记做“↔”一. 否定“⌝”表示:“…不成立”,“不…”.用于:对一个命题P的否定,写成⌝P,并读成“非P”.⌝P的真值:与P真值相反.例 P:2是素数.⌝P:2不是素数. P ¬P F T T F例1. P: 天津是一个城市.Q: 3是偶数.于是: ⌝ P: 天津不是一个城市.⌝ Q: 3不是偶数.例2. P:济宁学院处处清洁.Q:这些都是男同学.(注意,不是处处不清洁)⌝ P:济宁学院不处处清洁.⌝ Q:这些不都是男同学.二. 合取“∧”表示:“并且”、“不但…而且...”、“既…又...” “尽管…还…”.例 P:小王能唱歌.Q:小王能跳舞.P∧Q:小王能歌善舞. P∧Q读成P合取Q.P∧Q的真值为真,当且仅当P和Q的真值均为真.P Q P∧Q F F F F T F T F F T T T例3. 将下列命题符号化:(1)李平既聪明又用功.(2)李平虽然聪明, 但不用功.(3)李平不但聪明,而且用功.(4)李平不是不聪明,而是不用功.解: 设P:李平聪明. Q:李平用功.则 (1) P∧Q (2) P∧⌝ Q(3) P∧Q (4) ⌝(⌝ P)∧⌝ Q例4. 翻译下列命题的合取.(1) P: 我们在C403教室. Q: 今天是星期二.(2) S:李平在吃饭. R:张明在吃饭.解: (1) P∧Q :我们在C403教室且今天是星期二.(2) S∧R:李平与张明在吃饭.“∧”与日常语言中“与”“和”的不同之处:(1)逻辑学中允许两个相互独立无关,甚至相反的原子命题生成一个新命题.(2)自然语言中有时在不同意义时可以同时使用“与”“和”,但是不能都用“∧”翻译.(如:我和你是好朋友.李敏和李华是姐妹.)说明:“∧”属于二元运算符.合取运算特点:只有参与运算的二命题全为真时,运算结果才为真,否则为假.自然语言中的表示“并且”意思的联结词,如“既…又…”、“不但…而且…”、“虽然…但是…”、“一面…一面…”、“…和…”、“…与…”等都可以符号化为∧.。

离散数学第二章关系

离散数学第二章关系

例9 .设A={1,2,3,4} ,B={2,4,6,8,10} 。 R={(1,2),(2,4),(3,6)}。
则 (R) = {1,2,3}A , (R) = {2,4,6}B 。
二.关系的一些关联性质 17
离散数学
定理1. 设R1,R2 A×B是两个关系。若 R1 R2 ,则
(1)保序性: (R1) (R2) ; (2)保序性: (R1) (R2) ;
注:笛卡尔(1596-1650 ),法国数学家, 1637年发表《方法论》之 一《几何学》,首次提出坐标及变量概念。这里是其概念的推广。
定义2. • 二个集合A,B的(二维或二重)叉积定义为 A×B ={(a, b): a A bB} ; •其元素——二元组(a, b)通常称为序偶或偶对(ordered
故 (R1)∩ (R2) = {1,2 }
21
离散数学
所以 (R1)∩ (R2) (R1 ∩ R2) 。
元素aA和集合A1A在关系R A×B下的关联集 (1)a的R-关联集(R-relative set of a):
R(a)={b : bBaRb }B ;
(2) A1的R-关联集(R-relative set of A1): R(A1)={b : bB (aA1)(aRb) }B 。
•当A=B时,即RA×A,则称R是A上的一个二元关 系。
例1 . 设A是西安交通大学全体同学组成的集合。 11
离散数学
R={(a,b) : aAbAa与b是同乡}A×A 于是,R是西安交通大学同学之间的同乡关系。
例2 . 设A是某一大家庭。
R1 = {(a,b) : aAbAa是b的父亲或母亲}A×A R2 = {(a,b) : aAbAa是b的哥哥或姐姐}A×A R3 = {(a,b) : aAbAa是b的丈夫或妻子}A×A 于是,

离散数学第二章

离散数学第二章

P (t1 , t2 , , tn ) 是原子公式。
32
§2.1.3 谓词逻辑公式(公式 )
定义 谓词公式由下述各条规定组成: (1)原子公式是谓词公式。 (2)若A是谓词公式,则﹁ A也是谓词公式。 (3)若A和B是谓词公式,则A ∨ B,A ∧ B,A → B, 也是谓词公式。
22
2.存在量词
注意:1.在存在量词 的作用下,x不再起变量的作用, 存在量词也“约束”了x的变量作用。 注意:2.在存在量词作用下,命题中的特性谓词与命题 变元之间必须采用联结词合取,而不能用条件。 注意:3.命题的表示形式与个体域密切相关。 例:有些狗是聪明的。 若个体域为所有狗的集合,则该命题表示为:
这种“描述主语性质的谓语结构的抽象形式或描述主语所 涉及对象之间的关系的抽象形式”就是谓词。语句中的主 语称为个体。 在原子命题中引进谓词和个体的概念,这种以命题中的谓 词为基础的分析研究,称为谓词逻辑(或称谓词演算)。
7


§2.1.1 谓词与个体

在谓词逻辑中,将原子命题分解为谓词与个体两部分。
F (a1 , a2 , , an )
例如, T(a):a是教师。 D(3,2):3大于2。 C(武汉,北京,广州):武汉位于北 京和 广州之间。 注意顺序
9
§2.1.1 谓词与个体
在一个谓词中,个体是可以变化的,如 “是大学生” 中个体是可以变化的,可以是“张华是大学生” 也可
以是“何勇是大学生” ,等等。
31
§2.1.3 谓词逻辑公式(公式 )
定义( 项 ) (1)个体常量符是项;
(2)个体变量符是项;
(3)设f是n元函数符,
t1 , t2 , , tn 为项,则

离散数学II

离散数学II
b):相同的运算符,从左到右次序计算时,括号 可省去。
c):最外层括号可省。 如,(¬((P ∧ ¬Q) ∨R) →((R ∨P)∨Q))
¬(P ∧ ¬Q∨R) →R ∨P∨Q
21/73
1.1 命题与命题联结词
• 例1.3:符号化下列命题。
a):他既有理论知识又有实践经验 b):i. 如果明天不是雨夹雪则我去学校
26/73
1.2 公式的解释与真值表
• 原子命题在不指派真值时称为命题变元,而
复合命题由原子命题和联结词构成,可以看 作是命题变元的函数,且该函数的值仍为 “真”或“假”,可以称为真值函数(True Value Function)或命题公式。但不是说原 子命题和联结词的一个随便的组合都可以为 命题公式,我们用递归的方法来定义命题公 式。
• 例,(¬ P∧Q),(P→(¬P ∧Q)) ,(((P∧Q) ∧(R
∨Q)) ↔(P →R))是命题公式 (P →Q )∧¬ Q), (P →Q, (¬ P∨Q ∨(R, P∨Q ∨不是命题公式
28/73
1.2 公式的解释与真值表
• 注意:
– 如果G是含有n个命题变元 P1, P2, …,Pn的公式, 通常记为G(P1, …,Pn)或简记为G。
汇集起来的一门综合学科。离散数学的应用遍
及现代科学技术的诸多领域。
–离散数学是随着计算机科学的发展而逐步建立
起来的一门新兴的工具性学科,形成于上上个
世纪七十年代。
2/73
引言
• 课程意义
–离散数学是计算机科学的数学基础,其基本概念、 理论、方法大量地应用在数字电路、编译原理、数 据结构、操作系统、数据库系统、算法设计、人工 智能、计算机网络等专业课程中,是这些课程的基 础课程。

离散数学2

离散数学2

离散数学(2)复习题一、判断题1、两个集合相等的充分必要条件是这两个集合互为补集。

( × )2、两个集合相等的充分必要条件是这两个集合互为子集。

( √ )3、两个集合相等的充分必要条件是这两个集合互为幂集。

( × )4、对于任意一个集合A ,A f Í。

( √ )5、对于任意一个集合A ,A f Î。

( × )6、如果有限集合有n 个元素,则其幂集有2n 个元素。

( √ )7、设R 、S 是集合A 上的关系,且R S Ê,则()()s R s S Ê。

( √ )8、设R 、S 是集合A 上的关系,且R S Ê,则()()t R t S Ê。

( √ )9、设R 、S 是集合A 上的关系,且R S Ê,则()()r R r S Ê。

( √ )10、一个关系可以:既不满足自反性,也不满足非自反性。

( √ )11、一个关系可以:既不满足对称性,也不满足反对称性。

( √ )12、一个关系可以:既满足对称性,同时也满足反对称性。

( √ )13、若图G 是不连通的,则图G 的补图G -是连通的。

( √ )二、单项选择题1、由集合运算定义,下列各式正确的有( A )。

A.X ⊆X ⋃YB.X ⊇X ⋃YC.X ⊆X ⋂YD.Y ⊆X ⋂Y2、设A B -=∅,则有( C )。

A.B =∅B.B ≠∅C.A B ⊆D.A B ⊇3、对任意的集合A 、全集U ,下列命题为假的是( D )。

A.A ⋃∅ =A ,B.A ⋃U = UC.A ⋂∅ = ∅,D.A ⋂U = U4、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x ∈A,y ∈A},则R 的性质为( B )。

A.自反的B.对称的C.传递的,对称的D.反自反的,传递的5、设R 和S 是集合A 上的任意关系,则下列命题为真的是( A )。

离散数学2联结词(否定、合取)

离散数学2联结词(否定、合取)

联结词----否定、合取复合命题是用“联结词”将原子命题联结起来构成的.归纳自然语言中的联结词,定义了六个逻辑联结词:(1)否定“⌝”(2)合取“∧”(3) 析取“∨”和异或“”∨(4) 条件(蕴涵)“→”(5)双条件(等价)“∆”或记做“↔”一. 否定“⌝”表示:“…不成立”,“不…”.用于:对一个命题P的否定,写成⌝P,并读成“非P”.⌝P的真值:与P真值相反.例 P:2是素数.⌝P:2不是素数. P ¬P F T T F例1. P: 天津是一个城市.Q: 3是偶数.于是: ⌝ P: 天津不是一个城市.⌝ Q: 3不是偶数.例2. P:济宁学院处处清洁.Q:这些都是男同学.(注意,不是处处不清洁)⌝ P:济宁学院不处处清洁.⌝ Q:这些不都是男同学.二. 合取“∧”表示:“并且”、“不但…而且...”、“既…又...” “尽管…还…”.例 P:小王能唱歌.Q:小王能跳舞.P∧Q:小王能歌善舞. P∧Q读成P合取Q.P∧Q的真值为真,当且仅当P和Q的真值均为真.P Q P∧Q F F F F T F T F F T T T例3. 将下列命题符号化:(1)李平既聪明又用功.(2)李平虽然聪明, 但不用功.(3)李平不但聪明,而且用功.(4)李平不是不聪明,而是不用功.解: 设P:李平聪明. Q:李平用功.则 (1) P∧Q (2) P∧⌝ Q(3) P∧Q (4) ⌝(⌝ P)∧⌝ Q例4. 翻译下列命题的合取.(1) P: 我们在C403教室. Q: 今天是星期二.(2) S:李平在吃饭. R:张明在吃饭.解: (1) P∧Q :我们在C403教室且今天是星期二.(2) S∧R:李平与张明在吃饭.“∧”与日常语言中“与”“和”的不同之处:(1)逻辑学中允许两个相互独立无关,甚至相反的原子命题生成一个新命题.(2)自然语言中有时在不同意义时可以同时使用“与”“和”,但是不能都用“∧”翻译.(如:我和你是好朋友.李敏和李华是姐妹.)说明:“∧”属于二元运算符.合取运算特点:只有参与运算的二命题全为真时,运算结果才为真,否则为假.自然语言中的表示“并且”意思的联结词,如“既…又…”、“不但…而且…”、“虽然…但是…”、“一面…一面…”、“…和…”、“…与…”等都可以符号化为∧.。

离散数学(第2版)

离散数学(第2版)

离散数学(第2版)——关于数学中重要的研究方向
离散数学是一门涉及数学中各种离散对象的研究方向,包括数论、图论、代数等。

离散数学是计算机科学、通信工程和其他许多工科领域的基础,对于理解计算机算法的原理和应用具有重要意义。

本文将对离散数学(第2版)这本数学教材进行介绍。

离散数学(第2版)是由美国杜克大学的Kenneth H. Rosen所著的数学教材。

这本书共分为五章,分别是基础概念、逻辑和计算、数论、图论、代数和应用。

第一章主要介绍了离散数学的基础概念,包括逻辑基础、集合、关系和函数。

第二章介绍了逻辑和计算的相关内容,包括命题逻辑、谓词逻辑、计算机科学中的逻辑和布尔代数。

第三章是关于数论的章节,包括质数、最大公约数、最小公倍数、模运算、同余方程等内容。

第四章是关于图论的章节,包括无向图、有向图、连通图、生成树、最短路径、最小生成树等内容。

第五章是关于代数和应用的章节,包括代数系统、群、域、同余环、线性代数和代数应用等内容。

本书还附有大量的练习题,帮助读者检验自己的学习效果。

离散数学(第2版)是一本系统而全面的数学教材,涵盖了离散数学的各个方面。

它适合作为计算机科学和工科领域的数学基础教材,也可作为普及离散数学的参考书。

离散数学第2章 谓词逻辑

离散数学第2章 谓词逻辑
命题“凡人要死。”符号化为:(x)F (x) ⑵ 令G(x):x是研究生。 命题“有的人是研究生。”符号化为:(x)G(x)
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学测试题2
一、 选择题
1、若集合A ={1,2},B ={1,2,{1,2}},则下列表述正确的是( ).
A .A ⊂
B ,且A ∈B B .B ⊂A ,且A ∈B
C .A ⊂B ,且A ∉B
D .A ⊄B ,且A ∈B
2.设集合A= {1, 2, 3, 4, 5}上的偏序关系的哈斯图如下图所示,若A 的子集B= {3, 4, 5},则元素3为B 的( ).
A. 下界
B. 最小上界
C. 最大下界
D. 最小元 3.设A (x ):x 是人,B (x ):x 是工人,则命题“有人是工人”可符号化为( ).
A .(∃x )(A (x )∧
B (x )) B .(∀x )(A (x )∧B (x ))
C .┐(∀x )(A (x ) →B (x ))
D .┐(∃x )(A (x )∧┐B (x )) 4.图G 如图一所示,以下说法正确的是 ( ) .
A .{(a, d )}是割边
B .{(a, d )}是边割集
C .{(a, d ) ,(b, d )}是边割集
D .{(b , d )}是边割集
5、已知一棵无向树T 中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为( ). A .6 B .4 C .3 D .5 二、 填空题
1.设集合A ={0, 1, 2},B ={1,2, 3, 4,},R 是A 到B 的二元关系,
},,{B A y x B y A x y x R ⋂∈∈∈><=且且
则R 的有序对集合为 .
2.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .
3.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .
4.设集合A ={1,2}上的关系R ={<1, 1>,<1, 2>},则在R 中仅需加一个元素 ,就可使新得到的关系为对称的.
5.()(()()(,))x P x Q x R x y ∀→∨中的自由变元为 . 三、 逻辑翻译
1.将语句“他今天不去锻炼,仅当他没有时间.”翻译成命题公式.
2.将语句“所有的人都学习努力.”翻译成命题公式.
四、计算题
1.给出命题公式∧

B

⌝的主析取范式。

(C

A⌝
→))

(
(C
A))
B
(
2.已知带权图G如右图所示.
(1) 求图G的最小生成树;(2)计算该生成树的权值.
五、证明题
1.对任意三个集合A, B和C,试证明:若A⨯B = A⨯C,且A≠∅,则B = C.
2. 试证明如下逻辑公式成立()()()(())
∃→⇒∀→。

x A x B x A x B
答案
一、 选择题
1.A
2.B
3. A
4.C
5.D
二、填空题
1.{<1, 1>,<1, 2>,<2, 1>,<2, 2>};
2.2.v -e +r =2;
3. 5;
4. <2, 1>;
5.(,)R x y 中的y
三、逻辑翻译
1.设 P :他去锻炼;Q :他有时间。

则命题公式为:⌝P →⌝Q . 3.设():P x x 是人,():Q x x 学习努力; 则命题公式为:()(()())x P x Q x ∀→. 四、计算题
1. 解:方法1:列表法
设))(())((C B A C B A S ⌝∧⌝↔⌝∧∧→=
根据真值表中S 真值为1的赋值所对应的极小项的析取,即为S 的主析取范式。

由表可知
)()(C B A C B A S ∧∧∨⌝∧⌝∧⌝=
方法2:等值演算
))(())((C B A C B A ⌝∧⌝↔⌝∧∧→
)))(())((())((A C B C B A C B A ⌝→⌝∧⌝∧⌝∧⌝→⌝∧∧∨⌝= ))())((())((A C B C B A C B A ⌝∨∨∧⌝∧⌝∨∧∧∨⌝=
)))()(())(((())(((C B A C B C B A A C B A ∨∨⌝∧⌝∧⌝∨∨∨⌝∧∧∧∨⌝= ))()()(())(((C B A C A B A C B A ⌝∧⌝∧⌝∨∨∨∨∧∧∨⌝= )()()(C B A C B A C B A ∧∧∨∧∧∨⌝∧⌝∧⌝=
7
0)
()(m m C B A C B A ∨=∧∧∨⌝∧⌝∧⌝=
2. 解 (1)图G 有6个结点,其生成树有5条边,用Kruskal 算法求其权最小的生成树T :
第1步,取具最小权1的边; 第2步,取剩余边中具最小权2的边; 第3步,取剩余边中不与前2条边构成回路的具最小权3的边;
第4步,取剩余边中不与前3条边构成回路的具最小权5的边; 第5步,取剩余边中不与前4条边构成回路的具最小权7的边. 所求最小生成树T 如右图.
(2)该最小生成树的权为()1235718W T =++++=. 五、证明题
1.证明
若B =∅,则A ×C =A ×B =∅,由于A ≠∅,所以C =∅,从而B =C . 若B ≠∅,则A B ⨯≠∅,
任意b B ∈,存在a A ∈,使,a b A B <>∈⨯,由于A ⨯B = A ⨯C , 所以,a b A C <>∈⨯,从而b C ∈,故B C ⊆.
A C A
B ⨯⨯≠∅=,
C ≠∅
任意c C ∈,存在a A ∈,使,a c A C <>∈⨯,由于A ⨯B = A ⨯C , 所以,a c A B <>∈⨯,从而c B ∈,故C B ⊆. 所以B C =.
2.证明:
(1)()() P x A x B ∃→ (2)()() T(1) E x A x B ⌝∃∨ (3)()() T(2) E x A x B ∀⌝∨ (4)()(()) T(3) E x A x B ∀⌝∨ (5)()(()) T(4) E x A x B ∀→。

相关文档
最新文档