离散数学(第2版)_在线作业_1
(完整word版)离散数学(第2版,刘爱民)习题解答(1)(1)

附录2 习题答案习题一答案1.1下列各语句中哪些是命题?1) 不是;2) 是;3) 不是;4) 不是;5) 不是;6) 是;7) 是;8) 不是9) 不是;10)是;11)不是;12)是。
1.2 将下列命题符号化。
1) p∧⌝q, p:太阳明亮,q:湿度高;2) q→⌝p, p:明天你看到我,q:我要去深圳。
3) p→q, p:我出校,q:我去图书城;4) q→p , p:你去,q:我去;5) 5.1) p∧q; 5.2) p∧⌝q; 5.3) p∧q; 5.4) p∧⌝q;6) 6.1) p∨q 6.2) ⌝(p ↔q) 6.3) p∧¬q6.4) ¬ (p∧r) 6.5) (p∧q) →r 6.6)¬ (r→ (p∧q))7) p:蓝色和黄色可以调配成绿色;8) ⌝(p↔q), p:李兰现在在宿舍, q:李兰在图书馆里;9) ¬p→¬ q, p:一个人经一事,q:一个人长一智;10) (p∧¬q) →⌝(r↔ s), p:晚上小王做完了做业, q: 晚上小王没有其他事情,r: 晚上小王看电视, s: 晚上小王看电影。
11) ⌝(r↔ s), r:小飞在睡觉, s:小飞在游泳;12) ¬p∧¬q∧r, p:这个星期天我看电视,q: 这个星期天我外出,r:这个星期天我在睡觉。
13) p→q , p:卫星上天了,q:国家强大了;14) p→q, p:今天没有课,q:我呆在图书馆里;15) p→q,p:我去图书城,q:我有时间;16) ¬p→¬q , p:人们辛劳,p: 人们收获1.3 1) 小李家住北大西门外, 他现在坐在公共汽车里看书,没有考虑问题;2) 小李在思考问题, 他没有乘坐公共汽车,也没有看书;3) 小李只要乘坐公共汽车,他就看书或考虑问题;4) 小李乘坐公共汽车,要么看书不考虑问题,要么考虑问题不看书,5) 同4);6) 如果小李家住北大西门外,则他现在没有乘坐公共汽车,没有看书,也没有考虑问题。
离散数学(第二版)课后习题答案详解(完整版)

离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
中农大网络教育离散数学(第2版)_在线作业

离散数学(第2版)_在线作业_1交卷时间2019-09-26 14:15:30一、单选题(每题5分,共20道小题,总分值100分)1.命题变元P和Q的极大项M1表示()。
(5分)┐P∨Q┐P∧QP∧┐QP∨┐Q正确答案您的答案是D回答正确展开2.设,下面集合等于A的是()。
(5分)ABCD正确答案您的答案是B回答正确展开3.下面既是哈密顿图又是欧拉图的是()。
(5分)ABCD正确答案您的答案是C回答正确展开4.下列语句中为命题的是()。
(5分)AB水开了吗?C再过5000年,地球上就没有水了D请不要抽烟!正确答案您的答案是C回答正确展开5.n个结点、m条边的无向连通图是树当且仅当m=()。
(5分)A2n-1B nC n-1D n+1正确答案您的答案是C回答正确展开6.命题变元P和Q的极小项m1表示()。
(5分)P∧┐Q┐P∧Q┐P∨QP∨┐Q正确答案您的答案是B回答正确展开7.公式的前束范式为()。
(5分)ABCD正确答案您的答案是D回答正确展开8.无向完全图有()条边。
(5分)A nB n2C n(n-1)D n(n-1)/2正确答案您的答案是D回答正确展开9.设无向图G的所有结点的度数之和为12,则G一定有()。
(5分)6条边5条边3条边4条边正确答案您的答案是A回答正确展开10.下列语句中不是命题的是()。
(5分)AB我是大学生C3是奇数D请勿吸烟!正确答案您的答案是D回答正确展开11.下列不一定是树的是()。
(5分)A每对结点之间都有通路的图B连通但删去一条边则不连通的图C有n个结点,n-1条边的连通图D无回路的连通图正确答案您的答案是A回答正确展开12.在有3个结点的图中,奇度数结点的个数为()。
(5分)A0或2B0C1D1或3正确答案您的答案是A回答正确展开13.集合的对称差运算不满足()。
(5分)A消去律B结合律C交换律D幂等律正确答案您的答案是D回答正确展开14.下列图中()是平面图。
天大2020年春季考试《离散数学(2)-1》在线作业一.doc

1.题面见图片A.AB.BC.CD.D 【参考答案】: C2.题面见图片A.AB.BC.CD.D 【参考答案】: C3.题面见图片A.AB.BC.CD.D 【参考答案】: B4.题面见图片A.AB.BC.CD.D 【参考答案】: B5.题面见图片A.AB.BC.CD.D 【参考答案】: D6.题面见图片A.AB.BC.CD.D【参考答案】: B7.题面见图片A.AB.BC.CD.D【参考答案】: D8.题面见图片A.AB.BC.CD.D 【参考答案】: D9.题面见图片A.AB.BC.CD.D 【参考答案】: B10.题面见图片A.AB.BC.CD.D 【参考答案】: A11.题面见图片A.AB.BC.CD.D 【参考答案】: D12.题面见图片A.AB.BC.CD.D 【参考答案】: A13.题面见图片A.AB.BC.CD.D 【参考答案】: C14.题面见图片A.AB.BC.CD.D【参考答案】: A15.题面见图片A.AB.BC.CD.D 【参考答案】: A16.题面见图片A.AB.BC.CD.D【参考答案】: A17.题面见图片A.AB.BC.CD.D【参考答案】: B18.题面见图片A.AB.BC.CD.D 【参考答案】: B19.题面见图片A.AB.BC.CD.D 【参考答案】: D20.题面见图片A.AB.BC.CD.D 【参考答案】: B。
离散数学及其应用第2版课后练习题含答案

离散数学及其应用第2版课后练习题含答案1. 引言《离散数学及其应用》是一本经典的离散数学教材,是计算机科学和数学专业的必修课程。
本文将为读者提供《离散数学及其应用》第2版课后练习题的答案,并希望能够帮助读者加深对离散数学的理解。
2. 答案解析第一章习题 1.11.给定一组七个数字 {1, 3, 3, 4, 6, 9, 12},请给出这组数字的中位数。
答案:中位数为 4。
2.给出两个整数 a 和 b 的三进制表示: a = 111011,b = 101101。
求 a + b。
答案:a + b = 1011000。
3.证明奇奇数的积为奇数。
答案:令两个奇数分别为 2n + 1 和 2m +1,则有:(2n + 1) × (2m + 1) = 4nm + 2n + 2m + 1 = 2(2nm + n + m) + 1,即奇奇数的积还是一个奇数。
习题 1.21.证明:如果一个整数 n 能同时被 2 和 3 整除,则它也能被 6 整除。
答案:首先,n 能同时被 2 和 3 整除,则分别有 n = 2k 和 n = 3m。
联立方程组 2k = 3m,得 k = (3/2)m。
因此,n = 2k = (3m/2) × 2 = 3m× (2/2) = 6m,可以被 6 整除。
2.求 10010 的八进制表示。
答案:将 10010 转换为四位一组的二进制数,得 0010 0100。
将 0010 和 0100 分别转换为八进制数,得 2 和 4。
因此,10010 的八进制表示为 24。
3.已知 547a5 是 11 的倍数,求 a 的值。
答案:根据 11 的倍数的规律,将 547a5 中的奇数位数字相加,再将偶数位数字相加,然后将两个和的差求出来: (5 + 7 + a) - (4 + 5) = 13 + a - 9 = a + 4。
因为547a5 是 11 的倍数,所以 a + 4 也必须是 11 的倍数。
离散数学第二版 屈婉玲 1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
离散数学第二版最全课后习题答案详解

离散数学第二版最全课后习题答案详解离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电气工程等领域都有着广泛的应用。
对于学习离散数学的同学们来说,课后习题的解答是巩固知识、加深理解的重要环节。
本文将为您提供离散数学第二版的最全课后习题答案详解,希望能对您的学习有所帮助。
在开始讲解具体的习题答案之前,让我们先简要回顾一下离散数学的主要内容。
离散数学包括集合论、数理逻辑、图论、代数结构等几个部分。
集合论是离散数学的基础,它研究集合的性质、运算和关系。
在集合论的习题中,常见的问题包括集合的表示、集合的运算(并集、交集、补集等)、集合的包含关系以及集合的基数等。
例如,有这样一道习题:设集合 A ={1, 2, 3},B ={2, 3, 4},求 A ∪ B 和A ∩ B。
答案是:A ∪ B ={1, 2, 3, 4},A ∩ B ={2, 3}。
这是因为并集是包含两个集合中所有元素的集合,而交集是同时属于两个集合的元素组成的集合。
数理逻辑是研究推理和证明的工具,它包括命题逻辑和谓词逻辑。
在数理逻辑的习题中,需要掌握命题的符号化、逻辑公式的等价变换、推理规则的应用等。
比如,给出这样一个命题:“如果今天下雨,那么我就不去公园”,将其符号化。
我们可以设“今天下雨”为 P,“我去公园”为 Q,那么这个命题可以符号化为P → ¬Q。
图论是研究图的性质和应用的分支。
图的概念在计算机网络、交通运输等领域有着重要的应用。
图论的习题常常涉及图的表示、顶点的度、路径、连通性、图的着色等问题。
假设有这样一道题:一个无向图有 10 个顶点,每个顶点的度都为 6,求这个图的边数。
根据顶点度数之和等于边数的两倍这个定理,我们可以计算出边数为 30。
代数结构则包括群、环、域等概念,在这部分的习题中,需要理解和运用代数结构的定义和性质来解决问题。
接下来,我们具体来看一些习题的详细解答。
例 1:设集合 A ={x | x 是小于 10 的正奇数},B ={x | x 是小于 10 的正偶数},求 A B。
离散数学第二版邓辉文编著第一章第四节习题答案

1.4 集合的运算习题1.41.全集},,,,,,,{h g f e d c b a U =,令集合A ,B ,C ,D 分别为},,,{g c b a A =,},,,{g f e d B =,},,{f c a C =,},{h f D =. 试分别计算(1)B A ⋃;(2)C B ⋂;(3)D A -;(4)C B A -⋂)(;(5)D ;(6)C B ⊕;(7))(C B A ⋃⋂;(8)C D A -⋃)(;(9)C A ⋃;(10)C B A ⋃⋃.解 (1)},,,,,,{g f e d c b a B A =⋃.(2)}{f C B =⋂.(3)},,,{g c b a D A =-.(4)}{},,{}{}{)(g f c a g C g C B A =-=-=-⋂. (5)},,,,,{g e d c b a D =.(6)},,,,{}{},,,,,{)()(g e d c a f g f e d c a C B C B C B =-=⋂-⋃=⊕.(7)},,{},,,,,{},,,{)(g c a g f e d c a g c b a C B A =⋂=⋃⋂. (8)},,{},,,,{},,,,,{)(f c a h g e d b h f g c b a C D A =-=-⋃. (9)},,{},,,,{h e d g f c b a C A ==⋃.(10)},,,,,,{g f e d c b a C B A =⋃⋃.2.设C A ⊆且C B ⊆,则C B A ⊆⋃,进而C B A ⊆⋂.证 对于任意B A x ⋃∈,则A x ∈或B x ∈. 因为C A ⊆且C B ⊆,所以有C x ∈,因此C B A ⊆⋃.由于A B A ⊆⋂且B A A ⋃⊆,而C B A ⊆⋃,所以C B A ⊆⋂.3.证明De Morgan 律.证 先证明B A B A ⋂=⋃. 对于任意B A x ⋃∈,则B A x ⋃∉,由此得出A x ∉且B x ∉,因此A x ∈且B x ∈,即B A x ⋂∈,所以B A B A ⋂⊆⋃. 另一方面,若B A x ⋂∈,则A x ∈且B x ∈,于是A x ∉且B x ∉,进而B A x ⋃∉,因此B A x ⋃∈,所以B A B A ⋃⊆⋂. 故B A B A ⋂=⋃.类似可证B A B A ⋃=⋂.4.对于集合B A ,,证明: B A ⊆当且仅当A B ⊆.证(⇒)假定B A ⊆. 若对于B x ∈,则B x ∉,因为B A ⊆,于是A x ∉,这时A x ∈,所以A B ⊆.(⇐)假定A B ⊆. 对于任意A x ∈,则A x ∉. 因为A B ⊆,所以B x ∉,即B x ∈,进而B A ⊆.5.设B A f →:,对于任意A X ⊆及A Y ⊆,证明: )()()(Y f X f Y X f ⋂⊆⋂. 一般来说)()()(Y f X f Y X f ⋂≠⋂,举例说明之.证 因为X Y X ⊆⋂,所以)()(X f Y X f ⊆⋂. 同样因为Y Y X ⊆⋂,所以)()(Y f Y X f ⊆⋂. 于是有)()()(Y f X f Y X f ⋂⊆⋂.例如取},,{c b a A =,}2,1{=B ,令B A f →:,2)()(==b f a f ,1)(=c f . 再取},{c a X =,},{c b Y =,这时}2,1{)(=X f ,}2,1{)(=Y f ,因此}2,1{)()(=⋂Y f X f . 由于}1{})({)(==⋂c f Y X f ,所以有)()()(Y f X f Y X f ⋂≠⋂.6.对于任意集合C B A ,,,证明: B C A C B A --=--)()(.证 )()()()(C B A C B A C B A C B A ⋂⋂=⋂⋂=-⋂=-- = .)()(B C A B C A --=⋂⋂7.设C B A ,,是集合,下列命题是否成立,为什么?(1)若C A B A ⋃=⋃,则C B =.(2)若C A B A ⋂=⋂,则C B =.(3)若C A B A ⋃=⋃且C A B A ⋂=⋂,则C B =.解 (1)不成立. 例如,},,{c b a A =,},{b a B =,},{c b C =,这时显然有C A B A ⋃=⋃,但C B ≠.(2)不成立. 例如,}{a A =,},{b a B =,},{c a C =,这时显然有C A B A ⋂=⋂,但C B ≠.(3)成立. 因为)()()()(C B A B C A B B A B B ⋂⋃⋂=⋃⋂=⋃⋂= C C C A C B A C B C A =⋂⋃=⋂⋃=⋂⋃⋂=)()()()(.8.对于任意集合A 和B ,证明:(1))()()(B A P B P A P ⋂=⋂.(2))()()(B A P B P A P ⋃⊆⋃,并举例说明)()()(B A P B P A P ⋃=⋃不成立.证(1)任意)()(B P A P X ⋂∈,则)(A P X ∈且)(B P X ∈,于是A X ⊆且B X ⊆,因此,B A X ⋂⊆,进而)(B A P X ⋂∈,所以)()()(B A P B P A P ⋂⊆⋂.又因为A B A ⊆⋂,于是)()(A P B A P ⊆⋂. 同样,)()(B P B A P ⊆⋂,所以)()()(B P A P B A P ⋂⊆⋂.故)()()(B A P B P A P ⋂=⋂.(2)因为B A A ⋃⊆,于是)()(B A P A P ⋃⊆. 同样,)()(B A P B P ⋃⊆,所以)()()(B A P B P A P ⋃⊆⋃.例如},{b a A =,},{c b B =,于是{)(=A P ∅,}},{},{},{b a b a 且{)(=B P ∅,}},{},{},{c b c b ,因此{)()(=⋃B P A P ∅,}},{},,{},{},{},{c b b a c b a ,这时6|)()(|=⋃B P A P . 而},,{c b a B A =⋃,所以82|)(|3==⋃B A P . 显然有)()()(B A P B P A P ⋃≠⋃.9.设B A ,是集合,证明: B A ⊆当且仅当=-B A ∅.证(⇒)若B A ⊆,根据差运算的定义知=-B A ∅.(⇐)若=-B A ∅,对于任意A x ∈,则B x ∈,否则≠-B A ∅,因此B A ⊆.10.对于任意集合C B A ,,, 分别找出使下列等式成立的最简单的充要条件:(1)A C A B A =-⋃-)()(.(2)=-⋂-)()(C A B A ∅.(3)=-⊕-)()(C A B A ∅.解 (1) )()()()()(C B A C A B A C A B A ⋃⋂=⋂⋃⋂=-⋃-)(C B A C B A ⋂-=⋂⋂=,而A C B A =⋂-)(的充要条件是A 与C B ⋂没有公共元素,即=⋂⋂C B A ∅.于是,A C A B A =-⋃-)()(的充要条件是=⋂⋂C B A ∅. (2))()()()()(C B A C A B A C A B A ⋂⋂=⋂⋂⋂=-⋂-)(C B A C B A ⋃-=⋃⋂=,而=⋃-)(C B A ∅的充要条件是⊆A C B ⋃.于是,=-⋃-)()(C A B A ∅的充要条件是⊆A C B ⋃.(3)=-⊕-)()(C A B A ∅ 的充要条件是C A B A -=-,这就是最简单的=-⊕-)()(C A B A ∅的一个充要条件.11.设B A ,是集合,定义⊗运算(称为环积运算,cycle product)如下:B A B A ⊕=⊗.证明:)()(B A B A B A ⋃⋂⋃=⊗,并讨论⊗运算具有的性质.证 由于)()()()(B A B A A B B A B A ⋂⋃⋂=-⋃-=⊕,所以B A B A B A B A B A B A ⋂⋂⋂=⋂⋃⋂=⊕=⊗)()()()()()(B A B A B A B A ⋃⋂⋃=⋃⋂⋃=.利用对称差运算的性质,容易证明⊗运算具有以下性质:(1)A B B A ⊗=⊗.(2)U A A =⊗.(3))()(C B A C B A ⊗⊗=⊗⊗.12.对于任意集合A ,B 和C ,证明:(1))()()(C A B A C B A ⋂⊕⋂=⊕⋂.(2)A C A B A C B ⋂⊕⋂=⋂⊕()()(.证 )]()[()(B C C B A C B A -⋃-⋂=⊕⋂)]([)]([)]([)]([B C A C B A B C A C B A ⋂⋂⋃⋂⋂=-⋂⋃-⋂= = )()(B C A C B A ⋂⋂⋃⋂⋂.而))()(())()(()()(B A C A C A B A C A B A ⋂-⋂⋃⋂-⋂=⋂⊕⋂ ])[(])[(B A C A C A B A ⋂⋂⋂⋃⋂⋂⋂=)]()[()]()[(B A C A C A B A ⋃⋂⋂⋃⋃⋂⋂=)]()[()]()[(B C A A C A C B A A B A ⋂⋂⋃⋂⋂⋃⋂⋂⋃⋂⋂=)()(B C A C B A ⋂⋂⋃⋂⋂=所以)()()(C A B A C B A ⋂⊕⋂=⊕⋂.(2)类似可证.13. 设C B A ,,是集合,举例说明)()()(C A B A C B A ⋃⊕⋃=⊕⋃不成立.解 例如}{a A =,}{b C B ==,则⋃=⊕⋃A C B A )(∅A =. 由于C A B A ⋃=⋃,所以=⋃⊕⋃)()(C A B A ∅,因此)()()(C A B A C B A ⋃⊕⋃≠⊕⋃.14.根据集合⋃和⋂相互可吸收证明⋃和⋂满足幂等性.证 对于任意集合A 以及B ,有A B A A =⋂⋃)( (1)A B A A =⋃⋂)( (2)由(1)得,A B A A A =⋃⋂⋃))((,再由(2)得A A A =⋃. 同理可得,A A A =⋂.15.设C B A ,,是集合,利用两个集合的容斥原理证明:|||)||||(||)||||(|||C B A C B C A B A C B A C B A ⋂⋂+⋂+⋂+⋂-++=⋃⋃ 你能推广到更一般的n 个集合的情形吗?证 |)(||||||)(|||C B A C B A C B A C B A ⋂⋃-+⋃=⋃⋃=⋃⋃|)()(||||)||||(|C B C A C B A B A ⋂⋃⋂-+⋂-+=-+⋂-+=|||)||||(|C B A B A|)()(||||(|C B C A C B C A ⋂⋂⋂-⋂+⋂|||)||||(||)||||(|C B A C B C A B A C B A ⋂⋂+⋂+⋂+⋂-++=. 设n A A A ,...,,21是集合,则∑∑≤<≤=⋂-=⋃⋃⋃n j i j i n i i n A A A A A A 1121|||||...||...|)1(...||2111n n n k j i k j i A A A A A A ⋂⋂⋂-+-⋂⋂++≤<<≤∑.16. (错排问题) 有1, 2, …, n 共n 个元素进行排列,若第i 个元素都没有排在第i 位置(i = 1, 2, …, n ),称这样的排列为错排(derangement). 利用n 个集合的容斥原理计算错排的个数.解 设U 表示1, 2, …, n 所有全排列构成的集合,用A i 表示第i 个元素恰好排在第i 位置的全体排列构成的集合(i = 1, 2, …, n ), 则.,,2,1,)!1(||n i n A i =-=.,,,2,1,,)!2(||j i n j i n A A j i ≠=-=⋂...!.1||21=⋂⋂⋂n A A A因为|U | = n !且∑∑≤<≤=⋂-=⋃⋃⋃n j i j i n i i n A A A A A A 1121|||||...||...|)1(...||2111n n n k j i k j i A A A A A A ⋂⋂⋂-+-⋂⋂++≤<<≤∑,所以, |...|||2121n n A A A A A A ⋃⋃⋃=⋂⋂⋂∑∑≤<≤=⋂+-=n j i j i n i i A A A U 11|||||||...|)1(...||211n n n k j i k j i A A A A A A ⋂⋂⋂-++⋂⋂-∑≤<<≤,!1)1()!2()!1(!n n n n -++-+--=⎪⎭⎫ ⎝⎛-+++-=!1)1(!21!111!n n n . 17.( Euler 函数) 对于大于1的正数数n ,若k r k r r p p p n 2121=,其中p 1,p 2,…,p k 是不同的素数,r 1,r 2,…,r k 是正整数,则⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=k p p p n n 111111)(21 ϕ. 证 设全集U = {1,2,…,n },用A i 表示能被p i 整除的U 中元素组成的集合,则.,,2,1,||k i p n A ii == .,,,2,1,,||j i k j i p p n A A ji j i ≠==⋂ ....||2121kn p p p n A A A =⋂⋂⋂ 因为|U | = n 且 ∑∑≤<≤=⋂-=⋃⋃⋃n j i j i n i i n A A A A A A 1121|||||...||...|)1(...||2111n n n k j i k j i A A A A A A ⋂⋂⋂-+-⋂⋂++≤<<≤∑,所以, |...|||2121n n A A A A A A ⋃⋃⋃=⋂⋂⋂ ∑∑≤<≤=⋂+-=n j i j i n i i A A A U 11|||||||...|)1(...||211n n n k j i k j i A A A A A A ⋂⋂⋂-++⋂⋂-∑≤<<≤,k n k k k p p p n p p n p p n p p n p n p n p n n 211312121)1(-++⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛+++-=- ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=k p p p n 11111121 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学(第2版)_在线作业_1
交卷时间:
2017-01-12 10:34:32
一、单选题
1.
(5分
)
• A. P ∨┐Q •
B. P ∧┐Q
• C. ┐P ∧Q •
D. ┐P ∨Q
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 A 解析
2.
(5分)
•
A.
•
B.
•
C.
命题变元P 和Q 的极大项M 1表示( )。
设,下面集合等于A 的是( )。
•
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 B 解析
3.
(5分)
•
A.
•
B.
•
C.
•
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 C 解析
4.
下面既是哈密顿图又是欧拉图的是( )。
•
A. 水开了吗? •
B.
• C. 请不要抽烟!
•
D. 再过5000年,地球上就没有水了
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
5.
(5分)
• A. 2n-1 •
B. n
• C. n+1 •
D. n-1
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
6.
下列语句中为命题的是( )。
n 个结点、m 条边的无向连通图是树当且仅当m=( )。
• A. P ∨┐Q •
B. ┐P ∨Q
• C. ┐P ∧Q •
D. P ∧┐Q
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 C 解析
7.
(5分)
•
A.
• B. • C. •
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 B 解析
命题变元P 和Q 的极小项m 1表示( )。
公式的前束范式为( )。
(5分)
•
A. n(n-1) •
B. n
• C. n(n-1)/2 •
D. n2
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 C 解析
9.
(5分)
•
A. 5条边
• B. 6条边 • C. 4条边 •
D. 3条边
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 B
无向完全图有( )条边。
设无向图G 的所有结点的度数之和为12,则G 一定有( )。
解析
10.
(5分
)
•
A. 3是奇数
• B. 我是大学生 • C.
•
D. 请勿吸烟!
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
11.
(5分)
•
A. 无回路的连通图
• B. 连通但删去一条边则不连通的图 • C. 有n 个结点,n-1条边的连通图 •
D. 每对结点之间都有通路的图
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析
下列语句中不是命题的是( )。
下列不一定是树的是( )。
答案 D 解析
12.
(5分)
• A. 0或2 •
B. 1或3
• C. 0 •
D. 1
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 A 解析
13.
(5分)
•
A. 结合律 •
B. 幂等律
• C. 消去律 •
D. 交换律
纠错
得分: 5
知识点: 离散数学(第2版)
在有3个结点的图中,奇度数结点的个数为( )。
集合的对称差运算不满足( )。
收起解析 答案 B 解析
14.
(5分
)
•
A.
•
B.
•
C.
•
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 B 解析
15.
(5分)
•
A.
下列图中( )是平面图。
下列各项中错误的是( )。
• B.
• C. •
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 C 解析
16.
(5分)
•
A.
•
B.
• C.
•
D.
有惟一解
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 A 解析
17.
(5分)
设是群,,则下列结论不正确的是( )。
•
A.
•
B.
• C.
•
D.
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 D 解析
18.
(5分)
•
A. 正有理数集合关于数的
乘法运算
• B. 整数集合关于数的减法运算 • C. 自然数集合关于数的加法运算 •
D. 非零实数集合关于数的除法运算
纠错
得分: 5
知识点: 离散数学(第2版) 收起解析 答案 A 解析
19.
下列等值式不正确的是( )。
下列集合对于指定运算,构成群的是( )。