《离散数学》第2次作业
华工离散数学第二次作业

B.F={<1,c>,<2,a>,<3,b>,<4,e>,<5,d>}
C.F ={<1,b>,<2,a>,<3,d>,<4,a>}
D.F={<1,e>,<2,a>,<3,b>,<4,c>,<5,e>}
答题: A. B. C. D.
参考答案:B
13.运算“+”是整数集I上的普通加法,则群<I,+>的么元是( )
A.1 B.0 C.2 D.3
答题: A. B. C. D.
参考答案:B
14.下列说法不对的是()
A.简单图不含平行边和环
B.每个图中,度数为奇数的节点数为偶数
C.有向图中节点的入度等于出度
D.完全图的边数为
答题: A. B. C. D.
C.f ={<1,7>,<2,6>,<3,5>,<4,6>}
D.f ={<1,10>,<2,6>,<3,7>,<4,8>,<5,10>}
答题: A. B. C. D.
参考答案:B
9.设A={1,2,3,4,5, 6},B={a,b,c,d,e},以下哪个函数是从A到B的满射函数( )
A.F ={<1,b>,<2,a>,<3,c>,<1,d>,<5,e>, <6,e>}
离散数学课后习题答案二

习题3.71. 列出关系}6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。
解 }6|{=⋅⋅⋅∈><+d c b a d c b a d c b a 且,,,,,,Z,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><=><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3,1,1,3,2,1,2,3,1,1,3,2,12. 列出二维表3.18所表示的多元关系中所有5元组。
假设不增加新的5元组,找出二维表3.18所有的主键码。
表3.18 航班信息航空公司 航班 登机口 目的地 起飞时间 Nadir 112 34 底特律 08:10 Acme 221 22 丹佛 08:17 Acme 122 33 安克雷奇 08:22 Acme 323 34 檀香山 08:30 Nadir 199 13 底特律 08:47 Acme 222 22 丹佛 09:10 Nadir 32234底特律09:44解 略3. 当施用投影运算5,3,2π到有序5元组><d c b a ,,,时你能得到什么?解 略4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量? 解 略5. 给出分别施用投影运算4,2,1π和选择运算Nadir 航空公司=σ到二维表3.18以后得到的表。
解对航班信息二维表进行投影运算5,3,2π后得到的二维表航班 登机口 起飞时间 112 34 08:10 221 22 08:17 122 33 08:22 323 34 08:30 199 13 08:47 222 22 09:10 3223409:44对航班信息二维表进行选择运算Nadir 航空公司= 后得到的二维表航空公司 航班 登机口 目的地 起飞时间 Nadir 112 34 底特律 08:10 Nadir 199 13 底特律 08:47 Nadir 32234底特律09:446. 把连接运算3J 用到5元组二维表和8元组二维表后所得二维表中有序多元组有多少个分量?解 略7. 构造把连接运算2J 用到二维表3.19和二维表3.20所得到的二维表。
离散数学第二次作业题及答案.doc

第2次作业一、单项选择题(本大题共40分,共20小题,每小题2分)1.假设A={a, b, c, d},考虑子集S= {{a, b}, {b, c}, {d}},则下列选项正确的是()oA.S是A的覆盖B.S是A的划分C.s既不是划分也不是覆盖D.以上选项都不正确2.设h是群G上的一个同态,|G|二12,山(G)|二3,则|K| (K是h的核)二_________________ ()A.1B.2C.D.3.L23 ), 设G是连通(n,m)的平面图,有r个面,且每个面的次数至少为L( 则A.m>3n-6B.Hl <c.m+n-r=2D.m+r-n二24.如果小王和小张都不去,则小李去。
设P:小王去。
Q:小张去。
R:小李去。
则命题符号化为_________ oA.-I QA-i PVRB.(Q->P)ARC.(n PAn QLRD.(PAQ)-R5.没有不犯错误的人。
M(x): x为人。
F (x) : x犯错误。
则命题可表示为()OA.(Vx) (M(x) F (x)B.(3x) (M(x) AF(x)C.(Vx) (M(x)AF(x))D.(3x) (M(x)-F(x)6.(1)燕子北冋,春天来了。
设P:燕了北回。
Q:春天來了。
则(1)可以表示为___________ oP->QQ-PC.UQD.P VQ7.命题公式(P->QA-i P)的类型是___________ 。
A.重言式B.矛盾式C.可满足式D.永真式6.一阶逻辑公式Vx(F(x, y)AG(y, z) )—VzF(z, y)是()前束范式封闭公式C.永真式D.永假式7.谓词公式(3x)P(x, y) A (Vx) (Q(x, z)-> Gx) (Vy)R(x, y, z)中的量词Vx 的辖域是()。
A.(Vx)(Q(x,z)->(3 x)( Vy)R(x,y ,z)B.Q(x, z)-> (Vy)R(x, y, z)C.Q (x, z) —(3x) (Vy) R (x, y, z)D.Q(x, z)8.关于半群的性质,下面说法不正确的是()A.若〈S,*>S且*在8上是封闭的,那么匸是一个半群,B<B, *>也是一个半群。
离散数学第2次作业参考答案

1
0
0
1
1
1
0
0
1
1
1
1
1
1
0
1
0
1
(3-2)主析取范式:
(4)由真值表和主析取范式分别可以验证该推理正确。
6、(每题12分,共24分)
(1)如果今天是星期六,我们就要到颐和园或圆明园去玩。如果颐和园游人太多,我们就不去颐和园。今天是星期六。颐和园游人太多。所以我们去圆明园玩。
解:
(1)令p:今天是星期六; q:我们要到颐和园玩; r:我们要到圆明园玩; s:颐和园游人太多.
5、(20分)用2种方法(真值表法、主析取范式法)判断下面推理是否正确。
若 是奇数,则 不能被2整除。若 是偶数,则 能被2整除。因此,如果 是偶数,则 不是奇数。
解:(1)简单命题符号化:
p: 是奇数,q: 能被2整除,r: 是偶数。
(2)前提和结论分别符号化为:
若 是奇数,则 不能被2整除: p→ q。
2018级离散数学第二次作业参考答案
学号:姓名:班级:总分:
1、(每空5分,共30分)
(1)已知公式A含有3个命题变项p,q,r,并且它的成真赋值为000,011,110,那么命题公式A的成假赋值为001,010,100,101,111,主析取范式为 ,主合取范式为M1∧M2∧M4∧M5∧M7。
(2)已知公式A含有3个命题变项,并且公式A的主合取范式为 ,那么公式A的成真赋值为000, 010,101,110,111,成假赋值为001, 011, 100,公式A的主析取范式为 。
解:
令p:小王是理科生, q:小王是文科生, r:小王的数学成绩很好.
前提: p→r, ¬q→p, ¬r
离散数学第一第二次作业

第1部分命题逻辑一、单项选择题1. 下列哪个语句是真命题( )。
(A)我正在说谎(B)如果1+2 = 3,则雪是黑色的(C)如果1+2 = 5,则雪是黑色的(D)上网了吗2 .命题公式为P > (Q > P)( )。
(A)重言式(B)可满足式(C)矛盾式(D)等值式3. 设命题公式P (Q厂P),记作G,则使G的真值指派为1的P, Q 的取值是( )。
(A) (0,0) (B) (0,1) (C) (1,0) (D) (1,1)4. 与命题公式P > (Q > R)等值的公式是( )。
(A) (P Q) > R (B)(P Qp R (C)(P > Q) > R (D)P》(Q R)5 .命题公式(P Q) > P是( )。
(A)永真式(B)永假式(C)可满足式(D)合取范式二、填空题1. ____________________________________________ P, Q为两个命题,当且仅当 _________________________________________ 时,P Q的真值为1,当且仅当_______________________ 时,P Q的真值为0。
2. 给定两个命题公式A, B,若 ________________________________ 时,则称A和B是等值的,记为A= B。
3. ________________________________ 任意两个不同极小项的合取为_______ 式。
4 .设P:天下雨,Q:我们去郊游。
贝S⑴命题如果天不下雨,我们就去郊游”可符号化为_______ 。
第1页(共16页)⑵命题只有天不下雨,我们才去郊游”可符号化为_______ 。
⑶命题我们去郊游,仅当天不下雨”可符号化为_________ 。
5 .设命题公式G = P (-Q R),则使G取真值为1的指派6. 已知命题公式为G = (-P Q) > R,则命题公式G的析取范式是三、计算题1.将下列命题符号化:⑴ 李强不是不聪明,而是不用功;⑵ 如果天不下雨,我们就去郊游;⑶ 只有不下雨,我们才去郊游。
离散数学作业(2)分解

离散数学作业(2)分解离散数学作业布置第1次作业(P15)1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
解:(1)p∨(q∧r)=0∨(0∧1)=0(2)(p?r)∧(﹁q∨s)=(0?1)∧(1∨1)=0∧1 =0(3)(﹁p∧﹁q∧r)?(p∧q∧﹁r)=(1∧1∧1)?(0∧0∧0)=0(4)(r∧s)→(p∧q)=(0∧1)→(1∧0)=0→0=11.17 判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外只有6能被2整除,6才能被4整除。
”解:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
1.19 用真值表判断下列公式的类型:(4)(p→q) →(﹁q→﹁p)(5)(p∧r) ?(﹁p∧﹁q)(6)((p→q) ∧(q→r)) →(p→r)解:(4)p q p→q q p q→p (p→q)→( q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式,最后一列全为1(5)公式类型为可满足式(方法如上例),最后一列至少有一个1(6)公式类型为永真式(方法如上例,最后一列全为1)。
第2次作业(P38)2.3 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ﹁(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)解:(1) ﹁(p∧q→q) ?﹁(﹁(p∧q) ∨q) ?(p∧q) ∧﹁q?p∧(q ∧﹁q) ? p∧0 ?0所以公式类型为矛盾式(2)(p→(p∨q))∨(p→r) ? (﹁p∨(p∨q))∨(﹁p∨r) ?﹁p∨p∨q∨r?1所以公式类型为永真式(3) (p∨q) →(p∧r) ?¬(p∨q) ∨(p∧r) ? (¬p∧¬q) ∨(p∧r)易见, 是可满足式, 但不是重言式. 成真赋值为: 000,001, 101, 111 P q r ¬p∧¬q p∧r (¬p∧¬q) ∨(p∧r)0 0 0 1 0 10 0 1 1 0 10 1 0 0 0 00 1 1 0 0 01 0 0 0 0 01 0 1 0 1 11 1 0 0 0 01 1 1 0 1 1所以公式类型为可满足式2.4 用等值演算法证明下面等值式:(2) ( (p→q)∧(p→r) ) ? (p→(q∧r))(4)(p∧﹁q)∨(﹁p∧q) ? (p∨q)∧﹁(p∧q)证明(2)(p→q)∧(p→r)( ﹁p∨q)∧(﹁p∨r)﹁p∨(q∧r))p→(q∧r)(4)(p∧﹁q)∨(﹁p∧q) ?(p∨(﹁p∧q)) ∧(﹁q∨(﹁p∧q) ) (p∨﹁p)∧(p∨q)∧(﹁q∨﹁p) ∧(﹁q∨q)1∧(p∨q)∧(﹁p∨﹁q)∧1(p∨q)∧﹁(p∧q)第3次作业(P38)2.5 求下列公式的主析取范式, 并求成真赋值:(1)( ¬p→q) →(¬q∨p)(2) (¬p→q) ∧q∧r(3)(p∨(q∧r)) →(p∨q∨r)(4) ¬(p→q) ∧q∧r解:(1)(¬p→q) →(¬q∨p)¬(p∨q) ∨(¬q∨p)¬p∧¬q ∨¬q ∨p¬q ∨p (吸收律)(¬p∨p)∧¬q ∨p∧(¬q∨q)¬p∧¬q∨p∧¬q ∨p∧¬q ∨p∧q ?m0∨m2∨m2∨m3 m0∨m2∨m3成真赋值为00, 10, 11.(2) (¬p→q) ∧q∧r(p∨q) ∧q∧r(p∧q∧r) ∨q∧r(p∧q∧r) ∨(¬p ∨p) ∧q∧rp∧q∧r∨¬p ∧q∧r∨p∧q∧rm3∨m7成真赋值为011,111.(3) (p∨(q∧r)) →(p∨q∨r)¬(p∨(q∧r)) ∨(p∨q∨r)¬p∧¬(q∧r) ∨(p∨q∨r)¬p∧(¬q∨¬r)∨(p∨q∨r)¬p∧¬q∨¬p∧¬r∨p∨q∨r¬p∧¬q∧(r∨¬r)∨¬p∧(q∨¬q)∧¬r∨p∧(q∨¬q) ∧(r∨¬r) ∨(p∨¬p) ∧q∧(r∨¬r)∨(p∨¬p) ∧(q∨¬q) ∧rm0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.(4) ¬(p→q) ∧q∧r¬(¬p∨q) ∧q∧r(p∧¬q) ∧q∧rp∧(¬q ∧q)∧r主析取范式为0, 无成真赋值, 为矛盾式.第4次作业(P38)2.6 求下列公式的主合取范式, 并求成假赋值:(1) ¬(q→¬p) ∧¬p(2)(p∧q) ∨(¬p∨r)(3)(p→(p∨q)) ∨r解:(1) ¬(q→¬p) ∧¬p¬(¬q∨¬p) ∧¬pq∧p ∧¬pq∧0M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)(p∧q) ∨(¬p∨r)(p∧q) ∨¬p∨r(p∨¬p)∧(¬p ∨q)∨r(¬p ∨q)∨r¬p ∨q∨rM4, 成假赋值为100.(3)(p→(p∨q)) ∨r(¬p∨(p∨q)) ∨r(¬p∨p)∨q ∨r1主合取范式为1, 为重言式.第5次作业(P41)2.32 用消解原理证明下述公式是矛盾式:(1) (¬p∨q) ∧(¬p∨r) ∧(¬q∨¬r) ∧(p∨¬r) ∧r(2) ¬((p∨q) ∧¬p→q)解:(1) (¬p∨q) ∧(¬p∨r) ∧(¬q∨¬r) ∧(p∨¬r) ∧r第一次循环S0=Φ, S1={¬p∨q,¬p∨r,¬q∨¬r,p∨¬r,r}, S2=Φ由¬p∨r, p∨¬r消解得到λ输出“no”,计算结束(2) ¬((p∨q) ∧¬p→q)¬(¬((p∨q) ∧¬p) ∨q)((p∨q) ∧¬p) ∧¬q(p∨q) ∧¬p ∧¬q第一次循环S0=Φ, S1={p∨q,¬p, ¬q}, S2=Φ由p∨q,¬p消解得到q,由q, ¬q消解得到λ,输出“no”,计算结束2.33 用消解法判断下述公式是否可满足的:(1) p∧(¬p∨¬q) ∧q(2) (p∨q) ∧(p∨¬q) ∧(¬p∨r)解:(1) p∧(¬p∨¬q) ∧q第一次循环S0=Φ, S1={p, ¬p∨¬q, q}, S2=Φ由p, ¬p∨¬q消解得到¬q,由q, ¬q消解得到λ,输出“no”,计算结束(2) (p∨q) ∧(p∨¬q) ∧(¬p∨r)第一次循环S0=Φ, S1={p∨q, p∨¬q, ¬p∨r}, S2=Φ由p∨q, p∨¬q消解得到p,由p∨q, ¬p∨r消解得到q ∨r,由p∨¬q, ¬p∨r消解得到¬q ∨r,由p, ¬p∨r消解得到r,S2={p, q ∨r, ¬q ∨r, r}第二次循环S0={p∨q, p∨¬q, ¬p∨r}, S1={p, q ∨r, ¬q ∨r, r}, S2=Φ由p∨q, ¬q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由p∨¬q, q ∨r消解得到p∨r,由¬p∨r, p 消解得到r,S2={p∨r}第三次循环S0={p, q ∨r, ¬q ∨r, r}, S1={p∨r}, S2=ΦS2=Φ输出“yes”,计算结束第6次作业(P52)3.6 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三.(2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一.(3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一.(4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二.(5)若今天是星期一, 则明天是星期二或星期三. 今天是星期一. 所以明天是星期二.(6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三. 设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三.(1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p?r所以推理正确.(2)推理的形式结构为(p→q) ∧q→p此形式结构不是重言式, 故推理不正确.(3)推理形式结构为(p→r) ∧¬r→¬p此形式结构为重言式, 即(p→r) ∧¬r?¬p故推理正确.(4)推理形式结构为(p→q) ∧¬p→¬q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为(p→(q∨r) )∧p →q它不是重言式, 故推理不正确.(6)推理形式结构为(p?r) ∧¬p→¬r此形式结构为重言式, 即(p?r) ∧¬p?¬r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等值演算法. 证明推理正确还可用构造证明法.下面用等值演算法和构造证明法证明(6)推理正确.1. 等值演算法(p?r) ∧¬p→¬r(p→r) ∧(r→p)∧¬p→¬r¬((¬p∨r) ∧(¬r∨p)∧¬p) ∨¬r¬(¬p∨r) ∨¬(¬r∨p) ∨p ∨¬r(p∧¬r)∨(r∧¬p)∨p ∨¬r(r∧¬p)∨p ∨¬r 吸收律(r∧¬p)∨¬(¬p ∨r)德摩根律1即(p?r) ∧¬p?¬r故推理正确2.构造证明法前提: (p?r), ¬p结论: ¬r证明:①p?r 前提引入②(p→r) ∧(r→p) ①置换③r→p ②化简律④¬p 前提引入⑤¬r ③④拒取式所以, 推理正确.第7次作业(P53-54)3.15 在自然推理系统P中用附加前提法证明下面各推理: (1)前提: p→(q→r), s→p, q结论: s→r(2)前提: (p∨q) →(r∧s), (s∨t) →u结论: p→u(1)证明:①s 附加前提引入②s→p 前提引入③p①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理(2)证明:①P 附加前提引入②p∨q ①附加③(p∨q) →(r∧s) 前提引入④r∧s ②③假言推理⑤S ④化简⑥s∨t ⑤附加⑦(s∨t) →u 前提引入⑧u ⑥⑦假言推理3.16 在自然推理系统P中用归谬法证明下面推理: (1)前提: p→¬q, ¬r∨q, r∧¬s结论: ¬p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①P 结论否定引入②p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥r∧¬s 前提引入⑦r ⑥化简规则⑧¬r∧r ⑤⑦合取引入规则⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①¬(r∨s) 结论否定引入②p∨q 前提引入③p→r 前提引入④q→s 前提引入⑤(p→r) ∧(q→s) ∧(p∨q) ②③④合取引入规则⑥r∨s ⑤构造性二难⑦(r∨s) ∧¬(r∨s) ④⑤合取引入规则⑦为矛盾式, 所以推理正确.第8次作业(P65-66)4.5 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.解:因为没指明个体域, 因而使用全总个体域(1) ?x?y(F(x) ∧G(y) →H(x,y))其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快. (2) ?x?y(F(x) ∧G(y) ∧H(x,y))其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快. (3) ¬?x(F(x) ∧?y(G(y) →H(x,y)))或?x(F(x) →?y(G(y) ∧¬H(x,y)))其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ¬?x?y(F(x) ∧G(y) →H(x,y))或x?y(F(x) ∧G(y) ∧¬H(x,y) )其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.9 给定解释I 如下:(a)个体域为实数集合R.(b)特定元素a=0.(c)特定函数-f(x,y)=x y, x,y∈R.(d)谓词-F(x,y): x=y,-G(x,y): x<="">给出下列公式在I 下的解释, 并指出它们的真值:(1) ??x?y(G(x,y) →¬F(x,y))(2) ??x?y(F(f(x,y),a)→G(x,y))(3) ??x?y(G(x,y) →¬F(f(x,y),a))(4) ??x?y(G(f(x,y),a) →F(x,y))解:(1) ??x?y(x<="">(2) ??x?y((x-y=0) →x<="">(3) ??x?y((x<="">(4) ??x?y((x y<0) → (x=y)), 真值为0.第9次作业(P79-80)5.5 给定解释I如下:(a) 个体域D={3,4};(b)-f(x):-f(3)=4,-f(4)=3;(c)-F(x,y):-F(3,3)=-F(4,4)=0,-F(3,4)=-F(4,3)=1. 试求下列公式在I下的真值:(1) ?x?yF(x,y)(2) ?x?yF(x,y)(3) ?x?y(F(x,y)→F(f(x),f(y)))解:(1) ?x?yF(x,y)(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))(0∨1)∧(1∨0) ? 1(2) ?x?yF(x,y)(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))(0∧1)∨(1∧0) ? 0(3) ?x?y(F(x,y)→F(f(x),f(y)))(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4)))(0→0)∧(1→1)∧(1→1)∧(0→0) ?15.12 求下列各式的前束范式.(1)?xF(x)→?yG(x, y)(3)?xF(x, y) ??xG(x, y)(5) ?x1F(x1, x2)→(F(x1)→¬?x2G(x1, x2)).解:前束范式不是唯一的.(1) ?xF(x)→?yG(x, y)x (F(x)→?yG(t, y))x?y(F(x)→G(t, y)).(3) ?xF(x, y) ??xG(x, y)(?xF(x, y)→?xG(x, y))∧(?xG(x, y)→?xF(x, y)) ? (?xF(x, y)→?uG(u, y))∧(?xG(x, y)→?vF(v, y))x?u(F(x, y)→G(u, y))∧?x?v(G(x, y)→F(v, y))x?u(F(x, y)→G(u, y))∧?w?v(G(w, y)→F(v, y))x?u?w?v ((F(x, y)→G(u, y))∧(G(w, y)→F(v, y))) (5)?x1F(x1, x2)→(F(x1)→¬?x2G(x1, x2))x1F(x1, x2)→(F(x1)→?x2¬G(x1, x2))x1F(x1, x2)→?x2(F(x1)→¬G(x1, x2))x1F(x1, x3)→?x2(F(x4)→¬G(x4, x2))x1(F(x1, x3)→?x2(F(x4)→¬G(x4, x2)))x1?x2 (F(x1, x3)→(F(x4)→¬G(x4, x2)))第10次作业(P79-80)5.15 在自然推理系统F L中,构造下面推理的证明:(1) 前提: ?xF(x) →?y((F(y)∨G(y))→R(y)),?xF(x)结论:?xR(x).(2) 前提:?x(F(x)→(G(a)∧R(x))),?xF(x)结论:?x(F(x)∧R(x))(3) 前提:?x(F(x)∨G(x)),¬?xG(x)结论:?xF(x)(4) 前提:?x(F(x)∨G(x)),?x(¬G(x)∨¬R(x)),?xR(x) 结论: ?xF(x)(1)证明:①?xF(x) →?y((F(y)∨G(y))→R(y)) 前提引入②?xF(x) 前提引入③?y((F(y)∨G(y))→R(y)) ①②假言推理④(F(c)∨G(c))→R(c) ③全称量词消去规则⑤F(c) ①存在量词消去规则⑥F(c) ∨G(c) ⑤附加⑦R(c) ④⑥假言推理⑧?xR(x) ⑦存在量词引入规则(2) 证明:①?xF(x) 前提引入②F(c) ①存在量词消去规则③?x(F(x)→(G(a)∧R(x))) 前提引入④F(c)→(G(a)∧R(c)) ④全称量词消去规则⑤G(a)∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c)∧R(c) ②⑥合取引入⑧?x(F(x)∧R(x)) ⑦存在量词引入规则(3) 证明:①¬?xG(x) 前提引入②?x¬G(x) ①置换③¬G(c) ②全称量词消去规则④?x(F(x)∨G(x)) 前提引入⑤F(c)∨G(c) ④全称量词消去规则⑥F(c) ③⑤析取三段论⑦?xF(x) ⑥存在量词引入规则(4) 证明:①?x(F(x)∨G(x)) 前提引入②F(y)∨G(y) ①全称量词消去规则③?x(¬G(x)∨¬R(x)) 前提引入④¬G(y) ∨¬R(y) ③全称量词消去规则⑤?xR(x) 前提引入⑥R(y) ⑤全称量词消去规则⑦¬G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥?xF(x) ⑧存在量词引入规则第11次作业(P96)6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课.(2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星。
国家开放大学电大本科《离散数学》网络课形考任务2作业及答案

国家开放大学电大本科《离散数学》网络课形考任务2作业及答案此任务2 g选择题题目1 无向完全图K4是()、选择一项:A、树 B、欧拉图 C、汉密尔顿图 D、非平面图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T 的树叶数为()、选择一项: A、4 B、8 C、3 D、5 题目3 设无向图G的邻接矩阵为 011111 0 0111 0 0 0 011 0 011 01 0 则G 的边数为( 选择一项: A、7 B、14 C、6 D、1 题目4 如图一所示,以下说法正确的是()、选择一项: A、 ((a, e), (b, c)}是边割集 B、{(a, e)}是边割集 C、{(d, e)}是边割集 D、((a, e)}是割边题目5 以下结论正确的是()、选择一项: A、有n个结点n-l条边的无向图都是树B、无向完全图都是平面图 C、树的每条边都是割边 D、无向完全图都是欧拉图题目6 若G是一个欧拉图,则G一定是()、选择一项: A、汉密尔顿图 B、连通图 C、平面图 D、对偶图题目7 设图G=, vGV,则下列结论成立的是()、选择一项:A、云 d做、)=2|% B、2>“ = |司 w C、 deg(v)=2|S| D、deg(v)=|E| 题目8 图G如图三所示,以下说法正确的是()、选择一项: A、(b, d}是点割集 B、{c}是点割集 C、{b, c}是点割集 D、 a是割点题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是()、选择一项: (a)是费连通的 B、 (d)是强连通的 C、 (c)是强连通的D、 (b)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是()、选择一项: A、 (b)只是弱连通的 B、 (c)只是弱连通的 C、 (a)只是弱连通的 D、 (d)只是弱连通的判断逝题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树、()选择一项:对错题目12 汉密尔顿图一定是欧拉图、()选择一项:对错题目13 设连通平面图G的结点数为5,边数为6,则面数为4、()选择一项:对错题目14 设G是一个有7个结点16条边的连通图,则G为平面图、()选择一项:对错题目15 如图八所示的图G存在一条欧拉回路、()选择一项:对错题目16 设图G如图七所示,则图G的点割集是{f}、()选择一项:对错题目172>瞒)=2圜设G是一个图,结点集合为V,边集合为E,则代衫()选择一项:对错题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树、()选择一项:对错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图、()选择一项:对错题目20 若图 G=,其中 V=( a, b, c, d }, E={ (a, b), (a, d), (b, c), (b, d)},则该图中的割边为(b, c)、()选择一项:对。
离散数学第二次作业

班级姓名学号成绩一、图的概念、连通性与矩阵表示选择/填空题1、任何n个节点m条边的图G = (V,E) , 边数与顶点度数的关系是。
2、任一有向图中,度数为奇数的结点有( )个。
3、n阶完全图K n的边数为。
4、n个结点的有向完全图边数是( ),每个结点的度数是( )。
5、已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是.6、下面四组数能构成无向图的度数列的有( )。
A、 2,3,4,5,6,7;B、 1,2,2,3,4;C、 2,1,1,1,2;D、 3,3,5,6,0。
7、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。
(1) 10 (2) 4 (3) 8 (4) 168、在有n个顶点的连通图中,其边数()。
(1) 最多有n-1条 (2) 至少有n-1 条(3) 最多有n条 (4) 至少有n 条9、如右图相对于完全图K5的补图为()。
10、给定无向图G如下图所示,下面给出的结点集子集中,不是点割集的为().A.{b, d} B.{d}C.{a, c} D.{b, e}11、图G 如右图所示,以下说法正确的是 ( ) .A .{(a , c )}是割边B .{(a , c )}是边割集C .{(b , c )}是边割集D .{(a, c ) ,(b, c )}是边割集 12、给定无向图G=<V, E>如下图所示,下面哪个边集不是其边割集( )。
A 、;B 、{<v1,v4>,<v4,v6>};C 、;D 、。
13、设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的14、下图 的邻接矩阵A=15、设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100,则G 的边数为( ).A .5B .6C .3D .416、图 的邻接矩阵为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1. 设A = {1, 2}, B = {2, 3}, 则A - A =________, A – B =________, B – A =________.
2. 设N 是自然数集合, f 和g 是N 到N 的函数, 且f (n ) = 2n +1,g (n ) = n 2, 那么复合函数(f f ) (n )=________ , (f g ) (n )=________ , (g f ) (n ) =________.
3. 设|X | = n , P (X )为集合X 的幂集, 则| P (X )| = ________. 在代数结构(P (X ), ∪)中,则P (X ) 对∪运算的单位元是________, 零元是________ .
4. 在下图中, _______________________________是其Euler 路
.
5. 设有向图G = (V , E ),V = {v 1,v 2,v 3,v 4},若G 的邻接矩阵A =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡1001001111011010, 则v 1的出度deg +(v 1) =________, v 1的入度deg -(v 1) =________, 从v 2到v 4长度为2的路有________条.
二、单选题
1. 设A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}, 下列选项正确的是( )
(A) 1∈A (B) {1, 2, 3}⊆A
(C) {{4, 5}}⊂A (D) ∅∈A .
2.集合A = {1, 2, …, 10}上的关系R ={(x , y )|x + y = 10, x , y ∈A }, 则R 的性质是
( )
(A) 自反的 (B) 对称的
(C) 传递的、对称的 (D) 反自反的、传递的.
3.若R 和S 是集合A 上的两个关系,则下述结论正确的是( )
(A) 若R 和S 是自反的, 则R ∩S 是自反的
(B) 若R 和S 是对称的, 则R S 是对称的
(C) 若R 和S 是反对称的, 则R S 是反对称的
(D) 若R 和S 是传递的, 则R ∪S 是传递的.
4.集合A = {1, 2, 3, 4}上的关系 R = {(1, 4), (2, 3), (3, 1), (4, 3)}, 则下列不是..t (R )中元素的是( )
(A) (1, 1) (B) (1, 2)
(C) (1, 3) (D) (1, 4).
5.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )
(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q
(C) ⌝ (p↔ q) (D) ⌝ (⌝p∨⌝q).
三、构造下面推理的证明:如果小张和小王去看电影, 则小李也去看电影. 小赵不去看电影或小张去看电影. 小王去看电影. 所以, 当小赵去看电影时, 小李也去.
四、设R是集合A上自反和传递的关系,试证明:R R=R.
五、已知A ={{∅}, {∅, 1}}, B = {{∅, 1}, {1}}, 计算A∪B, A○+B,A的幂集P(A).
六、今有n个人, 已知他们中任何2人的朋友合起来一定包含其余n -2人. 试证明:
(1) 当n≥3时,这n个人能排成一列,使得中间任何人是其两旁的人的朋友,而两头的人是其左边(或右边)的人的朋友.
(2) 当n≥4时,这n个人能排成一圆圈,使得每个人是其两旁的人的朋友.。