有效数字、数值修约及运算规程
实验室分析中有效数字与数值修约规则

实验室分析中有效数字与数值修约规则有效数字是药物分析中具有实际意义的测定数值。
它是由直接读取的准确数字和通过估读得到的可疑数字(最后一位)组成。
例如:3.2438中的“8”和0.130中的“0”。
有效数字的个数是有效位数,对于不同类型的测定数值其有效位数为:数值修约规则一般来说,分析工作者习惯采用“四舍五入''修约规则,不过在药物分析中逢五就进,必然会造成结果的系统偏高,误差偏大,为了避免这样的状况出现,尽量减少因修约而产生的误差,一般采用四舍六入五留双的修约规则:运算修约规则试验过程中数值记录1、称量实验“精密称定”是指称取重量应准确至所取重量的千分之一;“称定”是指称取重量应准确至所取重量的百分之一,按照“精密称定''项原则进行修约;“称重”,“称取”一般准确到规定重量下一位;取“约XX”时,指取用量不超过规定量的(100÷10)%;取“XX”时,参照修约规则。
2、量取试验以刻度为依据可读到最小刻度所在位并估读最小刻度之间。
图中“1”记录为35.OOcm,而不能记录35cm,图中“2"记录为35.40cm,图中“3”可记录为35.75cm。
量取5mL的液体应采用5-1OnIL的量筒;量取5.OmL的液体应采用5-10mL的刻度管;量取5.OOmL的液体应采用5-10mL的移液管。
容量瓶的定容应记录为定容至100.OOrnL o3、色谱实验■峰面积一般不做修约,按实际测定值进行记录,参与计算后按相关规定进行修约。
■拖尾因子、分离度可修约至小数点后两位,理论塔板数一般修约至正整数。
■保留时间不做修约。
■工作站自动生成数值也可不做修约。
■化合物含量应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。
并且至少保留一位有效数字。
■RSD按“只进不舍”进行修约。
■色谱条件数值不得修约。
■方法学验证项的数值应该比标准规定限度的有效位数多一位,根据实际情况以修约规则进行修约。
有效数字的修约规则

有效数字及计算规则有效数字是指能够代表一定的物理量的数字,即所有实际能测得的确定数字再加上一位不定数字。
例如在分析天平上称得某物重0.5020g,其中小数点后的前三位是确定的数字,而小数点后面第四位是估读的,因此这最后一位是不定数字。
小数点前的0不是有效数字,只起到定位作用,而小数点后面的两个0都是有效数字,故0.5020有四位有效数字。
有效数字的记录及计算规则如下:1、记录测量数据只应该保留一位不定数字。
如一般滴定管可以准确读至小数点后第一位数字,而第二位小数是估计值。
因此只能保留至第二位小数。
2、“四舍六入五单双”法则:(1)所拟舍去的数字中,其最左边的第一个数字小于5时,则舍去。
例如拟将14.2423修约只保留一位小数时,其所舍去的数字中最左边的第一个数字是4,则结果成为14.2。
(2)所拟舍去的数字中,其最左边的第一个数字大于5时,则进一。
例如拟将6.4843修约只保留数一位小数时,其所舍去的数字中最左边的第一个数字是8则结果成为6.5。
(3)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字并非全部为0时,则进一。
例如拟将21.0501修约只保留数一位小数时,其所舍去的数字中最左边的第一个数字是5,5后面的数字还有01,则进1,则结果为21.1。
(4)所拟舍去的数字中,其最左边的第一个数字等于5而其后面的数字全部为0时,保留的数字末位如果为奇数则进1,如为偶数则不进(0以偶数论)。
例如将下列数字修约只保留一位小数。
10.05因保留的数字末位为0,以偶数论不进,成为10.010.15因保留的数字末位为1,奇数进1,成为10.210.25因保留的数字末位为2,偶数不进,成为10.210.45因45保留的末位数字是4,偶数不进,成为10.4(5)所以舍去的数字并非单独的一个数字时,不得对该数字进行连续的修约。
例如:将45.4565修约为整数,不能采取将45.4565---45.456---45.46---45.5---46的方法修约;正确的修约应为45.4565---45。
药检有效数字和数值的修约及其运算规则

药检有效数字和数值的修约及其运算规则一目的:制定有效数字和数值的修约及其运算规则,规范有效数字和数值的修约及其运算。
二适用范围:适用于有效数字和数值的修约及其运算。
三责任者:品控部。
四正文:本规程系根据中国兽药典2005年版“凡例”和国家标准GB8170-87《数值修约规程》制许,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程序通常只能是上下差1单位。
1.2 有效数字的字位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……,n也可以是负数,如n= -1、10-1=0.1(十分位),n= -2、10-2=0.01(百分位),……,1.3 有效位数1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×102。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,为0.320三位有效位数,10.00为四位有效位数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和系数2等值的有效位数也可视为无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中的“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。
实验室数据数值修约规则

实验室数据数值修约规则引言概述:在实验室中,准确的数据是科学研究和实验分析的基础。
然而,由于测量仪器的精度限制以及实验误差的存在,实验数据常常会包含一定的误差。
为了保证数据的准确性和可靠性,需要对实验室数据进行修约。
本文将详细介绍实验室数据数值修约的规则和方法。
一、有效数字的确定:1.1 确定有效数字的位数:有效数字是指对测量结果有贡献的数字。
通常情况下,有效数字的位数应该与测量仪器的精度相一致。
例如,如果测量仪器的精度为0.01,那么测量结果的有效数字应该保留到小数点后两位。
1.2 零的处理:在确定有效数字时,需要注意对零的处理。
如果零是有效数字的一部分,那么它应该被保留;如果零不是有效数字的一部分,那么它应该被舍弃。
例如,测量结果为0.005,有效数字为两位,应该修约为0.01。
1.3 末位数字的处理:当末位数字为5时,根据四舍五入规则,如果末位数字前的数字为奇数,则末位数字舍去;如果末位数字前的数字为偶数,则末位数字进位。
例如,测量结果为3.145,有效数字为三位,应该修约为3.15。
二、数值修约的方法:2.1 四舍五入法:四舍五入法是最常用的修约方法。
根据四舍五入规则,当要舍弃的数字小于5时,舍去;当要舍弃的数字大于5时,进位。
例如,测量结果为2.345,有效数字为两位,应该修约为2.35。
2.2 截断法:截断法是指直接舍弃多余的数字。
根据有效数字的位数确定截断位置,将多余的数字直接舍去。
例如,测量结果为1.234,有效数字为两位,应该修约为1.23。
2.3 近似法:近似法是指根据修约规则进行适当的近似。
根据末位数字的值以及前一位数字的奇偶性,进行进位或舍去。
例如,测量结果为1.235,有效数字为两位,应该修约为1.24。
三、复杂情况的处理:3.1 加减运算:在进行加减运算时,应该保持运算结果的有效数字与最不准确的原始数据一致。
例如,对测量结果1.23和2.456进行加法运算,结果应该修约为3.69。
实验室数据数值修约规则

实验室数据数值修约规则一、背景介绍实验室数据的准确性对于科学研究和工程实践至关重要。
在实验室中,我们时常会遇到测量结果包含一定的误差,因此需要对数据进行修约,以提高数据的可靠性和精确性。
本文将介绍实验室数据数值修约的规则和方法。
二、实验室数据数值修约规则1. 精确度与有效数字在实验室中,数据的精确度是指测量结果与真实值之间的接近程度。
有效数字是指一个数中对于其精确度有贡献的数字,包括所有非零数字以及零之偶尔零后面的所有数字。
有效数字的位数越多,表示数据的精确度越高。
2. 修约规则(1)四舍五入法:当修约位数的后一位数字大于等于5时,修约位数保留不变;当修约位数的后一位数字小于5时,修约位数减去1。
例如,测量结果为12.3456,若要保留两位有效数字,则修约后为12.35;若要保留三位有效数字,则修约后为12.3。
(2)截断法:当修约位数的后一位数字大于等于5时,修约位数加1,然后舍去后面的所有数字;当修约位数的后一位数字小于5时,直接舍去后面的所有数字。
例如,测量结果为12.3456,若要保留两位有效数字,则修约后为12.34;若要保留三位有效数字,则修约后为12.345。
(3)特殊情况:- 当修约位数的后一位数字为5时,若后面还有非零数字,则按四舍五入法修约;若后面惟独零,则根据修约位数的奇偶性决定修约方法。
若修约位数为奇数,则按四舍五入法修约;若修约位数为偶数,则按截断法修约。
- 当修约位数的后一位数字为0时,若后面还有非零数字,则按截断法修约;若后面惟独零,则直接舍去后面的所有数字。
3. 修约示例(1)测量结果为18.456,要保留两位有效数字,则修约后为18.46。
(2)测量结果为0.003245,要保留三位有效数字,则修约后为0.00325。
(3)测量结果为27.500,要保留四位有效数字,则修约后为27.50。
三、总结实验室数据数值修约是提高数据精确度和可靠性的重要步骤。
通过遵循修约规则,可以对测量结果进行合理的修约,使得数据更加准确。
有效数字和数值的修约及其运算

有效数字和数值的修约及其运算本规程系根据中国药典2010年版凡例和国家标准GB 8170-2008《数值修约规则与极限数值的表示和判定》制订,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1.数值修约通过省略原数值的最后若干位数字,调整所保留的末位数字,使最后所得到的值最接近原数值的过程。
2.修约间隔确定修约保留位数的一种方法。
注:修约间隔的数值一经确定,修约值即为该数值的整数倍。
例1:如指定修约间隔为0.1,修约值应在0.1的整数倍中选取,相当于将数值修约到一位小数。
例2:如指定修约间隔为100,修约值应在100的整数倍中选取,相当于将数值修约到“百”数位。
2.3极限数值limiting values标准(或技术规范)中规定考核的以数量形式给出且符合该标准(或技术规范)要求的指标数值范围的界限值。
3数值修约规则3. 1确定修约间隔a)指定修约间隔为10-n(n为正整数),或指明将数值修约到n位小数;b)指定修约间隔为1,或指明将数值修约到“个”数位;c)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,或指明将数值修约到“十”、“百”、“千”……数位。
3. 2进舍规则3.2.1拟舍弃数字的最左一位数字小于5,则舍去,保留其余各位数字不变。
例:将12. 149 8修约到个数位,得12;将12. 149 8修约到一位小数,得12.l。
3.2.2拟舍弃数字的最左一位数字大于5,则进一,即保留数字的末位数字加1.例:将1 268修约到“百”数位,得13 × 102(特定场合可写为1 300)。
注:本标准示例中,“特定场合”系指修约间隔明确时。
3.2.3拟舍弃数字的最左一位数字是5,且其后有非0数字时进一,即保留数字的末位数字加1。
例:将10. 500 2修约到个数位,得1。
3.2.4拟舍弃数字的最左一位数字为5,且其后无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,即保留数字的末位数字加1;若所保留的末位数字为偶数((0,2,4,6,8),则舍去。
有效数字和数值的修约及运算标准操作规程

**********************有限公司质量管理标准操作规程有效数字和数值的修约及运算标准操作规程1. 目的:规范有效数字和数值的修约及运算标准操作,保证检验工作质量2. 引用标准:《药品生产质量管理规范》3. 适用范围:有效数字和数值的修约及运算4. 责任:质管部QA人员、质管部QC人员、质管部管理人员、注射剂车间、仓库。
5. 内容:5.1 有效数字的基本概念5.1.1 有效数字系指在检验工作中所能得到的有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数据,即为有效数字。
最后一位有效数字的欠准程度通常只能是上下差1单位。
5.1.2 有效数字的定位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
5.1.3 有效位数5.1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右得到的位数减去无效零(即仅为定位用的零)的个数。
5.1.3.2 在其他的十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数5.1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字,其有效位数可视为无限多位。
5.1.3.4 pH值等对数值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
5.1.3.5 有效数字的首位数字为8或9时,其有效位数可以多计一位。
5.2 数值修约及其进舍规则5.2.1 数值修约是指对拟修约数值中超出需要保留位数时的舍弃,根据舍弃数来保留最后一位数或最后几位数。
5.2.2 修约间隔是确定修约保留位数的一种方式,修约间隔的数值已经确定,修约值即为该数值的整数倍。
5.2.3 确定修约位数的表达方式5.2.3.1 指定位数(1)指定修约间隔为10-n(n为正整数),或指明将数值修约到小数点后n位。
(2)指定修约间隔为1,或指明将数值修约到个位数。
(3)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,将指明将数值修约到“十”“百”“千”……数位。
药检有效数字及数值的修约及其运算规则

药检有效数字和数值的修约及其运算规则一目的:制定有效数字和数值的修约及其运算规则,规范有效数字和数值的修约及其运算。
二适用范围:适用于有效数字和数值的修约及其运算。
三责任者:品控部。
四正文:本规程系根据中国兽药典2005年版“凡例”和国家标准GB8170-87《数值修约规程》制许,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1 有效数字的基本概念1.1 有效数字系指在检验工作中所能得到有实际意义的数值。
其最后位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程序通常只能是上下差1单位。
1.2 有效数字的字位(数位),是指确定欠准数字的位置。
这个位置确定后,其后面的数字均为无效数字。
欠准数字的位置可以是十进位的任何数位,用10n来表示:n可以是正整数,如n=1、101=10(十数位),n=2、102=100(百数位),……,n也可以是负数,如n= -1、10-1=0.1(十分位),n= -2、10-2=0.01(百分位),……,1.3 有效位数1.3.1 在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作35×102。
1.3.2 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,为0.320三位有效位数,10.00为四位有效位数,12.490为五位有效位数。
1.3.3 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和系数2等值的有效位数也可视为无限多位;含量测定项下“每1ml的XXXX滴定液(0.1mol/L)……”中的“0.1”为名义浓度,规格项下的“0.3g”或“1ml:25mg”中的“0.3”、“1”和“25”为标示量,其有效位数也均为无限多位;即在计算中,其有效位数应根据其他数值的最少有效位数而定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 目的
为对实验过程中实际测量或计算而得的数值进行统一规范的处理,特制定本规程,保证数据计算合理、准确有效。
2 范围
适用于工作中除生物检定统计法以外的各种测量或计算而得的数值。
3 职责
实验员:负责按本操作规程在计算过程中对检验数据进行处理。
复核人、QA:负责按本规程对实验结果进行复核、计算。
各实验室主任:监督本操作规程的实施。
4 内容
4.1 有效数字的基本概念
4.1.1 有效数字系指在药检工作中所能得到有实际意义的数值。
其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程度通道只能是上下差1单位。
如:12.50 ml,前三位是准确的,最后一位是估计的,不甚准确,但它不是臆造的。
记录时应保留这一位,这四位都是有效数字。
4.1.2 有效位数
4.1.2.1 有效数字位数的确定原则
由于有效数字的位数反映了测定结果的精确度,它直接与测量的精密度有关。
因此,在科学实验和生产过程中正确记录有效数字,不能多写或少写,多写了不能正确反映测量精度,则该数据不真实,因而也就不可靠;少写损失测量精
度。
4.1.2.2 在没有小数位且以若干个零结尾的数值中,有效位数每当指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
例如35000中若有两个无效零,则为三位有效位数,应写作350×102;若有三个无效零,则为两位有效位数,应写作
35×103。
4.1.2.3 在其它十进位数中,有效数字系指从非零数字最左一位向右数而得到的位数。
例如3.2、0.32、0.032和0.0032均为两位有效位数,0.0320为三位有效位数、10.00为四位有效位数,12.490为五位有效位数。
4.1.2.4 有效数字的首位数字为8或9时,其有效位数可以多计一位。
例如85%与115%,都可以看成是三位有效位数;99.0%与101.0%都可以看成是四位有效数字。
4.1.2.5 非连续型数值(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位;例如分子式“H2SO4”中的“2”和“4”是个数。
常数π、e和等数值的有效位数也可视为是无限多位。
4.1.2.6 PH值等对数值,其有效位数由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
例如:PH=11.26([H+]=
5.5×10-12mol/L),其有效位数只有两位。
4.2 数值修约及其进舍规则
4.2.1 数值修约的概念
是对拟修约数值根据保留位数的要求,将多余的数字进行舍弃,根据舍弃数来保留最后一位数或最后几位数,这一过程称为数值修约。
4.2.2 数值修约的意义
4.2.2.1 出于准确表达测量结果的需要
测量结果大都是通过间接测量得到的,间接测量的结果通常是通过计算得出的,其组成数字往往较多,但具体测量的精度是确定的,就是说合理表征测量结果的数字个数应是确定的,最终提供的测量结果应合理反映这一点,因此,通过对计算得出的和直接测量得到的数据的分析,得到合理的保留位数,将多余的数字进行取舍以得到合理反映测量精度的测量结果,即进行数值修约就非常必要。
4.2.2.2 在进行具体的数值计算前,对参加计算的数值进行修约,可简化计算,降低出错的机会。
如:4.78961×2.13×102.4387926=?
若不先进行数值修约就直接计算,繁琐且容易出错。
若在计算前先按数值修约规则进行修约,舍去多余参与计算的数值之中没有意义的数字,则计算会简单得多,也不易出错。
4.2.3 进舍规则
进舍规则口诀:
四舍六入五考虑,五后非零则进一,
五后全零看五前,五前偶舍奇进一,
不论数字多少位,都要一次修约成。
4.2.3.1 拟舍弃数字的最左一位数字小于5时,则舍去,即保留的各位数字不变。
例1 将12.1498修约到一位小数,得12.1。
例2 将12.1498修约成两位有效位数,得12。
4.2.3.2 拟舍弃数字的最左一位数字大于5,或者是5,而其后跟有并非全部为0的数字时,则进一。
即在保留的末位数字加1。
例1 将1268修约到百数位,得13×102。
例2 将1268修约到三位有效位数,得127×10。
例3 将10.502修约到个数位。
得11。
4.2.3.3 拟舍弃数字的最左一位数字为5,而右面无数字或皆为0时,若所保留的末位数为奇数(1,3,5,7,9)则进一,为偶数(2,4,6,8,0)则舍弃。
例将下列数字修约成两位有效位数
拟修约数值修约值
0.0325 0.032
32500 32×103
4.2.3.4 在相对标准偏差(RSD)中,采用“只进不舍”的原则,如0.163%、0.52%宜修约为0.17%、0.6%。
4.2.3.5 不许连续修约拟修约数字应在确定修约位数后一次修约获得结果,而不得多次按前面规则连续修约。
例修约15.4546,将数值修约到个位数。
正确做法为:15.4546→15;
不正确的做法为:15.4546→15.455→15.46→15.5→16.
4.2.4 运算规则
在计算分析结果时,每个测量数据的误差会传递到分析结果中去,而运算不能改变测量的准确度。
所以,应根据误差传递的规律进行有效数字的运算。
在进行数学运算时,对加减法和乘除法中有效数字的处理是不同的。
4.2.4.1 加减法加减法的计算是各数值绝对误差的传递,所以结果的绝对误差应与数据中绝对误差最大的数据相当(即小数点后位数最少的数据为准)。
4.2.4.2 乘除法乘除法的计算是各数值相对误差的传递,所以结果的相对误差应与数据中相对误差最大的数据相当,(即有效数字位数最少的数据为准,与小数点位置无关)。
4.2.4.3 在运算过程中,为减少舍入误差,其他数值的修约可以暂时多保留一位,等运算得到结果时,再根据有效位数弃去多余的数字。
例1:13.65+0.00823+1.633=?
本例是数值相加减,在三个数值中13.65的绝对误差最大,其最末一位数为百分位(小数点后二位),因此将其他各数均暂先保留至千分位,即把0.00823修约成0.008,1.633不变,进行运算:
13.65+0.008+1.633=15.291
最后对计算结果进行修约,15.291应只保留至百分位,而修约成15.29。
例2:14.131×0.07654÷0.78=?
本例是数值相乘除,在三个数值中,0.78的有效位数最少,仅为两位有效位数,因此各数值均应暂保留三位有效位数进行运算,最后结果再修约为两位有效位数。
14.131×0.07654÷0.78
=14.1×0.0765÷0.78
=1.08÷0.78
=1.38
=1.4
4.2.5 注意事项
4.2.
5.1 正确记录检测所得的数值
应根据取样量、量具的精度、检测方法的允许误差和标准中的限度规定,确定数字的有效位数,检测值必须与测量的准确度相符合,记录全部准确数字和一位欠准数字。
移液管是进过标定的,正确操作是要将移液管标定值带入计算,量筒若用来做“装量”等实验需要准确值的实验,也需要进行标定,带入标定值计算。
例1:取栀子苷对照品适量,精密称定为12.34 mg,置50 ml量瓶中加甲醇稀释至刻度,摇匀,再精密移取2 ml置20 ml量瓶中加甲醇稀释至刻度,计算栀子苷对照溶液的浓度?
由分析天平的精度,确定称量值为4位有效位数,故最终计算出的栀子苷对照溶液的浓度也为4位有效位数。
12.34/50*2/20=0.02468 mg/ml
注意:在含量方法学验证过程中所涉及的数据,其有效数字的位数都由所用天平的精度决定。
但最终报告中均体现为比参考标准限度多一位小数。
药典规定:药材栀子含栀子苷(C17H24O10)不得少于1.8%,实际含量计算过程中,测出某批次药材含栀子苷1.822%,在最终报告中,仍应由修约法则,体现含栀子苷为1.82%。
准确度实验中:称取此批栀子药材适量,精密称定为1.234 g,因此供试品中栀子苷量为:1.82%×1.234=0.02246 g。
例2:在防风含量测定项下,药典规定防风药材含升麻素苷和5-O-甲基维
斯阿米醇苷的总量不少于0.24%。
实际实验过程中,防风样品的称样量为0.2512 g,计算得出升麻素苷含量为0.12342…..%,5-O-甲基维斯阿米醇苷含量为0.20221….%。
因此由天平的精密度确定最终结果应为4位有效位数,即升麻素苷含量应为0.1234%,5-O-甲基维斯阿米醇苷含量应为0.2022%,最终总含量为:
0.1234%+0.2022%=0.2356%。
4.2.
5.2 正确掌握和运用规则
不论是何种办法进行计算,都必须执行进舍规则和运算规则,如用计算器进行计算,也应将计算结果经修约后再记录下来。
5 参考资料
《中国药品检验标准操作规程》(2010年版)
国家标准GB8170-87《数值修约规程》。