有效数字修约与计算
有效数字及有效数字计算修约基础知识

有效数字及有效数字计算、修约基础知识一、有效数字1、末的概念末:指任何一个数最末一位数字所对应的单位量值。
例:用分度值为0.1mm的卡尺测量物体的长度,结果为19.8mm,最末一位的量值0.8mm,即为最末一位数8与所对应的单位量0.1mm的乘积,故19.8mm的末为0.1mm。
2、有效数字的界定1~9都为有效数字,数字之间的0、末尾的0也为。
二、近似数计算1、“+-”以小数位数最少为准,修约比该数多一位,计算后修约以小数点最少数的位数为准。
如:18.3+1.4545+0.876≈18.3+1.45+0.88=20.63≈20.62、“×÷”各数修约到有效数字最少多一位,最后结果以有效数字最少的那个为准。
如:3.670×45.3×5.6735≈3.670×45.3×5.674=943.31≈9433、乘方、开方,参加运算有几位有效数字,结果就得保留几位数字。
81=9.000 9.002=81.0.00如几级运算,乘方开方多保留一位。
0.81+4.359=9.000=4.3594、混合运算:不管如何运算,结果必须以位数最少为准。
三、修约规则1、舍去数第一位小于5则舍,大于5则进。
4.254→4.25 38.735→392、舍去数第一位为5,5后并非全为0则进。
9.55033→9.63、舍去数第一位为5,5后无数或全为0,奇进偶舍。
0.0415→0.042 0.0425→0.0424、注意不得连续修约。
如:37.4546→37.455→37.46→37.5→385、按GB 8170-2008《数值修约规则》对“1”“2”“5”修约间隔做了规定,即k×10n(k=1、2、5,n为正、负整数)另外,0.5、0.2修给采用分别乘以2与5,修约后再除以2与5来修约。
如:以0.5修约60.2560.25×2得120.5修约为120,再除以2得60.0练习题:一、说出下列数值有几位有效数字?1、60.0002、0.60003、0.06004、6.001×107二、近似数计算:1、19.3+1.5837+0.9762、3.780×47.5×6.57453、00025.三、数值修约:1、5.256、5.254、5.255、5.265保留三位有效数字?2、60.25以0.2修约。
有效数字和数值的修约与运算法则

有效数字和数值的修约与运算法则一、有效数字的基本概念:(1)有效数字是指在检验工作中所能得到有实际意义的数值,其最后一位数字欠准是允许的,这种由可靠数字和最后一位不确定数字组成的数值,即为有效数字。
最后一位数字的欠准程度通常只能是上下差1单位。
(2)有效数字的定位(数位),是指确定欠准数字的位置,这个位置确定后,其后面的数字均为无效数字。
例如,一支25ml的滴定管,其最小刻度为0.1ml,如果滴定管的体积介符于20.9ml 到21.0ml之间,则需估计一位数字,读出20.97ml,这个7就是个欠准的数字,这个位置确定后,它有效位数就是4个,即使其后面还有数字也只是无效数字。
(3)在没有小数位且以若干个零结尾的数值中,有效位数系指从非零数字最左一位向右数得到的位数减去无效零(即仅为定位用的零)的个数。
(4)在其他10进位数中,有效数字系指从非零数字最左一位向右数而得到的位数,例如:3.2、0.32、0.032和0.0032均为两位有效位数;0.320为3位有效位数;10.00为四位有效位数;12.490为五位有效位数。
(5)非连续型数值:(如个数、分数、倍数)是没有欠准数字的,其有效位数可视为无限多位。
例如,H2SO4中的2和4是个数。
常数π和系数2等数值的有效位数可视为无限多位。
每1ml滴定液(0.1mol/L)中的0.1为名义浓度,规格项下的0.3g或“1ml:25mg”中的“0.3”、“1”、“25”均为标示量,其有效位数,也为无限多位。
即在计算中,其有效位数应根据其他数值的最少有效位数而定。
(6)pH值等对数值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
如:pH=11.26([H+]=5.5×10-12mol/L),其有效数字只有两位。
(7)有效数字的首位数字为8或9时,其有效位数可以多计一位,例如:85%与115%,都可以看成是三位有效数字;99.0%与101.0%都可以看成是四位有效数字。
有效数字修约与计算

A
23
运算规则:
1.加减法:以小数点后位数最少的数为准 例: 50.1 + 1.45 + 0.5812 = ?
保留三位有效数字
δ ±0.1 ±0.01 ±0.0001 2.乘除法:以有效数字位数最少的数为准 例:0.0121 × 25.64 × 1.05782 = ?
例如: lg12.3=1.09 0
A
28
对数函数 lgx的尾数与x的位数相同
例:
lg 100 = 2.000
lg 1.983 = 0.297322714
0.2973
lg 1983 = 3.29732714
3.2973
A
29
特殊实例
A
30
非连续型数值
个数、分数、倍数、名义浓度或标示量等是没 有欠准数字的,其有效位数可视为无限多位;
保留三位有效数字
另外,对于pH、pM、lgK等对数值,有效数字 取决于尾数部分的位数。遇到首位数≧8的数据, 运算中多计一位有效数字。
A
24
乘除运算 一般情况
进行数值乘除时,结果保留位数应与有效数 字位数最少者相同。
例如, (0.0142×24.43×305.84)/28.67 可先修约后计算, (0.0142×24.4×306)/28.7=3.69。
A
14
拟舍弃数字的最左一位数字小于5时, 则舍去,即保留的各位数字不变。
例1:将12.1498修约到一位小数,得12.1。 例2:将12.1498修约成两位有效位数,得12。
A
15
拟舍弃数字的最左一位数字大于5;或者是5,而其后 跟有并非全部为0的数字时,则进一,即保留的末位数 字加1。
有效数字修约及运算

目的●正确地进行有效数字判定、修约及运算●规范取样规则依据●药典“凡例”●国家标准《数值修约规程》●《中国药品检定标准操作规范》●适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
主要内容1、有效数位的判断1.1有效数字的基本概念有效数字系指在药检工作中所能得到有实际意义的数值。
是由可靠数字和最后一位不确定数字组成的。
最后一位数字的欠准程度通常只能是上下差1单位。
1.2有效数位的判断1.2.1从非零数字最左一位向右数得到的位数减去无效零。
例:350×102 保留三位有效数,两个无效零。
35×103 保留二位有效数,三个无效零。
1.2.2从非零数字最左一位向右数而得到的位数。
例: 3.2 两位有效数字0.032 两位有效数字0.0320 三位有效数字1.2.3有效位数可视为无限多位的1.2.3.1 非连续型数值(如个数、分数、倍数)1.2.3.2 常数π,e和系数√21.2.3.3 (0.1 mol/L)滴定液的名义值1.2.3.4 规格、标示量1.2.4 pH值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
例:pH=11.26([H+]=5.5×10-12 mol/L),其有效位数只有两位。
1.2.5有效数字的首位数字为8或9时,其有效位数可以多计一位。
例:85% 三位有效位数115% 三位有效位数99.0% 四位有效数字101.0% 四位有效数字。
2、数值的修约及取舍规则进舍规则:四舍六入五考虑。
五后非零则进一,五后全零看五前,五前偶舍奇进一,不论数字多少位,都要一次修约成。
RSD修约:只进不舍例:0.163% 修约成2位有效数位→0.17%不许连续修约:拟修约数字应在确定修约位数后一次修约获得结果,而不得多次连续修约。
例:修约15.4546,修约间隔为 1正确的做法为:15.4546—15;不正确的做法为:15.4546→15.455→15.46→15.5→16修约间隔为0.5(熔点值修约)50.8、50.9 修约值为5150.1、50.2 修约为50。
有效数字修约和计算PPT幻灯片课件

遇到收尾数字为8或9时,可多算以为有效数字,中间算式中可多保留以为。
11
例如: 14.131 × 0.07654 ÷ 0.78 = ? 分析:在三个数值中,0.78的有效位数最少,仅为两位有效位数,因此各数值
四舍六入五成双,即当尾数≤4时舍去,尾数≥6时进位。当尾数为5时,其后跟有 并非全部为0的数字,则进一;5后面为0,则应看5前面的数字是奇数还是偶数,5前为偶 数应将5舍去,5前为奇数则将5进位。
6
进舍规则口诀:四舍六入五成双,五后非零则进一; 五后全零看五前,五前偶舍奇进一; 不论数字多少位,都要一次修约成。
均应暂保留三位有效位数进行运算,最后结果再修约为两位有效位数。 最后对计算结果进行修约,应只保两位有效位数,故: 14.131 × 0.07654 ÷ 0.78 = 14.1 × 0.0765 ÷ 0.78 = 1.4
12
三、有效数字的应用实例
例1 异戊巴比妥钠的干燥失重,规定不得过4.0%,今取样1.0042g,干燥失重量 0.0408g,请判断是否符合规定? 解析:
例如: 0.6000g、20.05%、6.325×103 0.0450g、6.32×103 、63.2×102
-------四位有效数字 -------三位有效数字
pH值等对数值,其有效数字是由其小数点后的位数决定的,其整数部分只表明其 真数的乘方次数。如pH=11.26([H]+=5.5×10-12mol/L),其有效位数只有两位。
应修约成0.17%,0.6%;在抽样时根据取样规则确定取样件数时也采取“只进不舍” 规则。
8
有效数字修约及运算

有效数字修约及运算目的●正确地进行有效数字判定、修约及运算●规范取样规则依据●药典“凡例”●国家标准《数值修约规程》●《中国药品检定标准操作规范》●适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
主要内容1、有效数位的判断1.1有效数字的基本概念有效数字系指在药检工作中所能得到有实际意义的数值。
是由可靠数字和最后一位不确定数字组成的。
最后一位数字的欠准程度通常只能是上下差1单位。
1.2有效数位的判断1.2.1从非零数字最左一位向右数得到的位数减去无效零。
例:350×102 保留三位有效数,两个无效零。
35×103 保留二位有效数,三个无效零。
1.2.2从非零数字最左一位向右数而得到的位数。
例: 3.2 两位有效数字0.032 两位有效数字0.0320 三位有效数字1.2.3有效位数可视为无限多位的1.2.3.1 非连续型数值(如个数、分数、倍数)1.2.3.2 常数π,e和系数√21.2.3.3 (0.1 mol/L)滴定液的名义值1.2.3.4 规格、标示量1.2.4 pH值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
例:pH=11.26([H+]=5.5×10-12 mol/L),其有效位数只有两位。
1.2.5有效数字的首位数字为8或9时,其有效位数可以多计一位。
例:85% 三位有效位数115% 三位有效位数99.0% 四位有效数字101.0% 四位有效数字。
2、数值的修约及取舍规则进舍规则:四舍六入五考虑。
五后非零则进一,五后全零看五前,五前偶舍奇进一,不论数字多少位,都要一次修约成。
RSD修约:只进不舍例:0.163% 修约成2位有效数位→0.17%不许连续修约:拟修约数字应在确定修约位数后一次修约获得结果,而不得多次连续修约。
例:修约15.4546,修约间隔为 1正确的做法为:15.4546—15;不正确的做法为:15.4546→15.455→15.46→15.5→16修约间隔为0.5(熔点值修约)50.8、50.9 修约值为5150.1、50.2 修约为50。
有效数字及有效数字计算修约基础知识

有效数字及有效数字计算、修约基础知识一、有效数字1、末的概念末:指任何一个数最末一位数字所对应的单位量值。
例:用分度值为0.1mm的卡尺测量物体的长度,结果为19.8mm,最末一位的量值0.8mm,即为最末一位数8与所对应的单位量0.1mm的乘积,故19.8mm的末为0.1mm。
2、有效数字的界定1~9都为有效数字,数字之间的0、末尾的0也为。
二、近似数计算1、“+-”以小数位数最少为准,修约比该数多一位,计算后修约以小数点最少数的位数为准。
如:18.3+1.4545+0.876≈18.3+1.45+0.88=20.63≈20.62、“×÷”各数修约到有效数字最少多一位,最后结果以有效数字最少的那个为准。
如:3.670×45.3×5.6735≈3.670×45.3×5.674=943.31≈9433、乘方、开方,参加运算有几位有效数字,结果就得保留几位数字。
81=9.000 9.002=81.0.00如几级运算,乘方开方多保留一位。
0.81+4.359=9.000=4.3594、混合运算:不管如何运算,结果必须以位数最少为准。
三、修约规则1、舍去数第一位小于5则舍,大于5则进。
4.254→4.25 38.735→392、舍去数第一位为5,5后并非全为0则进。
9.55033→9.63、舍去数第一位为5,5后无数或全为0,奇进偶舍。
0.0415→0.042 0.0425→0.0424、注意不得连续修约。
如:37.4546→37.455→37.46→37.5→385、按GB 8170-2008《数值修约规则》对“1”“2”“5”修约间隔做了规定,即k×10n(k=1、2、5,n为正、负整数)另外,0.5、0.2修给采用分别乘以2与5,修约后再除以2与5来修约。
如:以0.5修约60.2560.25×2得120.5修约为120,再除以2得60.0练习题:一、说出下列数值有几位有效数字?1、60.0002、0.60003、0.06004、6.001×107二、近似数计算:1、19.3+1.5837+0.9762、3.780×47.5×6.57453、00025.三、数值修约:1、5.256、5.254、5.255、5.265保留三位有效数字?2、60.25以0.2修约。
有效数字的修约和计算

1 有效数字的定义有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
它的实际意义在于有效数字能反映出测量时的准确程度。
例如:用最小刻度为0.1cm的直尺量出某物体的长度为11.23 cm。
显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,因为它是测试者估计出来的,这个物体的长度可能是11.24cm,亦可能是11.22cm,测量的结果有±0.01cm的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是有效数字。
例如:分析天平称得的物体质量为7.1560g滴定时滴定管读数为20.05mL这两个数值中的“0”都是有效数字在0.006g中的“0”只起到定位作用,不是有效数字有效位数及数据中的“0 ”:1.0005,五位有效数字0.5000,31.05% 四位有效数字0.0540, 1.86 三位有效数字0.0054,0.40% 两位有效数字0.5,0.002% 一位有效数字2 有效数字的计算规则2.1 有效数字的修约规则在运算时,按一定的规则舍入多余的尾数,称为数字的修约。
2.1.1 四舍六入五六双。
即测量数值中被修订的那个数,若小于等于4,则舍弃;若大于等于6,则进一;若等于5(5后无数或5后为0),5前面为偶数则舍弃,5前面为奇数则进一,当5后面还有不为0的任何数时,无论5前面是偶数还是奇数一律进一。
例如,将下列测量值修约为四位数:3.142 45 3.1423.215 60 3.2165.623 50 5.6245.624 50 5.6243.384 51 3.3853.384 5 3.3842.1.2 修约数字时,对原测量值要一次修约到所需位数,不能分次修约。
例如,将3.314 9 修约成三位数,不能先修约成3.315,再修约成3.32;只能一次修约为3.31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选ppt
1
课题引入
1. 请说出下列各数,哪些是近似数,哪些 是准确数?
精选ppt
2
回答问题:
1、什么叫准确数? 准确数--与实际完全符合的数
2、什么叫近似数? 近似数--与实际接近的数
精选ppt
3
检验的结果就是准确数
精选ppt
4
近似数
九百六十万平方公里的 神州大地
精选ppt
5
位于美丽的天鹿湖郊野公园西侧,广汕公路 大观路口东侧,环境优美,空气清新,是莘 莘学子读书的好地方。新校区占地面积
120,000平方米(约180亩)。
地址:广州市萝岗区天鹿南路289号。
精选ppt
长福校区位于天河客运站斜对面,处 于五山高校区的环抱之中,交通便利。 长福校区占地面积10,005(约15 亩)。
6
下列各数,哪些是近似数?哪些是准确数? ⑴ 1 小时有60分。 ⑵绿化队今年植树约2万棵。 ⑶小明到书店买了10本书。 ⑷一次数学测验中,有2人得100分。 ⑸某区在校中学生近75万人。 ⑹初二二班有45人。
精选ppt
25
乘除运算 特殊情况
如果位数最少的数的首位数是8或9,则有效数字 位数可多算一位。
例如:9.46可看做是四位有效数字。
精选ppt
26
运算规则:结果的有效数字与其底或被开
方数的有效数字位数相同。
如: 1002=100102
100=10.0
49 = 7.0
4.02=16
精选ppt
数字,0.0320为三位有效数字
✓10.00为四位有效数字
✓12.490为五位有效数字
精选ppt
9
有效数字 实际能测定到的数字
确定数和估计数组成 例如:滴定读数25.80 最多可以读准
三位
第四位是估计读数
精选ppt
10
思考:有效数字位数的确定?
25.80有几个有效数字? 0.02580有几个有效数字? 0.06050 有几个有效数字?
0.0100 有效数字位数是几位?
精选ppt
11
分析测试中的有效数字的位数
①如何读数? ②该读数有何意 义? ③测定数据的表 示是不是越多位 越好?
精选ppt
12
确定修约位数的表达方式
指定数位(指定修约间隔);
指定将数值修约成n位有效位数。
精选ppt
13
进舍规则
四舍六入五考虑, 五后非零则进一, 五后皆零视奇偶, 五前为偶应舍去, 五前为奇则进一, 不论数字多少位, 都要一次修约成。
例如: 5.89+15.2551=5.89+15.255=21.145
精选ppt
23
运算规则:
1.加减法:以小数点后位数最少的数为准 例: 50.1 + 1.45 + 0.5812 = ?
保留三位有效数字
δ ±0.1 ±0.01 ±0.0001 2.乘除法:以有效数字位数最少的数为准 例:0.0121 × 25.64 × 1.05782 = ?
精选ppt
20
计算法则
精选ppt
21
加减运算 一般情况
进行数值加减时,结果保留小数点后位数应与小数点位 数最少者相 同。
例如, 0.0121+12.56+7.8432 可先修约后计算,即 0.01+12.56+7.84=20.41
精选ppt
22
加减运算 特殊(在大量数据情况)
在大量数据的运算中,为使误差积累,对参加运 算的所有数据,可以多保留一位可疑数字)。
例如:修约15.4546,修约间隔为1
正确的做法:
15.4546→15
不正确的做法:
15.4546→15.455→15.46→15.5→16
精选ppt
19
在具体实施中,有时测试与计算部门先将 获得数值按指定的修约位数多一位或几位报 出,而后由其他部门判定。为避免产生连续 修约的错误,应按下述步骤进行。
若所保留的末位数字为偶数(2,4,6,8,0)则舍弃 。
例1:修约间隔为0.1 拟修约数值 1.050
修约值结果 1.0
精选ppt
17
负数修约时,先将它的绝对值按数字修约规定进行修 约,然后在修约值前面加上负号。
例1:将下列数字修约到“十”数位
拟修约数值
-355
-36×10
精选ppt
18
拟修约数字应在确定修约位数后一次修约获 得结果,而不得多次按进舍规则连续修约。
特殊实例
精选ppt
30
非连续型数值
个数、分数、倍数、名义浓度或标示量等是没 有欠准数字的,其有效位数可视为无限多位;
27
对数运算
所取对数位数应与真数有效数字位数相 等。
例如: lg12.3=1.09 0
精选ppt
28
对数函数 lgx的尾数与x的位数相同
例:
lg 100 = 2.000
lg 1.983 = 0.297322714
0.2973
lg 1983 = 3.29732714
3.2973
精选ppt
29
例1:将1268修约到“百”数位,得13×102(特定时可写为 1300)。
例2:将1268修约成三位有效位数,得127×10(特定时可写 为1270)。
例3:将10.502修约到个数位,得11。
精选ppt
16
拟舍弃数字的最左一位数字为5,而右面无数字或皆为 0时,
若所保留的末位数字为奇数(1,3,5,7,9)则进一 ,
保留三位有效数字
另外,对于pH、pM、lgK等对数值,有效数字 取决于尾数部分的位数。遇到首位数≧8的数据, 运算中多计一位有效数字。
精选ppt
24
乘除运算 一般情况
进行数值乘除时,结果保留位数应与有效数 字位数最少者相同。
例如, (0.0142×24.43×305.84)/28.67 可先修约后计算, (0.0142×24.4×306)/28.7=3.69。
精选ppt
7
一、有效数字的定义
数据中能够正确反映一定量(物理量和 化学量)的数字叫有效数字。
有效数字 = 所有的可靠数字 + 一位可疑数字
精选ppt
8
有效数字系指从非零数字最左一位向右 数而得到的位数。例如:
关键词:左边 、第一个、 不N是o0 起 、
末位、止、所有的
Image
✓3.2、0.32、0.032、0.0032均为两位有效
精选ppt
14
拟舍弃数字的最左一位数字小于5时, 则舍去,即保留的各位数字不变。
例1:将12.1498修约到一位小数,得12.1。 例2:将12.1498修约成两位有效位数,得12。
精选ppt
15
拟舍弃数字的最左一位数字大于5;或者是5,而其后 跟有并非全部为0的数字时,则进一,即保留的末位数 字加1。