漫反射光谱(DRS)分析

合集下载

紫外可见漫反射谱的分析原理以及应用

紫外可见漫反射谱的分析原理以及应用
3
收集这些光谱信息,即获得一个漫反射光谱, 基于此可以确定过渡金属离子的电子结构(价 态,配位对称性)。
2、漫反射光谱
当光照射到固体表面时,发生反 射和散射。
● 镜面反射: 反射角=入射角 光不被吸收!
4
● 漫 反 射:
当光束入射至粉末状的晶 面层时,一部分光在表层各晶 粒面产生镜面反射;另一部分 光则折射入表层晶粒的内部, 经部分吸收后射至内部晶粒界 面,再发生反射、折射、吸收。 如此多次重复,最后由粉末表 层朝各个方向反射出来,这种 辐射称为漫反射光。
16
载体中引入分子筛
Ni-W-Al2O3
从图中可以看出,催化剂在580 nm和630 nm均没发现NiAl2O4 尖晶石的特征谱带,说明载体 中引入了适量的分子筛,使其 相对均匀地分散于氧化铝基体 中,有效削弱镍与氧化铝的相 互作用,并抑制镍离子扩散到 氧化铝晶格中。另外,在420 nm处出现了一个明显的八面体 镍物种的特征谱带,这样可以 减少惰性镍铝尖晶石的生成, 有利于镍以八面体物种的形式 存在,从而更有利于镍助剂效 应的发挥,提高催化剂的加氢 活性。
5
漫反射光的强度决定于样品对光的吸收,以及由样品的物理 状态所决定的散射。
6
● Kubelka—Munk 方程式(漫反射定律)
F ( R )
K
/S
1 R 2
2 R
K 为吸收系数,主要决定于漫反射体的化学组成 S 为散射系数,主要决定于漫反射体的物理特性 R∞ 表示无限厚样品的反射系数R 的极限值。 F (R∞ ) 称为减免函数或K—M函数。
2
一、基本原理
1、固体中金属离子的电荷跃迁。
在过渡金属离子-配位体体系中,一方是电子给予体 ,另一方为电子接受体。在光激发下,发生电荷转移, 电子吸收某能量光子从给予体转移到接受体,这种电子 转移需要的能量小,在紫外区产生吸收光谱。

紫外可见漫反射光谱的测试原理

紫外可见漫反射光谱的测试原理

紫外可见漫反射光谱的测试原理
紫外可见漫反射光谱是一种非接触式表面分析技术,可用于研究材料的光学性质、表面形态和化学成分等。

其测试原理是将紫外可见光照射到样品表面,由于样品表面存在微小起伏和颗粒,光线会发生漫反射现象,漫反射光谱是根据被反射光的强度和波长来分析材料表面的性质的。

漫反射光谱的测试原理基于菲涅尔方程和薄膜厚度的变化,可以得到表面形态、膜厚度和化学计量比等信息,是一种非常有用的表面分析技术。

- 1 -。

UVVisDRS光谱及其在催化剂表征中的应用

UVVisDRS光谱及其在催化剂表征中的应用

积分球用于测定反射光谱的方法(2种):
代替法:其基本原理如
右图5所示,从外部过来的 辐射通过小孔1进入球内, 落在样品表面2上,用外部 光度计通过小孔3测量球壁 辐射强度,然后用标准物 代替样品进行重复测量, 强度的相对值用来量度以 标准物为基准的样品反射 能力。
图5 代替法
• 比较法:样品和标准物在整个测
2R
注:K 为吸收系数,S 为散射系数,
R∞ 表示无限厚样品的反射系数R 的极限值。
F (R∞ ) 称为减免函数或Kubelka—Munk函数。
● 实际测定的是R′∞, 不是绝对反射率 R∞,即相对
一 个标准样品的相对反射率。
● 其值依赖于波长 F(R′∞)—波长
● 对应于透射光谱的消光系数
● 在一个稀释的物种的情况下正比于物种的浓度
(相似于 Lambert-Beer law)。
1.5 漫反射光谱的表达 朗伯比尔定律描述入射光和吸收光之间的关系。 漫反射定律描述一束单色光入射到一种既能吸 收光,又能反射光的物体上的光学关系。
A=-㏑T
LogF (R
)

LogK

LogS

Log
1 R
2R
2
图4 吸收光谱曲线与漫反射光谱曲线
比色分析法:比较有色溶液深浅来确定物质含量 的方法,属于可见吸收光度法的范畴。
分光光度法:使用分光光度计进行吸收光谱分析 的方法。
紫外可见波长范围:
远紫外光区:10-200 nm; 近紫外光区:200-400 nm; 可见光区:400-780 nm。
注:由于O2、N2、CO2、H2O等在真空紫外区(60-200 nm)均有
1.1 固体中金属离子的电荷跃迁

紫外可见漫反射光谱的测试原理

紫外可见漫反射光谱的测试原理

紫外可见漫反射光谱的测试原理
紫外可见漫反射光谱是一种用于分析物质的光谱测试方法。

它的原理是利用紫外光和可见光的波长,将光线照射到待测试的样品表面上,并测量被样品表面反射的漫反射光谱。

漫反射光谱是一种与样品表面反射率相关的光谱,可以提供样品的结构信息和化学组成信息。

通过对漫反射光谱的测量和分析,可以确定样品的成分、结构、形态等信息,广泛应用于化学、材料科学、生物医学等领域的研究和生产中。

- 1 -。

UV-Vis DRS光谱及其在催化剂表征中的应用ppt课件

UV-Vis DRS光谱及其在催化剂表征中的应用ppt课件
漫反射光。
反射峰通常很弱,同时,它与吸收峰基本重合,仅仅使吸收
峰稍有减弱而不至于引起明显的位移。对固体粉末样品的镜面 反射光及漫反射光同时进行检测可得到其漫反射光谱。
图3 漫反射光示意图
1.4 漫反射定律(Kubelka—Munk 方程式)[5,13]
F (R )K /S1 2 R R 2
比色分析法:比较有色溶液深浅来确定物质含量 的方法,属于可见吸收光度法的范畴。
分光光度法:使用分光光度计进行吸收光谱分析 的方法。
紫外可见波长范围:
远紫外光区:10-200 nm; 近紫外光区:200-400 nm; 可见光区:400-780 nm。
注:由于O2、N2、CO2、H2O等在真空紫外区(60-200 nm)均有
在可见光区或近红外区的吸收光谱。
收集这些光谱信息,即获得一个漫反射光谱,基于此可 以确定过渡金属离子的电子结构(价态、配位对称性)。
1.2 紫外-可见吸收光谱(UV-Vis)
定义:根据溶液中物质的分子或离子对紫外和可 见光谱区辐射能的吸收来研究物质的组成和结构的方 法[4]。包括比色分析法和分光光度法。
吸收,测定这一范围光谱时须将光学系统抽真空并充入惰性
气体。所以真空紫外分光光度计非常昂贵,在实际应用中受
到一定的限制。
故通常所说的紫外-可见分光光度法,实际上是指近紫 外-可见分光光度法(200-780 nm) 。
1.3 漫反射光谱(DRS)
当光照射到固体表面时,发生反射和散射(如图1、2)
镜面反射:
注:K 为吸收系数,S 为散射系数,
R∞ 表示无限厚样品的反射系数R 的极限值。
F (R∞ ) 称为减免函数或Kubelka—Munk函数。

近红外漫反射光谱法快速测定首乌丸中二苯乙烯苷的含量

近红外漫反射光谱法快速测定首乌丸中二苯乙烯苷的含量

中国药房2017年第28卷第18期China Pharmacy 2017V ol.28No.18首乌丸由制何首乌、熟地黄、桑椹等中药组成,具有补肝肾、益精血、乌须发的功效,可用于治疗肝肾两虚、头晕目花、耳鸣、腰酸肢麻、须发早白、高血脂等症[1]。

该制剂现收载于2015年版《中国药典》(一部),采用高效液相色谱法(HPLC )作为测定首乌丸中二苯乙烯苷含量的标准方法,但该方法操作较为烦琐,不仅费时费力,而且易破坏样品[2]。

近红外漫反射光谱法(Near infrared diff-use reflectance spectroscopy ,NIDRS )作为一门绿色分析技术,通过扫描样品的近红外光谱,可以得到样品中有机分子含氢基团的特征信息[3],在药物的定性、定量分析方面具有广泛的应用前景[4-7]。

鉴于此,本课题组采用NIDRS 法建立了快速测定首乌丸中二苯乙烯苷含量的方法,以期为完善该制剂的质量标准提供参考。

1材料1.1仪器1120型全自动HPLC 仪,配备SIL-20A 自动进样器、SPD-20A 紫外检测器、LC solution 工作站(日本Shim-adzu 公司);Nicolet 6700型傅里叶变换近红外光谱仪,配有漫反射积分球、样品旋转器和石英样品杯、OMNIC 光谱采集软件和TQ 8.0分析软件(美国Thermo 公司);BIY 211b 型万分之一电子分析天平和AY 120型十万分Δ基金项目:广东省科技计划项目(No.2009B 030801044)*硕士研究生。

研究方向:中药资源与质量。

E-mail :xila_1990@#通信作者:教授,博士。

研究方向:中药资源、中药质量标准及中药新药研究。

E-mail :shengguo_ji@ 近红外漫反射光谱法快速测定首乌丸中二苯乙烯苷的含量Δ刘喜乐*,贾灿潮,姬生国#(广东药科大学中药学院,广州510006)中图分类号R 917文献标志码A 文章编号1001-0408(2017)18-2539-04DOI 10.6039/j.issn.1001-0408.2017.18.26摘要目的:建立快速测定首乌丸中二苯乙烯苷含量的方法。

UV-Vis DRS光谱及其在催化剂表征中的应用PPT精选文档

UV-Vis DRS光谱及其在催化剂表征中的应用PPT精选文档

2. UV-Vis DRS的研究方法
2.1 仪器:
紫外—可见分光光度计(附带漫反射测定装置— 积分球)
基本组成:
光源
单色器
样品室
检测器
显示器
可见光区:钨灯。其辐射波长范围在320~2500 nm 紫外区:氢、氘灯。发射180~375 nm的连续光谱
14
• 紫外可见与紫外可见漫反射分光光度计的区别:
26
图10 不同焙烧温度下,NiO-WO3/Al2O3催化 剂样品的UV-Vis DRS光谱图
注:曲线1、2、3、4、5分别为S-1-2、S-1-3、
S-1-4、S-1-5、S-1-6催化剂,焙烧温度分别为
500、550、600、650、700℃
由图10可知,500℃焙 烧时,在630毫微米处尖晶 石NiAl2O4中的四面配位体 Ni2+的微弱特征谱带[8], 随着焙烧温度的升高, 580-630毫微米处的四面体 Ni2+特征谱带越来越明显, 强度也随之增大。原因: 在浸渍过程中,Ni2+沉积 在氧化铝-钨酸盐体系表面, 故焙烧温度升高,Ni2+进 入到氧化铝晶格,生成表 面或体相尖晶石。
图9中纯WO3光谱(曲线3)在 330毫微米处出现强吸收峰,240 毫微米处有一弱吸收峰;r-Al2O3 在230、300、 370毫微米处出现 吸收峰;WO3/Al2O3催化剂(曲线2) 在220—280毫微米有一较宽的吸 收峰;Al2(WO4)3 (曲线1)在240 毫微米处有一吸收峰,280毫微米 处有一肩峰;S-1-3催化剂(曲线 4)除在580-630毫微米处出现尖 晶石NiAl2O4 特征谱带和在420毫 微米有游离的NiO的弱吸收峰之外, 还在240毫微米处出现一个较宽的 吸收带,280毫微米处隐约有一个 肩峰,因此可以推测在S-1-3催化 剂表面上还存在有Al2(WO4)3或少 量的WO3。

UV-Vis DRS光谱及其在催化剂表征中的应用

UV-Vis DRS光谱及其在催化剂表征中的应用

目 录
1. 2. 3. 4. 紫外可见漫反射光谱基本原理 紫外可见漫反射光谱研究方法 紫外可见漫反射在催化剂表征中的应用 结语
1.UV-Vis DRS 基本原理
漫反射光谱是一种不同于一般吸收光谱的在紫 外、可见和近红外区的光谱,是一种反射光谱,与 物质的电子结构有关。 漫反射光谱不仅可以用于研究催化剂表面过渡 金属离子及其配合物的结构、氧化状态、配位状态、 配位对称性,而且在光催化研究中还可用于催化剂 的光吸收性能的测定;可用于色差的测定等等。
积分球用于测定反射光谱的方法(2种):
代替法:其基本原理如
右图5所示,从外部过来的 辐射通过小孔1进入球内, 落在样品表面2上,用外部 光度计通过小孔3测量球壁 辐射强度,然后用标准物 代替样品进行重复测量, 强度的相对值用来量度以 标准物为基准的样品反射 能力。
图5 代替法
• 比较法:样品和标准物在整个测
3.2 评价催化剂活性
反射强度与活性的关系 为了加速催化剂的研究和发展,人们对筛选催化剂的 物理方法和化学方法产生极大兴趣,例如通过测定NiOWO3-Al2O3和NiO-MoO3-Al2O3和NiO-WO3-MoO3-Al2O3催化剂活 性[15,16]。 [Ni02+]/Ni12+]比值大小与活性关系 用UV-Vis DRS光谱可以定性测定尖晶石中四面体配位 和八面体配位的相对占有率,即[Ni02+]/Ni12+],由此推测 金属离子在四面体位置和八面体位置的分布与催化活性的 关系。
1.1 固体中金属离子的电荷跃迁
在过渡金属离子-配位体体系中,一方是电子给予体,另 一方为电子接受体。在光激发下,发生电荷转移,电子吸收 某能量光子从给予体转移到接受体,在紫外区产生吸收光谱。 当过渡金属离子本身吸收光子激发发生内部d轨道内的跃 迁(d-d)跃迁,引起配位场吸收带,需要能量较低,表现为 在可见光区或近红外区的吸收光谱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
R 2 R
2
● 实际测定的是 R’∞, 不是绝对反射率 R ∞,即相对 一 个标准样品的相对反射率。 ● 其值依赖于波长 F(R’ ∞)—波长 ●对应于透射光谱的消光系数 ● 在一个稀释的物种的情况下正比于物种的浓度 (相似于 Lambert-Beer law)。
6
● 漫反射光谱的表达
8
1/R∞ 和 Log (1/R∞) ——相当于透射光谱测定中的
吸收率: log (1/R) = log (100/%R) 。 用log (1/R) 单位是因为其与样品组分
的浓度间有线性相关性。
9
10
● R∞的确定
一般不测定样品的绝对反射率,而是以白色标准物 质为参比(假设其不吸收光,反射率为1),得到的相 对反射率。 参比物质:要求在200 nm – 3 微米波长范围反射 率为100%,常用MgO, BaSO4,MgSO4等,其反射率 R ∞定义为1(大约为0.98-0.99). MgO 机械性能不如
代替法
比较法
检测器:光电倍增管(用于紫外-可见光) 硫化铅 (用于近红外区)
18
2. 样品处理
将固体样品研磨成一定的颗粒度,保证重现性, 压成片状,干燥。 参比压成白板。 粉末样品不用压片,用专用样品池测定。 样品也可用稀释剂稀释测定,稀释剂可用MgO, BaSO4,NaCl, SiO2等。
19
2.比比谁的 手更白!
你能猜出每条反射曲对应 的是哪只手吗?
B
右上图:手背皮肤的紫外可见漫
反射曲线
A C
左下图:上图所测曲线的各个“样 品”
20
三、催化剂研究中的应用
1. 光吸收性质的研究 TiO2光催化剂
光谱测量方法
将TiO2样品在6MPa压力下制成圆片,以标准白 板作参比,在装有积分球的UV/Vis/NIR分光光度计 上测得250-500 nm的漫反射谱、用365 nm处的表 现吸光度(与F(R)函数值成正比) 来比较不同温度制 备样品对光的吸收能力。
朗伯定律描述入射光和吸收光之间的关系。 Kubelka—Munk 方程式描述一束单色光入射到一
种既能吸收光,又能反射光的物体上的光学关系。
Log F ( R
1 R ) Log K Log S Log

2
2 R
K R 1 S
2K K - 2 S S
Sample有吸收 反射量减少
The characteristics of typical integrating sphere coatings
16
In Situ Cell & Integrating Sphere
17
两种测量方式:代替法, 比较法
检测器 入射光 参比 入射光 样品 样品 检测器
表现为在可见光区或近红外区的吸收光谱。
2
收集这些光谱信息,即获得一个漫反射光谱, 基于此可以确定过渡金属离子的电子结构(价 态,配位对称性)。
2、漫反射光谱
当光照射到固体表面时,发生反射和散射。 ● 镜面反射: 反射角=入射角 光不被吸收!
3

漫 反 射:
当光束入射至粉末状的晶面层时,一部分光在表 层各晶粒面产生镜面反射;另一部分光则折射入表层 晶粒的内部,经部分吸收后射至内部晶粒界面,再发 生反射、折射吸收。如此多次重复,最后由粉末表层 朝各个方向反射出来,这种辐射称为漫反射光。
21
光谱
22
光谱解析
图3给出了不同温度下烧结的TiO2样品的DRS 谱图,由图可见,所有样品都有明显的吸收带边(光 吸收阈值),光谱吸收带边位臵可由吸收带边上升的 拐点来确定,而拐点则通过其导数谱来确定。 TiO2样品的吸收带边与烧结温度的关系示于图4曲 线(1),虽然在400℃附近出现最大的吸收带边,但从 总体上看,样品的吸收带边随烧结温度的升高和晶粒 尺寸的增大,发生了光谱吸收带边的红移。
14
• 紫外分光光度计与紫外漫反射的区别:
前者:采用透射方式 ,所测样品为溶液 后者:采用漫反射的方式(积分球),所测样品为固 体、粉末、乳浊液和悬浊液
• 漫反射光是指从光源发出的光进入样品内部,经 过多次反射、折射、散射及吸收后返回样品表面的 光.
15
2.漫反射光与积分球 :
Diffused reflectance and integrating sphere:
第六章 漫反射光谱(DRS)
漫反射光谱是一种不同于一般吸收光谱的在紫 外、可见和近红外区的光谱,是一种反射光谱,与 物质的电子结构有关。
漫反射光谱可以用于研究催化剂表面过渡金属 离子及其配合物的结构、氧化状态、配位状态、配 位对称性;在光催化研究中还可用于催化剂的光吸 收性能的测定;可用于色差的测定等等。
1
一、基本原理
1、固体中金属离子的电荷跃迁。
在过渡金属离子-配位体体系中,一方是电子给予体 ,另一方为电子接受体。在光激发下,发生电荷转移,
电 子吸收某能量光子从给予体转移到接受体,在紫外区
产生吸收光谱。
当过渡金属离子本身吸收光子激发发生内部d轨道内
的跃迁(d-d)跃迁,引起配位场吸收带,需要能量较低,
2
1 2
R∞- 反射率
7
可以有多种曲线形式表示。
横坐标:波数(cm-1),波长(nm) 纵坐标: Log F(R∞) , F(R∞) — 对应于吸收单位 (Absorbance), 谱线的峰值为吸 收带位臵。 %R∞ — 对应于反射率, % reflectance,样品 反射强度比参比物的反射强度。 %R = (IS/IB)*100 Is 反射光强度,IB 参考样品的反射强度 叫(背景)
BaSO4, 现在多用BaSO4作标准。
11
MgO的光谱
12
BaSO4的光谱
reflects well in range 335 – 1320 nm
13
二、测定方法
1. 仪器
紫外-可见-近红外漫反射光谱计
UV-Vis-NIR diffuse reflectance spectroscopy (Varian CARY 500 )
4
反射峰通常很弱,同时,它与吸收峰基本重合,仅 仅使吸收峰稍有减弱而不至于引起明显的位移。对固 体粉末样品的镜面反射光及漫反射光同时进行检测可 得到其漫反射光谱。
5

Kubelka—Munk 方程式(漫反射定律)
F ( R ) K / S
K 为吸收系数,S 为散射系数, R∞ 表示无限厚样品的反射系数R 的极限值。 F (R∞ ) 称为减免函数或Kubelka—Munk函数。
相关文档
最新文档