数据挖掘导论关联分析
大数据分析师如何进行数据挖掘和关联分析

大数据分析师如何进行数据挖掘和关联分析一. 数据挖掘的概念和流程数据挖掘是通过运用统计分析、机器学习和模式识别等技术,从大量的数据中发现有用的模式、规律和知识。
数据挖掘的过程通常包括数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。
1. 数据收集数据挖掘的第一步是收集相关的数据。
数据可以来自各种来源,如数据库、文本文件、传感器、社交媒体等。
大数据分析师需要了解业务需求,确定需要收集的数据类型和来源,并采用合适的方法获取数据。
2. 数据预处理数据预处理是数据挖掘中非常重要的一步,它包括数据清洗、数据集成、数据转换和数据规约。
数据清洗是指去除数据中的噪声和异常值,确保数据的质量和准确性。
数据集成是将多个数据源的数据整合到一起,方便后续分析。
数据转换是对数据进行规范化和变换,以适应挖掘算法的需要。
数据规约是对数据进行简化和压缩,减少数据存储和计算的开销。
3. 特征选择特征选择是从大量的特征中选择出最具有代表性和区分性的特征。
通过特征选择可以减少数据维度,提高模型的训练和预测效率。
大数据分析师需要运用统计方法、信息论和机器学习等技术,对特征进行评估和选择。
4. 模型构建模型构建是数据挖掘的核心步骤,它根据业务需求选择合适的挖掘算法和模型。
常用的挖掘算法包括关联规则挖掘、分类和回归分析、聚类分析和时序分析等。
大数据分析师需要根据业务场景和数据特点选择合适的算法,并对模型进行建立和调优。
5. 模型评估模型评估是对挖掘模型进行性能评估和验证。
通过评估可以判断模型的准确性、稳定性和可信度。
评估方法包括交叉验证、混淆矩阵、ROC曲线等。
大数据分析师需要对模型进行评估,识别潜在的问题和改善的方向。
6. 模型应用模型应用是将挖掘模型应用到实际业务中,为决策提供支持和指导。
大数据分析师需要将挖掘结果进行解释和可视化,以便业务人员理解和接受,并根据反馈信息对模型进行迭代和优化。
二. 关联分析的方法和应用关联分析是一种常见的数据挖掘方法,它用于发现数据中的相关性和依赖关系。
数据挖掘中的关联分析方法(九)

数据挖掘中的关联分析方法数据挖掘是一门利用统计学、机器学习和数据库技术来发现模式和趋势的学科。
在大数据时代,数据挖掘变得尤为重要,因为海量的数据蕴含着无限的商业价值和科学意义。
而关联分析方法作为数据挖掘的重要技术之一,在市场分析、商品推荐、医疗诊断等领域有着广泛的应用。
关联分析方法是指在大规模数据集中发现变量之间的关联关系,并且用这些关联关系构建模型,以便做出预测或者发现隐藏的信息。
其中,最为典型的例子就是购物篮分析。
通过分析顾客购物篮中的商品组合,商家可以发现哪些商品具有相关性,并且做出相应的销售策略。
首先,关联分析方法中最为经典的算法就是Apriori算法。
Apriori算法是一种用于发现频繁项集的算法,它的核心思想就是通过迭代的方法来挖掘频繁项集。
具体地说,算法首先扫描数据集,找出数据集中的频繁1项集;然后通过频繁1项集来生成候选2项集,并再次扫描数据集,找出频繁2项集;如此循环下去,直至无法生成更多的频繁项集为止。
而这些频繁项集就是具有关联关系的商品组合,商家可以根据这些关联关系来进行商品的搭配销售,以提高销售额。
其次,关联分析方法中还有一种常用的算法叫做FP-Growth算法。
FP-Growth算法是一种用于挖掘频繁项集的算法,与Apriori算法相比,FP-Growth算法在性能上有着更好的表现。
其核心思想是通过构建FP树(频繁模式树)来高效地发现频繁项集。
FP树是一种用来存储数据集中元素项的树形结构,通过构建FP树,我们可以高效地发现频繁项集。
因此,在实际应用中,FP-Growth算法常常被用来挖掘大规模数据集中的频繁项集。
除了这两种经典的算法之外,关联分析方法中还有很多其他的技术和方法。
例如基于模式增长的方法、基于随机抽样的方法、基于模糊关联规则的方法等等。
这些方法各有其特点,适用于不同的应用场景。
而在实际应用中,人们可以根据具体的数据集和问题,选择合适的关联分析方法来进行数据挖掘。
数据挖掘与关联分析

数据挖掘与关联分析随着信息技术的发展,人们收集、储存、处理和传输数据的能力不断提高,数据成为世界各个行业的重要资源,也成为影响人们日常生活的重要因素之一。
而数据挖掘与关联分析是用于从大量数据中发现有用信息的技术,在当今信息化社会中越来越受到人们的关注。
数据挖掘是一种自动化的技术,它可以加快数据处理的速度和精度,可以有效地处理大量数据,并从中发现模式、趋势和规律,形成有用的信息。
数据挖掘技术可以对电子商务、医疗、金融、能源、环境等领域中的大量数据进行分析,为决策者提供可靠的信息支持。
数据挖掘的应用包括欺诈检测、客户关系管理、风险评估、产品定价、广告推荐等方面。
数据挖掘主要涉及四个方面的技术:聚类、分类、关联规则分析和异常检测。
其中,关联规则分析是数据挖掘中最常用的技术之一。
关联规则分析是一种用于发现项目之间关系的技术,比如一个超市经常出现的经典的购物篮分析问题,就是要找出那些商品通常会一起被购买。
如果发现了两个或多个项之间高度相关的关系,就可以通过这种关系来预测或识别客户的需求和购买行为。
通过关联规则分析,可以发现多种规律,例如超市产品排列的合理性、产品组合的适宜性、广告展示的优化等。
在这方面,数据挖掘技术有着显著的优势。
除了关联规则分析,还有一种经典的技术称为Apriori算法,它可以用于在大型数据集中查找频繁项集和关联规则,使得数据挖掘能够处理大规模数据集。
Apriori算法的原理是基于逐步迭代的基础上,从一个项集开始,对项集进行扩展,直到不再存在更多可以扩展的项集为止。
在实际应用中,数据挖掘和关联分析可以为公司、组织或政府提供战略性的信息和决策支持。
例如在银行业,数据挖掘技术可以用于检测欺诈行为、优化风险管理、提高客户忠诚度等。
在政府部门,数据挖掘技术可以帮助政府部门提高效率和业务水平,并且加强对公民服务的监督和管理。
在电子商务领域,数据挖掘技术可以帮助电商平台提高用户体验和收益,提升平台的竞争力。
大数据挖掘导论与案例课件:关联分析概念与方法

根据数据的抽象层次,关联规则可以分为单层关联规则和多层关联规则。在单层关联
规则中,没有考虑现实数据的多层次性。多层关联规则是指在规则挖掘中,对数据的
多层性进行了充分考虑。
6.2
关联分析的方法
6.2.1 先验原理
大数据挖掘导论与案例
由此可见,在生成规则的过程中,一旦有低置信度的规则出现,就可以利用它进行剪枝,
此过程称为基于置信度的剪枝(confidence-based pruning),如下图所示。
采用剪枝策略可有效降低关联规则生成的计算复杂度。
6.2.3 Apriori算法生成关联规则
基于置信度的剪枝
大数据挖掘导论与案例
6.2.4 Apriori算法效率提升
任何具有反单调性的度量都能够直接结合到挖掘算法中,对候选项集的指数搜索空间有
效地进行剪枝,以降低生成频繁项集的计算代价。
6.2.2 Apriori算法产生频繁项集
大数据挖掘导论与案例
Apriori算法是关联规则挖掘的经典算法,它开创性地使用了基于支持度的剪枝技术来控
制候选项集的指数增长。此处以下表所示的事务数据集为例,展示Apriori算法挖掘频繁
大数据挖掘导论与案例
在对购物篮数据进行关联分析时,需要处理两个关键问题:第一,计算复杂度问题。从
大型事务数据集中发现有意义的规则在计算上要付出很高的代价;第二,规则的筛选问
题。所发现的某些规则可能是虚假的或不令人感兴趣的,因为它们可能是偶然发生的或
者是已经被研究者所熟知的。
除了购物篮分析外,关联分析也被应用于公共管理、生物信息学、医疗诊断、网页挖掘
和推荐系统等领域。
数据挖掘技术(三)——关联分析

数据挖掘技术(三)——关联分析3、关联分析3.1、基本概念(1)通常认为项在事物中出现⽐不出现更重要,因此项是⾮对称⼆元变量。
(2)关联规则是形如X->Y的蕴涵表达式,其中X和Y是不相交的项集,即X交Y=空。
(3)由关联规则作出的推论并不必然蕴涵因果关系。
它只表⽰规则前件和后件中的项明显地同时出现。
(4)通常,频繁项集的产⽣所需的计算开销远⼤于规则产⽣所需的计算开销。
(5)任何具有反单调性的度量都能够结合到数据挖掘算法中,对候选项集的指数搜索空间有效地进⾏剪枝。
3.2、Apriori算法:算法主要利⽤了如下性质:如果⼀个项集是频繁的,则它的所有⼦集⼀定也是频繁的(这个性质也称⽀持度度量的反单调性)。
也就是说如果当前的项集不是频繁的,那么它的超集也不在是频繁的。
(该算法的计算复杂度依赖于数据中的项数和事物的平均长度等性质)算法步骤:(1)算法初始通过单遍扫描数据集,确定每个项的⽀持度。
⼀旦完成这⼀步,就得到所有频繁1项集的集合F1;(2)接下来,该算法使⽤上⼀次迭代发现的频繁(k-1)项集,产⽣新的候选k项集;(3)为了对候选项的⽀持度计数,算法需要再次扫描⼀遍数据库,使⽤⼦集函数确定包含在每⼀个事物t中的C k中的所有候选k项集;(4)计算候选项的⽀持度计数后,算法将删除⽀持度计数⼩于minsup的所有候选项集;(5)当没有新的频繁项集产⽣时,算法结束。
Apriori算法第⼀它是逐层算法,第⼆它使⽤产⽣—测试策略来发现频繁项集。
注意:在由k-1项集产⽣k项集的过程中有以下⼏点注意:(1)新产⽣的k项集先要确定它的所有的k-1项真⼦集都是频繁的(其实如果k个⼦集中的m个⽤来产⽣候选项集,则在候选项集剪枝时只需检查剩下的k-m个⼦集),如果有⼀个不是频繁的,那么它可以从当前的候选项集中去掉。
(2)候选项集的产⽣⽅法:A)蛮⼒法:从2项集开始以后所有的项集都从1项集完全拼出来。
如:3项集有3个⼀项集拼出(要列出所有的3个⼀项集拼出的可能)。
数据挖掘之关联分析

数据挖掘能做什么
相关性分组或关联规则 (Affinity grouping or association rules) 决定哪些事情将一起发生。 例子: 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则) 客户在购买A后,隔一段时间,会购买B (序列分析)
聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。
关联规则的实现原理: 从所有的用户购物数据中(如果数据量过大,可以选取一定的时间区间,如一年、一个季度等),寻找当用户购买了A商品的基础上,又购买了B商品的人数所占的比例,当这个比例达到了预设的一个目标水平的时候,我们就认为这两个商品是存在一定关联的,所以当用户购买了A商品但还未购买B商品时,我们就可以向该类用户推荐B商品。
聚类(Clustering)
一些特定症状的聚集可能预示了一个特定的疾病 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
例子:
数据挖掘能做什么
STEP1
STEP2
我们会发现很多网站都具备了内容推荐的功能,这类功能无疑在帮助用户发现需求,促进商品购买和服务应用方面起到了显著性的效果。
01
03
02
关联推荐在实现方式上也可以分为两种:
数据关联
关联推荐在实现方式上也可以分为两种:
01
02
03
04
关联规则
以产品分析为基础的关联推荐
以用户分析为基础的关联推荐
基于用户分析的推荐是通过分析用户的历史行为数据,可能会发现购买了《Web Analytics》的很多用户也买了《The Elements of User Experience》这本书,那么就可以基于这个发现进行推荐。
数据挖掘之关联分析一(基本概念)

数据挖掘之关联分析⼀(基本概念)许多商业企业运营中的⼤量数据,通常称为购物篮事务(market basket transaction)。
表中每⼀⾏对应⼀个事务,包含⼀个唯⼀标识TID。
利⽤关联分析的⽅法可以发现联系如关联规则或频繁项集。
关联分析需要处理的关键问题:1. 从⼤型事务数据集中发现模式可能在计算上要付出很⾼的代价。
2. 所发现的某些模式可能是假的,因为它们可能是偶然发⽣的。
⼆元表⽰没按过对应⼀个事务,每列对应⼀个项,项⽤⼆元变量表⽰项在事务中出现⽐不出现更重要,因此项是⾮对称的的⼆元变量。
项集(Itemset):包含0个或多个项的集合,如果包含k个项,则称为k-项集。
事务的宽度:事务中出现的项的个数⽀持度数(Support count):包含特定项集的事务个数,项集X的⽀持度数为σ(X)=|t i|X⊆t i,t i∈T|,其中T为事务集合关联规则(association rule):如X→Y的蕴含表达式,其中X和Y是不相交的项集,X∩Y=∅。
关联规则的强度可以⽤⽀持度(support)和置信度(confidence)度量。
⽀持度确定规则可以⽤于给定数据集的频繁程度,⽽置信度确定Y在包含X的事务中出现的频繁程度。
⽀持度s和置信度c:s(X→Y)=σ(X∪Y)Nc(X→Y)=σ(X∪Y)σ(X)使⽤⽀持度和置信度原因:1. ⽀持度很低的规则只能偶然出现,⽀持度通常⽤来删除那些⽆意义的规则。
还具有⼀种期望的性质,可以⽤于关联规则的发现。
2. 置信度度量通过规则进⾏推理具有可靠性。
对于给定的规则,置信度越⾼,Y在包含X的事务中出现的可能性越⼤。
置信度也可以估计Y在给定X的条件下概率。
在解析关联分析的结果时,应当⼩⼼,规则做出去的推论并不必然蕴含因果关系。
它只表⽰规则前件和后件中的项明显地同时出现。
另⼀⽅⾯,因果关系需要关于数据中原因和结果属性的知识,并且通常涉及长期出现的联系。
关联规则发现:给定事务集合T,关联规则发现是指找到⽀持度⼤于等于阈值minsup并且置信度⼤于等于minconf的所有规则。
《数据挖掘导论》第2章 基本数据挖掘技术(2)——关联规则

清华大学出版社
Apriori算法在冰山查询中的应用
• 通过某属性或属性集计算聚集函数,找 出某个大于阈值的聚集值,通常,聚集 结果的数目非常小(冰山一角),而数 据本身非常大(冰山)。
2019年12月3日星期二
第40页,共15页
清华大学出版社
新例8.7 Sales(cust_ID,item_ID,qty)
• 关联关系以一组特殊的规则形式出现——关联规则(Association Rules)
2019年12月3日星期二
第2页,共15页
2.2.1 关联规则概述
清华大学出版社
• 一般表现为蕴涵式规则形式:X→Y。
• 其中——
– X和Y分别称为关联规则的前提或先导条件(Antecedent)和 结果或后继(Consequent)。
2019年12月3日星期二
第29页,共15页
步骤
清华大学出版社
(5)以生成的条目集为基础创建关联规则。 • 首先设置置信度阈值为80%; • 然后从双项和三项条目集表中生成关联规则; • 最后,所有不满足置信度阈值的规则将被删除。 • 以双项条目集中的第一条条目生成的两条规则——
– IF Book =1 THEN Earphone = 1 (置信度:4/5 = 80%,保留) – IF Earphone = 1 THEN Book =1(置信度:4/7 = 57.1%,删除)
第20页,共15页
清华大学出版社
2019年12月3日星期二
第21页,共15页
清华大学出版社
2019年12月3日星期二
第22页,共15页
清华大学出版社
2019年12月3日星期二
第23页,共15页
清华大学出版社
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rules Discovered:
{Diaper} --> {Beer}
定义: 频繁项集(Frequent Itemset)
项集(Itemset) – 包含0个或多个项的集合
例子: {Milk, Bread, Diaper} – k-项集
如果一个项集包含k个项 支持度计数(Support count )() – 包含特定项集的事务个数 – 例如: ({Milk, Bread,Diaper}) = 2 支持度(Support) – 包含项集的事务数与总事务数的比值 – 例如: s({Milk, Bread, Diaper}) = 2/5 频繁项集(Frequent Itemset) – 满足最小支持度阈值( minsup )的所
– 计算每个可能规则的支持度和置信度 – 这种方法计算代价过高,因为可以从数据集提取的规则
的数量达指数级 – 从包含d个项的数据集提取的可能规则的总数
R=3d-2d+1+1,如果d等于6,则R=602
挖掘关联规则(Mining Association Rules)的策略
大多数关联规则挖掘算法通常采用的一种策略是 ,将关联规则挖掘任务分解为如下两个主要的子 任务:
1. 频繁项集产生(Frequent Itemset Generation)
– 其目标是发现满足最小支持度阈值的所有项集,这些项集称 作频繁项集。
2. 规则的产生(Rule Generation)
– 其目标是从上一步发现的频繁项集中提取所有高置信度的规 则,这些规则称作强规则(strong ru Y的蕴含表达
式, 其中 X 和 Y 是不相交的项集 – 例子:
{Milk, Diaper} {Beer}
关联规则的强度 – 支持度 Support (s)
确定项集的频繁程度
TID Items
1
Bread, Milk
2
Bread, Diaper, Beer, Eggs
TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
N3
4
Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke
w
List of Candidates
M
– 时间复杂度 ~ O(NMw),这种方法的开销可能非常大。
有项集
TID Items
1
Bread, Milk
2
Bread, Diaper, Beer, Eggs
3
Milk, Diaper, Beer, Coke
4
Bread, Milk, Diaper, Beer
5
Bread, Milk, Diaper, Coke
定义: 关联规则(Association Rule)
先验原理:
– 如果一个项集是频繁的,则它的所有子集一定也是频繁 的
先验原理( Apriori principle)
先验原理:
– 如果一个项集是频繁的,则它的所有子集一定也是频繁 的
相反,如果一个项集是非频繁的,则它的所有超集 也一定是非频繁的:
– 这种基于支持度度量修剪指数搜索空间的策略称为基于 支持度的剪枝(support-based pruning)
关联分析可以应用于生物信息学、医疗诊断、网 页挖掘、科学数据分析等
TID Items
1
Bread, Milk
2
Bread, Diaper, Beer, Eggs
3
Milk, Diaper, Beer, Coke
4
Bread, Milk, Diaper, Beer
5
Bread, Milk, Diaper, Coke
BCD
BCE
BDE
CDE
ABCD
ABCE
ABDE
ACDE
BCDE
ABCDE
频繁项集产生(Frequent Itemset Generation)
Brute-force 方法:
– 把格结构中每个项集作为候选项集
– 将每个候选项集和每个事务进行比较,确定每个候选项集 的支持度计数。
Transactions
关联分析: 基本概念和算法
第6章 关联分析: 基本概念和算法
6.1 问题定义
关联分析 频繁项集 关联规则
– 关联规则强度:
支持度 置信度
关联规则发现 挖掘关联规则的策略
定义:关联分析(association analysis)
关联分析用于发现隐藏在大型数据集中的令人感 兴趣的联系,所发现的模式通常用关联规则或频 繁项集的形式表示。
3
Milk, Diaper, Beer, Coke
4
Bread, Milk, Diaper, Beer
5
Bread, Milk, Diaper, Coke
Example:
{Milk , Diaper} Beer
– 置信度 Confidence (c) 确定Y在包含X的事 务中出现的频繁程度
s (Milk, Diaper, Beer) 2 0.4
|T|
5
c (Milk, Diaper, Beer) 2 0.67 (Milk, Diaper) 3
关联规则发现
关联规则发现:给定事务的集合 T, 关联规则发现 是指找出支持度大于等于 minsup并且置信度大于 等于minconf的所有规则, minsup和minconf是对应 的支持度和置信度阈值 关联规则发现的一种原始方法是:Brute-force approach:
– 这种剪枝策略依赖于支持度度量的一个关键性质,即一 个项集的支持度决不会超过它的子集的支持度。这个性 质也称为支持度度量的反单调性(anti-monotone)。
降低产生频繁项集计算复杂度的方法
减少候选项集的数量 (M)
– 先验(apriori)原理
减少比较的次数 (NM)
– 替代将每个候选项集与每个事务相匹配,可以使用更高 级的数据结构,或存储候选项集或压缩数据集,来减少 比较次数
6.2 频繁项集的产生
6.2.1 先验原理
先验原理( Apriori principle)
6.2 频繁项集的产生
6.1 问题定义 6.2 频繁项集的产生
频繁项集产生(Frequent Itemset Generation)
格结构(lattice structure)
null
格结构用来枚举所有可能项集
A
B
C
D
E
AB
AC
AD
AE
BC
BD
BE
CD
CE
DE
ABC
ABD
ABE
ACD
ACE
ADE