多路模拟开关解析

合集下载

多路复用模拟开关

多路复用模拟开关
注:1. NO,NC,COM,ADD,EN, EN 或 LE 上超过 V+或 V- 的的信号受内部二极管的钳制。限制正
向二极管电流为最大额定电流值。 2. θJA是在空气条件下,元件直接安装在高效导热性系数的测试板上测量得到的。详细内容参考技术
摘要TB379。
4

武汉力源信息技术有限公司
14

武汉力源信息技术有限公司
免费电话:800-880-8051
数据手册 DS-107-00024CN
电源供电考虑
ISL43681 和 ISL43741 的结构是典型的 CMOS 模拟开关,因为它们有 3 个电源引脚:V+,V-,和 GND。 V+和 V- 驱动内部 CMOS 开关,决定它们的模拟电压极限值,因此模拟信号通路和 GND 之间没有连接。 不象用 13V 最大电源电压供电的其他模拟开关,ISL43681 和 ISL43741 的 15V 最大电源电压为 10%容差
引脚图
2

武汉力源信息技术有限公司
免费电话:800-880-8051
真值表
数据手册 DS-107-00024CN
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V,V+在 2.7V 和 10V 之间。”X”=无影响。
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V,V+在 2.7V 和 10V 之间。”X”=无影响。 订购信息
3
武汉力源信息技术有限公司
免费电话:800-880-8051
数据手册 DS-107-00024CN
引脚描述
引脚 V+ VGND
Hale Waihona Puke ENENLECOM NO ADD N.C.

IC资料-CD4051_4052_4053多路选择模拟开关

IC资料-CD4051_4052_4053多路选择模拟开关
11kΩ
850
270
1050
1300
330
120
400
520
Ω
210
80
240
300
10
10
Ω
5
±50 ±200 ±200 ±200
±0.01
±50
±500 ±2000 ±2000 ±2000
nA
±0.08 ±200 ±0.04 ±200 ±0.02 ±200
nA
1.5 3.0 4.0 3.5 7 11 -0.1 0.1 3.5 7 11 -10-5 -10-5
-0.1 0.1 20 40 80
-10-5 -10-5
-0.1 0.1 20 40 80
-0.1 0.1 150 300 600
信号输入VIS和输出VOS VDD=2.5V VEE=-2.5V 或VDD=5V VEE=0V VDD=5V 导通电阻 (峰值 RL=10kΩ VEE=-5V RON VEE ≤ VIS ≤ (任一通道) 或V DD=10V VDD) VEE=0V VDD=7.5V VEE=-7.5V 或V DD=15V VEE=0V VDD=2.5V VEE=-2.5V 或VDD=5V VEE=0V VDD=5V 任两个通道间 RL=10kΩ (任 VEE=-5V 的导通电阻增 或V DD=10V 一通道) 益 VEE=0V VDD=7.5V VEE=-7.5V ΔRON 或V DD=15V VEE=0V 关态通道漏电 VDD-=7.5V,VEE=-7.5V 流, 任一通道处 O/I=±7.5V,I/O=0V 于关态 inhibit=7.5V CD4051 关 态 通 道 漏 电 VDD=7.5V CD4052 流, 所有通道处 VEE=-7.5V O/I=0V 于关态 CD4053 I/O=±7.5V 控制输入A、B、C和inhibit VEE= VSS,RL VDD=5V =1k Ωto VSS VDD=10V 低 电 平 输 入 电 IIS<2uA,所有的 VIL 通道为关态 压 VDD=15V VIS=VDD thru

多路模拟开关工作原理

多路模拟开关工作原理

多路模拟开关工作原理
嘿,朋友们!今天咱来唠唠多路模拟开关的工作原理。

你知道不,这多路模拟开关就像是一个超级管理员!比如说,把它想象成一个交通指挥员,道路就是那些信号通道。

这多路模拟开关可不简单呐!它可以根据需要,快速又准确地切换不同的信号通道。

就好比你在听音乐的时候,从一首欢快的歌突然切换到一首抒情的歌,是不是很神奇?这就是它的厉害之处!
咱举个例子哈,就像你家里有很多电器,电视、冰箱、洗衣机啥的。

你不可能同时使用它们所有吧,那就得有个东西来帮忙控制,让电流准确地流到你想要打开的那个电器上。

这多路模拟开关就是干这个活儿的!你说它重要不重要?
它的工作过程就好像是走迷宫一样。

要在众多的通道中找到正确的那一条,然后打开通道的大门,让信号顺利通过。

哎呀呀,是不是很有意思?
当信号来临,多路模拟开关就迅速行动起来。

“嘿,这边来啦,赶紧给它带路!”它就像是个火眼金睛的大侠,一下子就找到了正确的路径。

而且啊,这多路模拟开关还特别智能呢!它能够根据不同的情况做出最恰当的选择。

就好像你去餐厅点餐,服务员会根据你的口味和需求给你推荐最合适的菜品一样。

总之呢,多路模拟开关的工作原理真的很奇妙,它在各种电子设备中都发挥着至关重要的作用。

没有它,那些电子设备可就没法这么顺畅地工作啦!这就是它的魅力,难道你不想更深入地了解它吗?。

多通道模拟开关芯片

多通道模拟开关芯片

多通道模拟开关芯片多通道模拟开关芯片是一种集成电路,用于控制和切换多个模拟信号通路。

它能够实现多个输入信号之间的切换和连接,具有较低的开关损耗和较高的带宽,可广泛应用于各种模拟信号处理系统中。

多通道模拟开关芯片的主要作用是将多个输入信号通过开关控制,选择其中一个或多个信号作为输出。

它通常由多个模拟开关和控制逻辑电路组成。

每个模拟开关由一个开关管和一个控制信号控制,当控制信号为高电平时,开关管导通,将输入信号连接到输出端;当控制信号为低电平时,开关管截断,断开输入信号与输出端的连接。

通过控制不同的开关管,可以实现不同的信号通路选择和切换。

多通道模拟开关芯片具有以下几个特点和优势:1. 多通道选择:多通道模拟开关芯片通常具有多个通道,可以同时选择和切换多个信号通路。

这使得它在多通道信号处理系统中非常有用,可以方便地实现不同信号通路之间的切换和连接。

2. 低开关损耗:多通道模拟开关芯片在导通状态下,其开关管的内阻非常低,可以认为是一个接近理想导线的开关。

这使得它在信号传输中具有较低的损耗,可以减少信号的衰减和失真。

3. 高带宽:多通道模拟开关芯片通常具有较高的带宽,可以支持高速信号传输和处理。

这使得它适用于高频率信号处理和带宽要求较高的应用领域。

4. 低串扰:多通道模拟开关芯片在切换时能够有效地减少信号之间的串扰。

它采用了特殊的设计和布局,使得不同信号通路之间的干扰和串扰最小化。

5. 灵活性和可编程性:多通道模拟开关芯片通常具有较高的灵活性和可编程性。

它可以通过控制信号的变化来选择不同的信号通路,也可以通过编程设置开关的状态和动作。

这使得它适用于各种不同的应用场景和需求。

多通道模拟开关芯片在实际应用中有着广泛的应用。

例如,在音频处理系统中,可以使用多通道模拟开关芯片来实现音频输入和输出的切换和选择;在电视信号处理系统中,可以使用多通道模拟开关芯片来选择不同的视频信号源;在医疗设备中,可以使用多通道模拟开关芯片来选择不同的生理信号采集通路;在测试和测量仪器中,可以使用多通道模拟开关芯片来实现多路信号的切换和连接。

模拟开关和多路复用器基本知识

模拟开关和多路复用器基本知识

PMOS NMOSALTERNATE SYMBOLS图1:MOSFET开关导通电阻与信号电压之间的关系工艺(CMOS)可以产出优异的P沟道和N沟道MOSFET。

并联连接器件,结果会形成如图2所示的基本双向CMOS开关。

这种组合有利于减少导通电阻,同时也可能产生随信号电压变化小得多的电阻。

SWITCHDRIVERSWITCH图2:基础CMOS 开关用互补对来减少信号摆幅引起的R ON 变化COMBINED TRANSFERFUNCTION图3:CMOS 开关导通电阻与信号电压之间的关系展示的是N 型和P 型器件的导通电阻随通道电压的变化。

这种非线性电阻可能给直流精度和交流失真带来误差。

双向CMOS 开关可以解决这个问题。

导通电阻大幅降低,线性度也得到了提升。

图3底部曲线展示的是改进后的开关导通电阻特性的平坦度。

ADG8xx 系列CMOS 开关是专门针对导通电阻低于0.5 Ω的应用而设计的,采用亚微米工艺制成。

这些器件可以传导最高400 mA 的电流,采用1.8 V 至5.5 V 单电源供电(具体视器件而定),额定扩展工作温度范围为–40°C 至+125°C 。

典型的导通电阻与温度和输入信号电平之间的关系如图4所示。

图5:两个相邻CMOS开关的等效电路:影响导通开关条件下直流性能的因素:RON 、RLOADLeakage current creates error voltage at V OUT equal to: V OUT= I LKG×R LOAD图7:影响关断开关条件下直流性能的因素:ILKG 和R当开关断开时,漏电流可能引起误差,如图7所示。

流过负载电阻的漏电流会在输出端产生一个对应的电压误差。

图8:动态性能考虑:传输精度与频率的关系会在传递函数A(s)的分子中形成一个零点。

该零通常出现在高频下,因在等效电路中,CDS和负载电容的函数。

该频率极点为开关导通电阻很小。

多路模拟开关(MUX)的作用

多路模拟开关(MUX)的作用

多路模拟开关(MUX)的作⽤
模拟开关和多路转换器的作⽤主要是⽤于信号的切换。

⽬前集成模拟电⼦开关在⼩信号领域已成为主导产品,与以往的机械触点式电⼦开关相⽐,集成电⼦开关有许多优点,例如切换速率快、⽆抖动、耗电省、体积⼩、⼯作可靠且容易控制等。

但也有若⼲缺点,如导通电阻较⼤,输⼊电流容量有限,动态范围⼩等。

因⽽集成模拟开关主要使⽤在⾼速切换、要求系统体积⼩的场合。

在较低的频段上f<10MHz),集成模拟开关通常采⽤CMOS⼯艺制成:⽽在较⾼的频段上(f>10MHz),则⼴泛采⽤双极型晶体管⼯艺。

⼀种集成电路,内部有受外部电压信号控制的多个“电⼦开关”,每个“开关”的通断与控制信号相互独⽴。

通常电⼦开关的导通电阻在⼏⼗欧姆。

“模拟开关”的作⽤就是⽤在模拟信号的传输路径“切换”电路中,道理好⽐“继电器”。

如电视机的“AV输⼊”与机内视频/⾳频信号通道之间就常⽤到4路模拟开关。

当你通过遥控器切换AV状态时,电视机内部视频/⾳频信号被切断,⽽由外部线路输⼊的AV信号被接通⾄视频处理-显像电路和⾳频驱动放⼤电路中。

多路复用器和模拟开关

多路复用器和模拟开关

多路复用器和模拟开关多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能传递数字信号。

在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。

但是TTL的多路复用器就不能选择模拟信号.。

用CMOS的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原来的值。

一、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如下图所示。

每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。

当控制端加高电平时,开关导通;当控制端加低电平时开关截止。

模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。

模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。

各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051CD4051引脚功能如下图所示。

CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。

“INH”是禁止端,当“INH”=1时,各通道均不接通。

此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。

例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

模拟开关电路介绍

模拟开关电路介绍

模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。

当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。

模拟开关在电子设备中主要起接通信号或断开信号的作用。

由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。

一、模拟开关的电路组成及工作原理模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。

模拟开关的真值表见表一。

表一模拟开关的工作原理如下:当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。

当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。

当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。

从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。

二、常用的CMOS模拟开关集成电路根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。

现将常用的模拟开关集成电路的型号、名称及特性列入表二中。

表二常用的模拟开关三、CD4066模拟开关集成电路的应用举例CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。

每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。

使用时选通端是不允许悬空的。

下面介绍CD4066模拟开关的两个应用实例。

1.采样信号保持电路采样信号保持电路如图二所示。

图二采样信号保持电路模拟信号Ui从运算放大器的同相输人端输人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24
3. 滤波芯片Maxim MAX260 2) 特性
配有滤波器设计软件,带微处理器接口; 可控制64个不同的中心频率,128个不同的品质 因数和4种工作模式; 对中心频率和品质因数可独立编程; 时钟频率域中心频率比值精度可达1%;
25
3. 滤波芯片Maxim MAX260
3) 传递函数 低通滤波器传递函数
15
2. AD585 (1) 结构 单片采样保持放大器,由高性能运算放大器、低漏
电模拟开关和场效应管放大器构成。
16
2. AD585 (2) 性能 采样时间:3us 泄漏速率:1mV/ms; 失调电压:3mV; 外部温度:-55~+125度; 片内保持电容、片内匹配电阻; 电源: ±12V或±15V; 可表贴。
H (s)
s2
w02 s(w0 / Q)
w02
带通滤波器传递函数
H (s)
s2
s(w0 / Q) s(w0 / Q)
w02
高通滤波器传递函数
H (s)
s2
s2 s(w0 / Q)
w02
26
1. 概述 (1) 存储器功能:具有记忆功能的部件,用来存放
数据和程序 (2) 存储器分类
1) 按在系统中的作用 2) 按存储介质 3) 按存储方式 4) 按信息的可保存性
27
(2) 存储器分类—1) 按在系统中的作用
主存储器(主存)
存放当前运行时 所需要的程序和
数据,以便向 CPU快速提供信
息。 存取速度快、容 量较小,价格较 高,设置于主机 内部(内存储器)
辅助存储器(辅存)
存放暂时不参与运 行的和永久性保存 的程序、数据和文 件。需要时批量与
主存交换。 容量大、价格低、 存取速度较慢、设
3
(3) 开关元件——重要部件 机电开关:干簧继电器 湿式水银继电器
电气特性理想 速度偏慢 体积偏大
固体开关:双极型晶体管 场效应管 CMOS集成模拟开关
ห้องสมุดไป่ตู้体积小 速度快 导通电阻小
4
(4) CMOS集成模拟开关 性能指标:通道数目
开关电阻 漏电流——漏级电路 输入电压 分类:多输入单输出 单输入多输出
DIP:Dual In-line Package, 双列直插 式封装
8
(3) 应用:两片AD5701实现16通道开关
9
1. 概述
(1) 采样/保持电路 A/D转换时使输入信号保持不变的电路,对数据采集 系统精度有决定性影响。
(2) 运行模式 采样模式+保持模式,由数字控制输入端选择
(3) 构成 保持电容、逻辑输入控制的开关电路、输入输出缓 冲放 大器等。
5
(5) 常用芯片 AD公司AD7501 AD7503 RCA公司CD405 MOTA公司MC14051
6
2. AD7501
(1) 逻辑结构 3个地址线 A3 A2 A1 使能端EN 8路输出S1,S2,……,S8
7
(2) 性能参数
CMOS工艺制造 单路8选1模拟多路转换器 16引脚DIP封装 电源:+/-15V 功耗:300uW 开关接通电阻:170欧 开关接通、断开时间:0.8us
19
1. 放大电路原理—(1) 同相串联差动放大器
Uo
Ui2
(1 R2 R3
/ R1)Ui1
R4
Ui2
1
R4 R3
U
i
2
Ui1
R1 R4 R2 R3
20
1. 放大电路原理—(2) 同相并联差动放大器
Uo1 Ui1 IR1,Uo2 Ui2 IR2 , I Ui1 Ui2 / R7
置于主机外部部 (外存储器)
高速缓冲存储器 (缓存)
存放当前正在执行 的部分程序或数据, 向CPU快速提供马 上要执行的指令或 数据。位于CPU和 主存之间,速度可 与CPU匹配,存取 时间快,容量较小
28
(2) 存储器分类—2) 按存储介质 a. 半导体存储器:半导体作为存储介质。 b. 磁存储器: 非磁性或塑料材料做基底,表面涂敷高磁导率 和硬矩磁材料的磁面,用磁层的两种剩磁状态 记录1和0;容量大,价格低,广泛用于辅存。 c. 光盘存储器: 有机玻璃做基底,表面涂敷记录介质;存储密 度高,容量大,易于更换,存储速度慢。
10
(4) 工作过程 采样模式期间,输入控制开关闭合,A1的输出给
电容快速充电; 保持模式期间,输入控制开关断开,A2输入阻抗
高,电容器保持充电时的最终值不变
11
(5) 性能参数 孔径时间:从保持命令发出到开关完全断开所需时
间,也即开关从闭合状态到断开状态的过渡时间。 捕捉时间:从采样命令发出到采样/保持器的输出
由上次保持值达到输入信号的当前值所需时间。 保持电压的衰减率:保持模式状态下,由于保持电
容的漏电和其他杂散漏电流引起的保持电压衰减 的速率。
12
(4) 结构形式 1) 多通道公用S/H和A/D
特点:完成一次AD变换后,要等到下一次采样命令到 达,并是保持电容上的电压跟踪到当前输入信号的值 后,才能再次启动AD变换器。速度慢,易引起各通 道相位误差
13
(4) 结构形式 2) 多通道公用A/D
特点:启动采样后,各通道并行进行采样,然后由 多路开关轮流选通并进行AD变换。不必考虑采样 /保持器的捕捉时间。
14
(4) 结构形式 3)多通道分别采用S/H和A/D
特点:各通道分别采用S/H和A/D,适用于高速多 通道数据采集系统和各通道同时采集数据的系统。
Uo
1
R1 R2 R7
R5 R3
U i 2
Ui1
21
2. AD620集成仪表放大器 (1) AD620原理 (2) AD620基本放大电路
22
1. 滤波 2. 滤波器分类: 高通滤波器 低通滤波器 带通滤波器 带阻滤波器 全通滤波器
23
3. 滤波芯片Maxim MAX260 1) 结构
1
6.1 多路模拟开关 6.2 采样/保持电路 6.3 信号放大电路 6.4 MAX滤波芯片 6.5 存储电路 6.6 显示电路
2
(1) 用途 模拟开关是一种在数字信号控制下将模拟信号
接通或断开的元件或电路。
(2) 构成
多路模拟一般由开关元件和控制(驱动)电路
两部分组成。
开关元件
控制电路
17
2. AD585 (3) 应用— 一倍增益采样保持电路
18
1. 放大电路原理 用途: 传感器输出电压信号一般较弱,后面需接放大器电路,
与AD转换器所需电平极性匹配,充分利用AD精度; 阻抗变换,隔离后面的负载对传感器影响,充分抑制
共模干扰; 要求:高输入阻抗、高共模抑制比、低失调与漂移、
低噪声及高闭环增益稳定性等。
相关文档
最新文档