2.1.2指数函数及其性质(2)
学案6:2.1.2指数函数及其性质

2.1.2指数函数及其性质学习目标1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点) 2.能画出具体指数函数的图象,并能根据指数函数的图象说明指数函数的性质.(重点)知识梳理教材整理1指数函数的定义阅读教材,完成下列问题.指数函数的定义一般地,函数(a>0,且a≠1)叫做指数函数,其中是自变量,函数的定义域是R.练一练1判断(正确的打“√”,错误的打“×”)(1)函数y=-2x是指数函数.()(2)函数y=2x+1是指数函数.()(3)函数y=(-2)x是指数函数.()教材整理2指数函数的图象和性质阅读教材,完成下列问题.R练一练2判断(正确的打“√”,错误的打“×”)(1)指数函数的图象一定在x轴的上方.()(2)当a>1时,对于任意x∈R,总有a x>1.()(3)函数f(x)=2-x在R上是增函数.()类型一:指数函数的概念例1 (1)下列一定是指数函数的是( ) A .y =a x B .y =x a (a >0且a ≠1) C .y =⎝⎛⎭⎫12xD .y =(a -2)a x(2)函数y =(a -2)2a x 是指数函数,则( ) A .a =1或a =3 B .a =1 C .a =3 D .a >0且a ≠1名师指导1.在指数函数定义的表达式中,要牢牢抓住三点: (1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1;2.求指数函数的解析式常用待定系数法.跟踪训练1 (1)若函数f (x )是指数函数,且f (2)=9,则f (x )=________. (2)已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________. 类型二:指数函数的定义域和值域 例2 求下列函数的定义域和值域: (1)y =√1−3x ; (2)y =(23)√−|x|; (3)y =4x +2x +1+2. 名师指导1.函数y =a f (x )的定义域与y =f (x )的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.求与指数函数有关的函数的值域时,要注意与求其它函数(如一次函数、二次函数)值域的方法相结合,要注意指数函数的值域为(0,+∞),切记准确运用指数函数的单调性.跟踪训练2 求下列函数的定义域和值域:(1)y=21x−3;(2)y=221()2x x.探究共研型类型三:指数函数的图象探究1指数函数y=a x(a>0且a≠1)的图象过哪一定点?函数f(x)=a x-1+2(a>0且a≠1)的图象又过哪一定点呢?探究2若函数y=a x+b(a>0,且a≠1)的图象不经过第一象限,则a,b满足什么条件?例3(1)在同一坐标系中画出函数y=a x,y=x+a的图象,可能正确的是()(2)函数y =a-|x |(0<a <1)的图象是( )名师指导指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系. (1)在y 轴右侧,图象从上到下相应的底数由大变小. (2)在y 轴左侧,图象从下到上相应的底数由大变小.(3)无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过x 取1时函数值的大小关系去理解,如下图所示的指数函数的底数的大小关系为0<d <c <1<b <a .跟踪训练3 定义一种运算:g ⊙h =⎩⎪⎨⎪⎧gg ≥hhg <h ,已知函数f (x )=2x ⊙1,那么函数y =f (x -1)的大致图象是( )课堂检测1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2x C.⎝⎛⎭⎫12xD.⎝⎛⎭⎫22x2.当x ∈[-2,2)时,y =3-x -1的值域是( ) A.⎝⎛⎦⎤-89,8 B.⎣⎡⎦⎤-89,8 C.⎝⎛⎭⎫19,9D.⎣⎡⎦⎤19,93.已知1>n >m>0,则指数函数①y =m x ,②y =n x 的图象为( )4.已知函数f (x )=a -x (a >0, 且a ≠1),且f (-2)>f (-3),则a 的取值范围是________. 5.设f (x )=3x ,g(x )=⎝⎛⎭⎫13x.(1)在同一坐标系中作出f (x ),g(x )的图象;(2)计算f (1)与g(-1),f (π)与g(-π),f (m )与g(-m )的值,从中你能得到什么结论?参考答案知识梳理教材整理1 指数函数的定义 y =a x ; x 练一练1【答案】 (1)× (2)× (3)×【解析】 (1)由指数函数的定义形式可知(1)(2)(3)均错误. 教材整理2 指数函数的图象和性质 (0,+∞) ;(0,1);增函数;减函数;y 轴 练一练2【答案】 (1)√ (2)× (3)×【解析】 (1)因为指数函数的值域是(0,+∞),所以指数函数的图象一定在x 轴的上方. (2)当x ≤0时,a x ≤1.(3)因为f (x )=2-x =⎝⎛⎭⎫12x ,所以函数f (x )=2-x在R 上是减函数. 类型一:指数函数的概念 例1 【答案】 (1)C (2)C【解析】 (1)A 中a 的范围没有限制,故不一定是指数函数;B 中y =x a (a >0且a ≠1)中变量是底数,故也不是指数函数;C 中y =⎝⎛⎭⎫12x 显然是指数函数;D 中只有a -2=1即a =3时为指数函数.(2)由指数函数定义知⎩⎪⎨⎪⎧(a -2)2=1a >0,且a ≠1,所以解得a =3.跟踪训练1 【答案】 (1)3x (2) ⎝⎛⎭⎫12,1∪(1,+∞) 【解析】 (1)由题意设f (x )=a x (a >0,且a ≠1), 则f (2)=a 2=9.又因为a >0,所以a =3. 所以f (x )=3x .(2)由题意可知{ 2a -1>0,2a -1≠1,解得a >12,且a ≠1.所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 类型二:指数函数的定义域和值域例2 解:(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y = √1−3x 的定义域为(-∞,0]. 因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1.所以√1−3x ∈[0,1),即函数y = √1−3x 的值域为[0,1). (2)要使函数式有意义,则-|x |≥0,解得x =0, 所以函数y = (23)√−|x|的定义域为{x |x =0}.因为x =0,所以y = (23)√−|x| =(23)0=1,即函数y= (23)√−|x|的值域为{y |y =1}.(3)因为对于任意的x ∈R , 函数y =4x +2x +1+2都有意义, 所以函数y =4x +2x +1+2的定义域为R . 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2 =(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 跟踪训练2 解:(1)函数的定义域为{x |x ≠3}. 令t =1x−3,则t ≠0,∴y =2t >0且2t ≠1, 故函数的值域为{y |y >0,且y ≠1}. (2)函数的定义域为R ,令t =2x -x 2, 则t =-(x -1)2+1≤1,∴y =(12)t ≥ (12)1=12,故函数的值域为[12,+∞).探究共研型类型三:指数函数的图象探究1 【答案】 指数函数y =a x (a >0且a ≠1)的图象过定点(0,1);在f (x )=a x -1+2中令x -1=0,即x =1,则f (x )=3,所以函数f (x )=a x -1+2(a >0且a ≠1)的图象过定点(1,3). 探究2 【答案】 如图,由图可知0<a <1,b ≤-1.例3【答案】 (1)D (2)A【解析】(1)∵a 为直线y =x +a 在y 轴上的截距,对应函数y =x +a 单调递增, 又∵当a >1时,函数y =a x 单调递增,当0<a <1时,函数y =a x 单调递减,A 中,从图象上看,y =a x 的a 满足a >1,而直线y =x +a 的截距a <1,不符合以上两条;B 中,从图象上看,y =a x 的a 满足0<a <1,而直线y =x +a 的截距a >1,不符合以上两条;C 中,从图象上看,y =a x 的a 满足a >1,而函数y =x +a 单调递减,不符合以上两条, ∴只有选项D 的图象符合以上两条,故选D. (2)y =a-|x |=⎝⎛⎭⎫1a |x |,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.跟踪训练3 【答案】 B【解析】 f (x )=⎩⎪⎨⎪⎧ 2x x ≥01x <0,∴f (x -1)=⎩⎪⎨⎪⎧2x -1x ≥11x <1,∴其图象为B ,故选B.课堂检测 1.【答案】 A【解析】 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 2.【答案】 A【解析】 y =3-x -1,x ∈[-2,2)是减函数, ∴3-2-1<y ≤32-1,即-89<y ≤8.3.【答案】 C【解析】 由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C. 4.【答案】 (0,1)【解析】 因为f (x )=a -x =⎝⎛⎭⎫1a x ,且f (-2)>f (-3),所以函数f (x )在定义域上单调递增, 所以1a>1,解得0<a <1.5. 解:(1)函数f (x ),g(x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝⎛⎭⎫13-1=3,f (π)=3π,g(-π)=⎝⎛⎭⎫13-π=3π, f (m )=3m ,g(-m )=⎝⎛⎭⎫13-m=3m.。
指数函数的图像及性质2

2.1.2指数函数及其性质的应用(2)班级: 姓名: 编者:阮娟萍 高一数学备课组 问题引航1.能熟练说出指数函数的性质。
2.会求简单复合函数的性质。
3.会利用指数函数的性质比较幂值的大小。
自主探究1.函数)1,0(≠>=a a y a x 的定义域是 ,值域 . 2.函数)1,0(≠>=a a y a x .当a>1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1;当0<a<1时,若x>0时,y 1,若x<0时,y 1;若x=1时,y 1.3.函数)1,0(≠>=a a y a x 是 函数(就奇偶性填). 互动探究1.函数y=a x+2-3(a >0且a ≠1)必过定点________.2.函数y =a |x|(0<a <1)的图像是( )3.比较下列各题中两个值的大小:(1) 35.27.1 ,7.1 (2) 2.01.08.0 ,8.0--(3) 1.33.09.0 ,7.1 (4) 比较2131a a 与的大小,)1,0(≠>a a 且当堂检测 1.函数2121x x y -=+是( ) A 、奇函数 B 、偶函数 C 、既奇又偶函数 D 、非奇非偶函数 2.函数21x y =的单调递减区间是( )A.(-∞,+∞) B.(-∞,0)C.(0,+∞) D.(-∞,0)和(0,+∞)3.若函数x a y )12(+=是减函数,则a 的取值范围是__________________.4.函数y=4x 与函数y=4-x 的图像关于________对称.*5.已知的大小关系是则c b a c b a ,,,2.1,8.0,8.08.09.07.0===?自我评价你对本节课知识掌握的如何( )A.非常好B.较好C.一般D.较差E.很差。
2014年高中数学(答疑+思维启迪+状元随笔)2.1.2 指数函数及其性质第2课时同步课堂讲义课件 新人教A版必修1

∵u=x2- 2x= (x-1)2- 1≥-1, 10 分 1 ∴ y= u, u∈ [-1,+∞), 2 1 1 u - 1 ∵0< ≤ =2, 2 2 ∴原函数的值域为(0,2].12 分
(1)关于指数型函数y=af(x)(a>0,且a≠1)的单调性 由两点决定,一是底数a>1还是0<a<1;二是f(x) 的单调性.它由两个函数y=au,u=f(x)复合而 成. (2)求复合函数的单调区间,首先求出函数的定义 域,然后把函数分解成y=f(u),u=φ(x),通过考 查f(u)和φ(x)的单调性,求出y=f[φ(x)]的单调性.
解析: (1)由题意知,此函数为指数函数,且为 实数集 R 上的增函数,所以底数 1-2a>1,解得 a<0. - x2+ 4x (2)函数 y= 3 的定义域是 R, 令 u=-x2+4x,则 y=3u, ∵u=- (x- 2)2+4 ∴当 x∈ (-∞, 2]时, 函数 u=-x2+4x 为增函数, 当 x∈[2,+∞)时,函数 u=-x2+4x 为减函数. 又∵ y=3u 是增函数 ∴函数 y= 3-x2+4x 在 (-∞,2]上是增函数,在 [2,+∞)上是减函数. 答案: (1)B
(1)函数 y= 1.5x 在 R 上是增函数, ∵2.5<3.2,∴1.52.5<1.53.2. (2)函数 y= 0.6x 在 R 上是减函数, - - ∵-1.2>-1.5,∴0.6 1.2<0.6 1.5. 5 5 (3)因为 0< <1,所以函数 y= x 在定义域 R 内是减 8 8 5 2 5 2 - 0 函数,又因为- <0,所以 3> = 1, 3 8 8 5 2 - 所以 3>1. 8
指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。
②.掌握指数函数的性质及应用。
③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。
2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。
②培养学生观察问题,分析问题的能力。
③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。
【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。
【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。
复习指数函数的图象及性质,为本节课中的内容储备知识基础。
展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。
教师随时点评,引导,欣赏,鼓励。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。
力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。
学生小组讨论,交流。
每组选派一名代表课堂上展示交流成果,组内同学补充。
其他同学可针对展示交流成果提出问题,进一步加深理解。
所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。
学案8:2.1.2 指数函数及其性质(二)

2.1.2 指数函数及其性质(二)自主学习学习目标1.理解指数函数的单调性与底数a 的关系,能运用指数函数的单调性解决一些问题.2.理解指数函数的底数a 对函数图象的影响.基础自测1.下列一定是指数函数的是( )A .y =-3xB .y =x x (x >0,且x ≠1)C .y =(a -2)x (a >3)D .y =(1-2)x2. 指数函数y =a x 与y =b x 的图象如图,则( )A .a <0,b <0B .a <0,b >0C .0<a <1,b >1D .0<a <1,0<b <13.函数y =πx 的值域是( )A .(0,+∞)B .[0,+∞)C .RD .(-∞,0)4.若指数函数f (x )=(a +1)x 是R 上的减函数,那么a 的取值范围为( )A .a <2B .a >2C .-1<a <0D .0<a <1题型探究类型一 比较大小问题【例1】 比较下列各题中两个值的大小:(1)3π与33.14; (2)0.99-1.01与0.99-1.11; (3)1.40.1与0.90.3.规律方法 比较两指数大小时,若底数相同,则先构造出该底数的指数函数,然后利用单调性比较;若底数不同,则考虑选择中间量,通常选择“1”作为中间量.变式迁移1 比较⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412的大小.类型二 解简单的指数不等式【例2】 如果a 2x +1≤a x -5(a >0,且a ≠1),求x 的取值范围.规律方法 解a f (x )>a g (x )(a >0且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为变式迁移2 已知(a 2+a +2)x >(a 2+a +2)1-x ,则x 的取值范围是____________.类型三 指数函数的最值问题【例3】 (1)函数f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值; (2)如果函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.规律方法 指数函数y =a x (a >1)为单调增函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最小值a s ;当x =t 时,函数有最大值a t .指数函数y =a x (0<a <1)为单调减函数,在闭区间[s ,t ]上存在最大、最小值,当x =s 时,函数有最大值a s ;当x =t 时,函数有最小值a t .变式迁移3 (1)函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值与最小值之和为6,求a 的值;(2)0≤x ≤2,求函数y =4x -12-3·2x +5的最大值和最小值.课堂小结1.指数函数的定义及图象是本节的关键.通过图象可以求函数的值域及单调区间.2.利用指数函数的性质可以比较两个指数幂的大小(1)当两个正数指数幂的底数相同时,直接利用指数函数的单调性比较大小.(2)当两个正数指数幂的底数不同而指数相同时,可利用两个指数函数的图象比较它们的大小.(3)当两个正数指数幂的底数不同而且指数也不相同时,可考虑能否利用“媒介”数来比较它们的大小.3.通过本节的学习,进一步体会分类讨论思想在解题中的应用.当堂检测一、选择题1.下图分别是函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,a ,b ,c ,d 分别是四数2,43,310,15中的一个,则相应的a ,b ,c ,d 应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43,2 2.已知a =30.2,b =0.2-3,c =(-3)0.2,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a3.若(12)2a +1<(12)3-2a ,则实数a 的取值范围是( ) A .(1,+∞) B .(12,+∞) C .(-∞,1) D .(-∞,12)4.设13<(13)b <(13)a <1,则( ) A .a a <a b <b a B .a a <b a <a b C .a b <a a <b a D .a b <b a <a a5.若函数f (x )=⎩⎪⎨⎪⎧ a x , x >14-a 2x +2, x ≤1是R 上的增函数,则实数a 的取值范围为( ) A .(1,+∞) B .(1,8) C .(4,8) D .[4,8)二、填空题6.当x ∈[-1,1]时,函数f (x )=3x -2的值域是____________.7.a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是____________.8.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是__________.三、解答题9.解不等式a x +5<a 4x -1 (a >0,且a ≠1).10.已知函数f (x )=⎝⎛⎭⎫12x -1+12·x 3. (1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.【参考答案】基础自测1.C 2.C 3.A 4.C题型探究【例1】 解 (1)构造函数y =3x .∵a =3>1,∴y =3x 在(-∞,+∞)上是增函数.∵π>3.14,∴3π>33.14.(2)构造函数y =0.99x .∵0<a =0.99<1,∴y =0.99x 在(-∞,+∞)上是减函数.∵-1.01>-1.11,∴0.99-1.01<0.99-1.11.(3)分别构造函数y =1.4x 与y =0.9x .∵1.4>1,0<0.9<1,∴y =1.4x 与y =0.9x在(-∞,+∞)上分别为增函数和减函数.∵0.1>0,∴1.40.1>1.40=1.∵0.3>0,∴0.90.3<0.90=1,∴1.40.1>1>0.90.3,∴1.40.1>0.90.3.变式迁移1 解 将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412分成如下三类:(1)负数⎝⎛⎭⎫-233; (2)大于0小于1的数⎝⎛⎭⎫3412;(3)大于1的数⎝⎛⎭⎫4313,223.∵⎝⎛⎭⎫4313<413,而413=223, ∴⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 【例2】 解 (1)当0<a <1时,由于a 2x +1≤a x -5,∴2x +1≥x -5,解得x ≥-6.(2)当a >1时,由于a 2x +1≤a x -5,∴2x +1≤x -5,解得x ≤-6.综上所述,x 的取值范围是:当0<a <1时,x ≥-6;当a >1时,x ≤-6.变式迁移2 (12,+∞) 解析 a 2+a +2=(a +12)2+74>1. ∴y =(a 2+a +2)x 在R 上是增函数.∴x >1-x ,解得x >12. ∴x 的取值范围是(12,+∞). 【例3】 解 (1)①若a >1,则f (x )在[1,2]上递增,最大值为a 2,最小值为a .∴a 2-a =a 2,即a =32或a =0(舍去). ②若0<a <1,则f (x )在[1,2]上递减,最大值为a ,最小值为a 2.∴a -a 2=a 2,即a =12或a =0(舍去), 综上所述,所求a 的值为12或32. (2)设t =a x ,则原函数可化为y =(t +1)2-2,对称轴为t =-1.①若a >1,∵x ∈[-1,1],∵t =a x 在[-1,1]上递增,∴0<1a≤t ≤a ; ∴y =(t +1)2-2当t ∈[1a,a ]时递增. 故当t =a 时,y max =a 2+2a -1.由a 2+2a -1=14,解得a =3或a =-5(舍去,∵a >1).②若0<a <1,t =a x 在[-1,1]上递减,t ∈[a ,1a], y max =a -2+2a -1-1=14,解得a =13或a =-15(舍去). 综上,可得a =13或3. 变式迁移3 解 (1)∵f (x )=a x 在[1,2]上是单调函数,∴f (x )在1或2时取得最值.∴a +a 2=6,解得a =2或a =-3,∵a >0,∴a =2.(2)y =12·22x -3·2x +5=12(22x -6·2x )+5 =12(2x -3)2+12. ∵x ∈[0,2],1≤2x ≤4,∴当2x =3时,y 最小值=12, 当2x =1时,y 最大值=52. 当堂检侧1.C2.B 【解析】c <0,b =53>3,1<a <3,∴b >a >c .3.B 【解析】函数y =(12)x 在R 上为减函数, ∴2a +1>3-2a ,∴a >12. 4.C 【解析】由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .5.D 【解析】因为f (x )在R 上是增函数,故结合图象知 ⎩⎪⎨⎪⎧ a >14-a 2>04-a 2+2≤a,解得4≤a <8.6.⎣⎡⎦⎤-53,1 7.c >a >b 【解析】y =0.8x 为减函数,∴0.80.7>0.80.9,且0.80.7<1,而1.20.8>1,∴1.20.8>0.80.7>0.80.9.8.(-∞,-1)【解析】∵f (x )是定义在R 上的奇函数,∴f (0)=0.当x <0时,f (x )=-f (-x )=-(1-2x )=2x -1.当x >0时,由1-2-x <-12得x ∈∅; 当x =0时,f (0)=0<-12不成立;因此当x <0时,由2x -1<-12得x <-1.综上可知x ∈(-∞,-1).9.解 当a >1时,原不等式可变为x +5<4x -1.解得x >2;当0<a <1时,原不等式可变为x +5>4x -1.解得x <2.故当a >1时,原不等式的解集为(2,+∞); 当0<a <1时,原不等式的解集为(-∞,2).10.(1)解 由2x -1≠0,得x ≠0.∴函数的定义域为(-∞,0)∪(0,+∞).(2)解 由于函数f (x )的定义域关于原点对称,f (-x )=⎝⎛⎭⎫12-x -1+12·(-x )3 =-⎝⎛⎭⎫2x 1-2x +12x 3=⎝⎛⎭⎫12x -1+12·x 3 =f (x ),所以f (x )为偶函数.(3)证明 当x >0时,12x -1>0,x 3>0, ∴f (x )>0,又∵f (x )为偶函数,∴x <0时,f (x )>0,综上所述,对于定义域内的任意x 都有f (x )>0.。
2.1.2指数函数及其性质2

③ 1.7 ,0.9
0 .3
3.1
解③ :根据指数函数的性质,得 3.1 0.3 1.7 1 且 0.9 1
3.2
3.2
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
1.8
fx = 0.9x
fx = 1.7x
1.6
1.6
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
2a 1 1 1 a a , 且a 1 2
1 2 a 1
作出函数图像: 1。列表 2。描点
3。连线
y
y= 2- x
4 3 2 1 -3 -2 -1 0 1 2 3
y=2x
x
指数函数: y=ax (a >0且a=1) a>1 0<a<1 y y y=ax y=ax 图 (0<a<1) (a>1)
(0,1)
y=1
y=1
(0,1)
象
0
当 x < 0 时,0<y < 1; 定
x
0
x
当 义 域 : R x < 0 时,y > 1; 性 当 x > 0 时,y域 : ( 0 , + ∞ 当)x > 0 时,0<y < 1 。 值 > 1. 必过 点: 0 , 1 ) ,即 x = 0 时, y = 1 . ( 质 在 R 上是 增函数 在 R 上是 减函数
a 和a
1 2
1 3
的大小,其中a>0
2.1.2指数函数及其性质(2)课件人教新课标

课堂小结
1. 指数复合函数的单调性; 2. 指数函数图象的变换.
a>1
0<a<1
图
y
y=ax y=ax
y
(a>1) (0<a<1)
象
(0,1)
y=1
(0,1) y=1
O
x
O
x
定义域 R;值域(0,+∞)
性 过点(0,1),即x=0时,y=1
质 在R上是增函数
在R上是减函数
x>0时,ax>1; x>0时,0<ax<1;
x<0时,0<ax<1 x<0时,ax>1
复习引入
练习
1.解不等式:
复习引入
练习
2.
复习引入
练习
3. 函数y=a x-1+4恒过定点
.
A.(1,5) C.(0,4)
B.(1,4) D.(4,0)
复习引入
练习
4. 下列函数中,值域为(0,+∞)的函数
是
()
讲授新课
一、指数函数图象的变换 1.说明下列函数图象与指数函数y=2x的 图象关系,并画出它们的图象:
9 8 7 6 5 4 3 2 1
-4 -2 O
2 4x
作出图象,显示出函数数据表
x
-3
-2 -1 0 1 2 3
0.125 0.25 0.5 1 2 4 8
0.0625 0.125 0.25 0.5 1 2 4
0.03125 0.0625 0.125 0.25 0.5 1 2
y
9 8 7 6 5 4 3 2 1
2.1.2指数函数 及其性质
复习引入
指数函数的图象和性质:
a>1
0<a<1
图 象
定义域 R;值域(0,+∞)
指数函数及其性(一)(二)

课堂小结
1、指数函数概念;
函数y = ax(a0,且a 1)叫做指数函数, 其中x是自变量 .函数的定义域是R .
2、指数比较大小的方法; ①、构造函数法:要点是利用函数的单调性,数的 特征是同底不同指(包括可以化为同底的),若底 数是参变量要注意分类讨论。 ②、搭桥比较法:用别的数如0或1做桥。数的特 征是不同底不同指。
提炼:
(1)y=1.073X(X∈N*,X≤20) (2)P=(1/2)t/5730(t ≥0)
设问1:以上两个函数有何共同特征?
(1)均为幂的形式; (2)底数是一个正的常数且不等于1; (3)自变量在指数位置.
定义: x 一般地,函数y a (a 0, a 1)叫做指数
函数,其中x是自变量,函数的定义域是 R。
;
, 2.3 , 0.9
; 4 1.7
1 1 3 3
, 0.9
3.1 3.1
;
2 0.7 2 0.7 , ,1.3 1.3 5 1.5 , 3 3 分析: (1)(2)利用指数函数的单调性.
0.7
1 30.2 0.2
(3) 找中间量是关键.
应用
(1)1.7 2.5 <
§2.1.2指数函数及其性质
秀山中学
曹凤婷
复习回顾
一、根式的概念
如果一个数的 n 次方等于 a(n>1 且 n∈N*), 那么这个数叫做 a 的 n 次方根. 即: 若 xn=a, 则 x 叫做 a 的 n 次方根, 其中 n>1且 n ∈N * . 式子n a 叫做根式, 这里 n 叫做根指数, a 叫做被开方 数.
8 8
7 7
6 6
5 5
4 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2指数函数及其性质(2)
学习目标:
(1) 理解指数函数单调性与底数a 的关系,能运用指数函数的单调性解决问题。
(2)
(2) 理解指数函数的底数a 对函数图像的影响。
学习难点:指数函数的单调性在比较大小,解不等式及求最值中的应用。
学习难点:分类讨论思想的灵活运用。
学习过程
(一)自主学习
利用函数的单调性,结合图象还可以看出:
1.在[m ,n ]上,)10()(≠>=a a a x f x 且值域是 或 ;
2.若 ,则1)(=x f ;)x (f 取遍所有正数当且仅当∈x ;
3.对于指数函数)10()(≠>=a a a x f x
且,总有=)1(f ;
4.当1a >时,若 ,则)x (f )x (f 21<;当10<<a 时,若 ,则)(1x f )(2x f (二)典例尝试
例1.设10<<a ,解关于x 的不等式32223222-++->x x x x a a 。
例2.函数x a x f =)(,0(>a 且)1≠a 在区间[]2,1上的最大值比最小值大2
a ,求a 的值。
例3.已知3)
41(2-≤x x ,求函数x
y )21(=的值域。
(三)巩固练习
1.若,10<<x 则x
x x )2.0(,)2
1(,2之间的大小关系是 ( )。
(A )x x x )21()2.0(2<< (B )x x x )2.0()2
1(2<< (C )x x x 2)2.0()21(<< (D )x x x 2)2
1()2.0(<< 2.方程9131=-x 的解是_______________。
3.函数x x f 21)(-=的定义域是______________________。
4.如果10522+->x x x a a
其中)10(≠>a a 且,求x 的取值范围。
5.已知函数x y )3
1
(=在[]1,2--上的最小值是,m 最大值是,n 求n m +的值。
(四)我的问题
(五)拓展能力
1.已知函数12
+=x y ,(1)做出图像;(2)指出其但单调区间;(3)指出当x 取什么值时,函数有最值。
2.函数122-+=x x a a y )10(≠>a a 且,在区间[]1,1-上的最大值是14,求a 的值。
(六)作业
教材60页B 组第2、4题。