直流高频开关电源及维护
开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是一种将交流电转换为稳定直流电的电子设备,广泛应用于各种电子设备和系统中。
了解开关电源的工作原理,对于工程技术人员和维修人员来说至关重要。
本文将介绍开关电源的工作原理,并提供一些常见问题的维修技巧。
一、开关电源的工作原理开关电源通过使用电子器件(如开关管、二极管和电感等)将交流电转换为高频脉冲电流,再通过滤波和稳压电路得到稳定的直流电。
下面将详细介绍开关电源的主要工作原理。
1. 输入滤波:开关电源的输入端会接入交流电源,而交流电源会带有各种干扰信号。
为了保证开关电源的正常工作,需要通过输入滤波电路来滤除这些干扰信号。
输入滤波电路一般由电容器和电感器组成,能够有效地滤除高频和低频的干扰信号。
2. 整流和滤波:经过输入滤波后,交流电会被整流电路转换为直流电。
整流电路通常使用二极管桥整流器来实现。
然后,通过输出滤波电路对整流后的直流电进行滤波处理,以去除直流电中的纹波电压,得到相对稳定的直流电。
3. 高频开关转换:直流电经过滤波后,会进入开关电源的核心部件——开关电路。
开关电路由开关管(如MOSFET、IGBT等)组成,通过快速开关操作将直流电转换为高频脉冲电流。
4. 变压器:高频脉冲电流进一步经过变压器的转换,得到所需的电压大小。
通过变压器的变换比例,可以实现升压、降压或保持电压稳定的功能。
5. 输出调节和稳压:经过变压器转换后的电流会进入稳压电路,稳压电路通常由反馈电路、误差放大器和控制开关管等组成。
利用反馈电路监测输出电压的变化情况,并与设定的参考电压进行比较,在误差放大器和控制开关管的调节下,保持输出电压稳定在设定值。
二、开关电源的常见故障和维修技巧1. 电源无输出或输出电压波动大:可能原因:- 输入端电源线异常,如插头松动或电源线破损。
- 滤波电容故障,需要检查滤波电容是否损坏或漏电。
- 开关管故障,开关管可能损坏或短路,需要更换。
- 控制电路故障,检查反馈电路和误差放大器是否正常工作。
微机自控高频开关电源直流系统运行维护

微机自控高频开关电源直流系统的运行与维护摘要:微机自控高频开关电源直流系统广泛应用于变电站、发电厂,作为直流操作机构、继电保护、自动装置、控制信号母线等使用的分合闸操作电源、控制保护信号电源、通信及事故照明电源。
该文介绍微机自控高频开关电源直流系统的概况及工作原理,并对其日常运行与维护作了探讨,最后对一个直流系统故障的实例进行讨论分析。
关键词:直流系统充电蓄电池组中图分类号:g6 文献标识码:a 文章编号:1674-098x(2012)12(a)-00-02微机自控高频开关电源直流系统由高频开关电源(包括充电模块、监控模块)、直流馈电单元(包括配电监控、绝缘监测)、阀控蓄电池组(包括蓄电池检测仪)等组成。
目前,变电站多采用gzdw 系列设备。
1 设备概述高频开关电源的特点是体积小、重量轻、效率高、输出纹波极低、动态响应快、控制精度高、模块可叠加输出。
模块化的充电设备采用n+1备份方式,模块间自动无主均流,系统电流由n+1个模块平均分配。
充电机中任何一个模块故障,系统发出故障信号,不影响系统的运行状态与运行方式。
由于采用微机自控,显示出较高智能化。
模块具有平滑调节输出电源和电流的功能,通过扩展通讯口,接入智能电池检测仪和绝缘监测等装置。
随着系统综合自动化程度提高,该电源系统遥测、遥信量已都接入集控端,实现远程监控。
为了提高可靠性,大部分变电站都采用双充双蓄形式,对蓄电池自动管理及保护,实时自动监测蓄电池的端电压、充电放电电流,并对蓄电池的均浮充电进行智能控制。
如果电池过、欠压或充电过流,都会实现声光告警。
2 工作原理(1)电压模块采用三相三线制380v ac输入,具有软启动功能。
在交流输入端,采用先进的尖峰抑制器件及emi滤波电路,由全桥整流电路将三相交流电整流为直流电,再经无源pfc调整后大大提高了功率因数。
由dc/dc高频变换电路把所得的直流电压变成稳定可控的直流输出。
脉宽调制电路pwm及软开关谐振回路,根据电网和负载的变化,自动调节高频开关的脉冲度和移相角,使输出电压电流在任何允许的情况下都能保持稳定[1]。
直流回路的问题查找及直流回路接地的查找方法 直流电源车的使用及其维护

直流回路的问题查找及直流回路接地的查找方法直流电源车的使用及其维护一、直流系统简介直流标称电压:220v、110v、48v。
我局博爱变直流是110v,其余各站均是220v直流系统。
48v多用于通讯。
变电站直流系统的主要任务就是给保护、信号、监控、自动装置和事故照明提供可靠的直流操作电源,它在变电站是一个独立的电源,不受交流影响,当发生交流电源消失事故情况下(全站失压),仍能保证控制、信号、保护、自动装置等电源及事故处理工作。
直流系统可靠与否对变电站的安全运行起着至关重要的作用。
提醒一点在交直流回路不能共用一根电缆。
变电站交直流回路都是独立系统,直流回路是绝缘系统,而交流回路是接地系统,若共用一根电缆,两者之间发生短路或接错线,就可能造成直流系统接地,发生互相干扰,直流系统的重要数据系统整定值:系统整定值:可以看到,直流母线的波动范围是标称电压的±10%;电压过高时,对长期带电的继电器、指示灯容易过热或损坏,电压过低,可能造成开关、保护动作不可靠。
额定输入交流电压(380±10%)v、(220±10%)v、(50±2%)Hz。
直流母线绝缘电阻应不小于10M(我理解是不接负载回路时的)充电机电压稳定范围90%~125%直流标称电压;输出231.75±0.5v,充电机充电电流调整范围20%~100% ,限流值整定范围为直流输出额定值的50%~105%;短路值为额定值115%。
直流电源系统定期检查项目:1、高频开关电源组成及作用高频开关电源通常由四个部分组成:交流配电模块、整流模块、集中监控器和直流配电模块(屏)。
交流配电模块对交流电源进行处理、保护、监测并与整流器模块接口。
整流模块将交流电变为直流电。
直流配电模块负责向直流负载供电。
集中监控模块用于对交流输入电源、整流模块、输出电源及蓄电池组进行智能管理。
并实现数据监测、定值设定、越线报警。
还设有RS-232-CT、RS-485串行通讯接口,以实现遥信、遥测、遥控、遥调四遥功能。
开关电源常见故障的分析及维修

开关电源常见故障的分析及维修(论文)开关电源常见故障的分析及维修(论文)摘要:本文主要是针对脉冲宽度调制(PWM)式开关电源常见故障进行分析和维修的。
这类开关电源因其节能,环保,性价比高等优点,很快占领了市场,被广泛的应用于我们的生活中和各行各业中。
但这种开关电源的线路复杂,维修不便,给我们的日常生活和生产带来诸多不便。
因此本文就从这些角度出发,通过分析故障产生的原因以及如何排除故障,进行详细的阐述,希望对我们的日常生活和生产有所帮助。
关键词:开关电源高频变压器 UC3842 PWM前言目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的“线性电源”,很快被人们所接受。
这类开关电源主要是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
本文就针对此类开关电源进行详细的阐述其原理,常见故障分析以及维修方法。
开关电源的概述及工作原理1.1开关电源的概述开关电源是一种电源转换电路,一般是将交流电(AC)转换成不同电压的直流电(DC),且电压非常平稳。
因开关电源中的开关管(IGBT)总是工作在“开”和“关”的工作状态,所以叫开关电源。
它与传统的线性电源相比无论是在工作程式上还是在各方面的性能上都有了质的飞跃。
传统的线性电源工作程式一般可归纳为:变压器降压,二极管桥式整流,大容量电解电容滤波,稳压电路或专用稳压IC稳压。
而开关电源则不同,它的工作程式一般可归纳为:高压大电流二极管桥式整流,大容量电解电容滤波,中间控制高频变换环节,整流,滤波,稳压及反馈环节,保护环节等。
高频开关电源【高频开关电源的维护】

高频开关电源【高频开关电源的维护】高频开关电源的维护第一章高频开关电源的维护第一节技术参数一、高频开关电源系统的主要技术参数额定直流输出电压、浮充电压、均充电压、功率因数、稳压精度、效率、杂音电压(不接蓄电池组)、电池温度补偿等。
1、额定直流输出电压:指市电经整流模块变换后的额定输出电压,正选的电源电压为-48V,电压允许变动范围-40—-57V。
这种“-”型基础电压是指电源正馈电线接地,作为参考电位零伏,负馈电线装接熔断器后,与机架电源连接。
2、浮充电压:在市电正常时,蓄电池与整流器并联运行,蓄电池自放电引起的容量损失便在全浮充过程被补足。
根据电池特性及温度所需补充损失电流的多少而设定的电压。
3、均充电压:为使蓄电池快速补充容量,视需要升高浮充电压,使流入电池补充电流增加,这一过程整流器输出得电压为“均充”电压。
4、功率因数:有功功率对视在功率的比叫做功率因数。
由于开关电源电路的整流部分使电网的电流波形畸变,谐波含量增大,而使得功率因数降低(不采取任何措施,功率因数只有0.6~0.7),污染了电网环境。
开关电源要大量进入电网,就必须提高功率因数,减轻对电网的污染,以免破坏电网的供电质量。
满载状态下,功率因数不低于0.92。
5、效率:开关电源模块的寿命是由模块内部工作温升所决定。
温升主低主要是由模块的效率高低所决定。
现在市场上大量使用的开关电源技术,主要采有的是脉宽调制技术(PWM)。
模块的损耗主要由开关管的开通、关断及导通三种状态下的损耗,浪涌吸收电路损耗,整流二极管导通损耗,工和辅助电源功耗及磁心元件损耗等因素构成。
减少这些损耗就会提高模块的整体效率。
对此现行较好的处理方法分别是:开关管的开通、关断及导通状态的损耗采用MOSFET和IGBT并联使用,利用两种不同类型的器件的开头及导通损耗的优势互补,其综合损耗是利用单一类型开关管工作损耗的20%左右;浪涌吸收电路可采用无损耗吸收电路,这一技术的使用使得该部分损耗大幅度下降;整流二极管可采用导通电阻较小的器件,优化设计控制电路,选择集成度较高的IC器件都可减少功耗;磁心材料可选择如菲利浦的3C90等均可减少损耗。
电力通信直流电源及其维护

电力通信直流电源及其维护摘要:电力通信直流电源是整个发电系统的重要组成部分,直接影响电力通信的正常运行。
本文论述了电力通信直流电源的系统组成,分析了变电站直流通信电源存在的不足,并提出了相应的维护措施。
关键词:电力通信;直流电源1电力通信直流电源介绍通信直流电源是一个复杂的系统,目前电力通信直流电源均采用-48V的高频开关直流电源,电力通信电源主要由:交流配电单元、整流器部分、直流配电单元、蓄电池组、监控模块系统五部分组成。
1.1交流配电单元交流部分的市电输入一般为2路380V三相四线交流输入,在电源容量较小时有时也使用2路220V单相交流输入,以保证电源可靠供电。
为防止雷击和过电压破坏,在市电输入端应加装避雷器,常用的有普通氧化锌避雷器和OBO防雷模块等;由于此处的防雷主要是对非直击的感应雷击的浪涌电压的防护,因此避雷器的通流量一般选择在l5~20kA,残压在1.5kV左右,就可有效的保护电源设备。
1.2整流器部分整流器是通信直流电源的最重要的组成部分,通信直流电源的供电质量主要取决于整流器的电气指标,它完成 AC—DC变换并以并联均流方式为通信设备供电,同时对蓄电池组进行恒流限压充电和监控模块的供电。
现在所有的通信直流电源均采用模块化高频开关整流器,它具有其体积小、效率高、模块化、功率因素高、输入电压范围宽、噪声低、可靠性高以及可带电热插拔等优点;电力通信直流电源所使用的高频开关整流器模块一般为单相 220V交流输入,模块容量一般为每块20A/一48V~50M一48V;在实际使用中,如果输入的是380V三相四线交流电源,则应注意将所有整流模块平均分配到每一相。
1.3直流配电单元直流配电将整流器输出的电压进行分配,一路给蓄电池组充电,其它分配给通信设备和其它用户供电。
分配部分决定了设备的最终分配容量,因此要求在设计时应充分考虑分路输出的用户数和容量,满足日后通信设备接入的需要。
在给蓄电池组充电的分路开关之前应加装欠压保护继电器,当蓄电池组放电达到欠压告警值时发出告警,放电到欠压关断值时控制自动断开蓄电池组,保护蓄电池组不会因为过放电而导致损坏。
中达开关电源维护操作手册

中达系列开关电源维护手册在本手册中,我们简要介绍了目前我省常用的中达ES3000/MCS3000,ES5500/MCS6000及ES750/MCS1800系列开关电源系统的基本原理、产品性能,接着着重对系统参数配置、设定等日常操作及故障处理方法(同时提供部分实战案例供各位参考)进行汇编;最后是有关中达电源系统的维护要点及开关电源维护制度汇编。
第一节开关电源系统原理简介1.1常用中达开关电源系列及特点中达ES3000/MCS3000,ES5500/MCS6000及ES750/MCS1800系列高频开关直流电源系统,由交流配电单元(屏)、整流变换单元、直流配电单元(屏)及监控管理单元组成。
3000系列整流模块单机输出额定值为-48V/50A或+24V/100A,系统设计采用整流及配电综合型设计,每个机架含整流模块、监控单元及交直流配电,在目前基站使用较多。
ES750/MCS1800系列与3000系列结构类同,只是容量较小,适用边际网一类站所;ES5500/MCS6000系列直流供电系统,是由多部48V/100A(或24V/150A)整流模块与直流配电组合成整流低阻综合屏再配上交流配电盘和监控模块组成;适用大容量的局站等。
中达电源内置全智能型监控单元内装微处理器,针对系统输入、输出、模块状况、电池充放电、电池及环境温度等运作状况监控及警示。
备有RS-232接口供本地或远程通信用,具有三遥(遥讯、遥测、遥控)功能。
1.2中达电源整流模块工作原理中达整流模块其工作原理说明如下:经交流配电(屏)来的单相220V(5500/6000系列为三相380V)交流电源接入整流模块之后经过AC 断路器,保险丝等保护组件,进入EMI滤波器,单相(三相)交流电源经桥式整流器整流为直流后,再经主动式功率因素校正线路(PFC Boost Converter),经PFC控制器完成高功率因素(PF >0.99),低失真因素(THD <5%)之要求,产生一约400V(三相为530V)的直流电压供给直流对直流转换器使用。
直流屏运行维护维修手册

直流屏运行维护维修手册Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】直流屏运行维护、维修手册一、概述GZW3X系列直流电源主要由交流配电、高频开关电源、微机监控器、手自动电压调节器、绝缘检测仪、直流馈电、电池等组成。
直流电源是将交流电源经过高频开关电源(整流模块)整流输出DC220V、110V等直流,经过手动/自动调压装置给用电设备供电(控制、信号、分合闸)同时给电池组进行均/浮充电,以保证电池始终处在满容量的备用状态,当交流失电时电池组不间断的向用电设备供电,保证用电设备正常、安全运行。
直流电源柜的运行状况由微机监控器管理,微机监控器、数据采集模块、输入/输出模块、触摸屏等组成。
微机监控器实时监控直流电源系统各单元的运行状态,监测各单元的运行参数,并根据电池的充放电特性对电池进行自动均、浮充电,也可在线进行电池活化。
交流配电单元采用接触器实现双电源自动切,主要是给高频开关电源模块提供交流电;手动/自动调压装置用来保证直流控制母线输出的电压稳定在一定的范围内,一般调节范围在20V~50V之间;绝缘检测仪实时对直流电源系统接地情况进行监测。
如正负母线对地电阻值小于设定值时,即判断有接地故障发生,直流馈电单元给用电设备供电。
系统故障报警单元:当直流系统发生故障时,系统故障报报警单元报警,并可通过通讯口上传,及无源接点输出。
二、直流电源柜的安装及调试直流电源柜运抵现场后,按图纸的摆放位置进行安装;将柜间连线及电池连线按图纸要求正确连接,检查屏内连线是否松动,各接插件是否联接,但此时电池保险熔芯不应按上,各断路器应在分位。
交流输入电源接至交流输入端子排,检查电源供电是否正常,交流互投回路动作是否正常,检查高频电源模块地址设定是否正确,如无误,合上模块交流输入开关,高频电源模块应有输出(此时微机监控没有工作电源,所以微机监控没有工作),高频电源模块输出电压220V系统应在234V左右,110V系统应在117V左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池名词术语
【额 定 容 量】是电池规定在25℃环境温度下,规定用10h放电率对蓄电池所放出的
电量C10
【放 电 率】 以规定的放电电流、时间放出规定的容量而不低于规定的电压
阀控式密封铅酸蓄电池的标准放电率10h
【核对性放电】恢复的蓄电池容量,查找蓄电池缺陷的最可靠的方法。
FM-1265
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池结构
220V直流系统采用蓄电池组【DL/T
5044 — 2004】
阀控式密封铅酸蓄电池又称“贫液电池”。 电极、隔板、电解液、电池槽及安全阀组成。 【电 极】正极活性物(PbO2)、负极活性物(Pb) 镀铅铜的板栅、铅衬铜芯的极柱 正极板与负极板厚度比6:4 【隔 板】防止正负极板短路,储存电解液 【电池槽】ABS、PVC材料,散热较差 【安全阀】内部气压超值,安全阀自动开启释放气体。 内部气压降低,安全阀自动闭合密封。
浮充电压与使用寿命间关系
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池性能
【充电性能】
限定恒充电流值。充电电流大使蓄电池水分过量损耗,蓄电池使用寿命提前终止。 减小恒流充电时间。蓄电池温度升高,加速蓄电池损坏。
充电初始I10
2.25V
2h 恒流充电
6h 恒流充电
充电末期电流极小 0.1I10~0.01I10
FM-1265
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池结构
220V直流系统采用蓄电池组【DL/T
5044 — 2004】
阀控式密封铅酸蓄电池又称“贫液电池”。 电极、隔板、电解液、电池槽及安全阀组成。 【电 极】正极活性物(PbO2)、负极活性物(Pb) 镀铅铜的板栅、铅衬铜芯的极柱 正极板与负极板厚度比6:4 【隔 板】防止正负极板短路,储存电解液 【电池槽】ABS、PVC材料,散热较差 【安全阀】内部气压超值,安全阀自动开启释放气体。 内部气压降低,安全阀自动闭合密封。
蓄电池组正常应以浮充电方式运行。
阀控式密封铅酸蓄电池
阀控蓄电池组的运行及维护
阀控蓄电池组的充放电制度 恒流限压充电 恒压充电 补充充电
DL/T 724-2000
DL/ T 724-2000 规定: 采用 I 10 电流进行 恒流充电。
恒压充电
DL/ T 724-2000 规定:蓄电池组 端电压上升到 2.35V×N进入
浮充电压与温度函数关系
浮充电压降低 15mV
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池性能
【充电性能】
2. 循环使用时的充电特性 充电装置满足最大电流3I10,且放电深度为30~60%时,24h即可充满。 蓄电池非长期连续使用,使用前需要进行补充电。
补充电规则
期限(月) 终止电压(V/单体) 1~3 6~16 12~24 2.27 2.30 2.33 最大充电电流(A) 3I10 3I10 3I10 充电时间(h) 36 48 60
阀控式密封铅酸蓄电池
三、阀控式密封铅酸蓄电池中一些字母、数字、名词 的含义
1.GFM中G:固定用,F:阀控式,M:密封 2.3GFM1000中3:表示每组合电池的单体数,1000:表示 电池的额定容量(Ah,10h率)。华达为例 3.GFM2000中2000:表示容量为2000Ah的电池。光宇为例 4.C10与I10:C10表示电池的10小时率放电容量。I10表示 电池10小时率放电的电流。I10=C10/10(A) 5.放电深度:电池放电时放出所有容量的程度,一般用百分 数表示。放电深度为20%:电池只放出所有容量的20%即停 止放电,此时电池还剩有80%的容量。开路电压:电池在开 路状态下的端电压。(单体电池的开路电压大约为2.13V)。 工作电压:电池接通负荷后在放电过程中显示的电压,又称 负荷电压或放电电压。
充电模块
监控模块
解除故障 故障指示 故障告警 闪光装置 绝缘监察
交流电源1# 交流电源2# 模块输出
阀控式密封铅酸蓄电池
直流电源充电馈电屏 DXZ-65AH/220V
直流电源电池屏 DXZW-65AH/220V
合闸电压 控制电压 充电电流 电池电流
充电模块
充电模块
监控模块
解除故障 故障指示 故障告警 闪光装置 绝缘监察
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池原理
蓄电池的放电过程
放电
蓄电池的充电过程
充电
正极析出PbSO4 负极析出PbSO4 极板间电阻增大,电解液浓度下降
正极还原PbO2 负极还原Pb 极板间电阻减小,电动势增大 正极析出氧气、负极析出氢气
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池名词术语
阀控式密封铅酸蓄电池
直流高频开关电源及一、变电所直流系统
二、阀控式密封铅酸蓄电池
三、高频开关电源直流系统
四、变电所直流电源系统异常运行
阀控式密封铅酸蓄电池
目录
一、变电所直流系统
二、阀控式密封铅酸蓄电池 三、高频开关电源直流系统 四、变电所直流电源系统异常运行
①用I10放电,其中一个单体电池端电压到2V×N的终止电压,放电停止 ②I10恒流限压充电2.35V×N → 恒压充电1~3mA/Ah → 浮充电 反复放充2~3次
【终 止 电 压】指蓄电池在不同放电时间内及放电率放电条件下允许的最低放电电压
规定阀控式密封铅酸蓄电池10h率放电时,单体放电的终止电压2V
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池性能
【放电性能】放电电流与放出的容量成反比
【自放电检测标准】 2.13V/单体 好 2.10~2.13V/单体 较好 2.10V/单体 较差
恒流充电
DL/ T 724-2000 规定: 充电电流减少至 0.1I10时计时3h 后转
补充充电
DL/ T 724-2000 规定:一般3个 月充电装置自动 进行
浮充运行
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池名词术语
浮充电:正常运行充电装置承担经常负荷电流,同时向蓄电池补充电。 浮充电压 浮充电流 单体2.25V 单节13.5V 1~3mA/Ah 或 0.01I10 A 电池组 243V
FM-1265
单体(2V)
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池结构
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池密封的优点
【极板的材质】 2.35V/单体(25°C)释放气体,减少气体释放量,自放电率降低 【极板的薄厚】 负极处于欠充电状态,因而不产生氢气,抑制了水的减少而无需补水 。“免维护蓄电池” 【隔板的材质】 氧气畅通自行复合,无电解液溢出。称为“贫液蓄电池”
蓄电池正常使用时保持气密和液密状态,当内部气压超过定值时 安全阀自动开启,释放气体,当内部压力降低后安全阀自动闭合,同 时防止外部空气进入蓄电池,使其密封。蓄电池在使用寿命期期限内, 正常使用情况下无需补加电解液。
阀控式密封铅酸蓄电池
二、阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池就是VRLA电池。 英语全称为:Valve Regulated Lead Acid Battery 它诞生于20世纪70年代,到1975年时,在一些发达国家 已经形成了相当的生产规模,很快就形成了产业化并大量投 放市场。这种电池虽然也是铅酸蓄电池,但是它与原来的铅 酸蓄电池相比具有很多优点,而倍受用户欢迎,特别是让那 些需要将电池配套设备安装在一起(或一个工作间)的用户青 睐,例如UPS、电信设备、移动通信设备、计算机、摩托车 等。这是因为VRLA电池是全密封的,不会漏酸,而且在充 放电时不会象老式铅酸蓄电池那样会有酸雾放出来而腐蚀设 备,污染环境,所以从结构特性上人们把VRLA电池又叫做 密闭(封)铅酸蓄电池。为了区分,把老式铅酸蓄电池叫做 开口铅酸蓄电池。由于VRLA电池从结构上来看,它不但是 全密封的,而且还有一个可以控制电池内部气体压力的阀, 所以VRLA铅酸蓄电池的全称便成了“阀控式密闭铅酸蓄电 池”。
阀控式密封铅酸蓄电池的充电特性
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池性能
【充电性能】
环境温度变化时必须校正浮充电压 浮充电压过高,造成极栅腐蚀加速,容量失效。
温度每降低 5° C 浮充电压升高 15mV
浮充电压升高10mV,浮充电流增大10倍 ,蓄电池出现热失控。
2.25V
温度每升高 5° C
【终止电压】
标称电压 2 6 12
【工作温度】温度对阀控式密封蓄电池的寿命和容量影响很大,工作环境温度 宜控制在5~30°C
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池性能
【充电性能】
1. 浮充电使用的充电特性
浮充电流:①补充电池自放电损失、 ②日常负荷的供电、 ③维持电池内氧循环 浮充运行:电池具有最佳的使用寿命和性能 浮充要求:严格防止浮充不当造成 蓄电池失效故障。 浮充电压:浮充电压设置影响蓄电池使用寿命
均衡充电(补充充电):弥补蓄电池浮充电流调整不当造成欠充电。1~3月 均充电压 单体2.35V 单节14.1V 电池组 253.8V
均充电流
恒流充电:恢复蓄电池的电压。
1~1.25 I10 A
恒流 I10充电、限压 2.35V—14.1V—253.8V 恒压充电:恢复蓄电池的储能。 恒压 2.35V—14.1V—253.8V 0.1I10A 计时开始
交流电源1# 交流电源2# 模块输出
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池
阀控式密封铅酸蓄电池
直流负荷【DL/T 5044 — 2004】 控制负荷 : 控制、信号、测量和保护、自动装置等 动力负荷 : 开关合闸机构、储能电机、事故照明等
阀控式密封铅酸蓄电池