实验六 半导体器件仿真实
VDMOS器件仿真设计实验_第一次实验报告剖析

半导体功率器件与智能功率IC实验学生姓名:田瑞学号:201422030143指导教师:乔明一、实验室名称:211楼803 工作站二、实验项目名称:半导体功率器件与智能功率IC实验——VDMOS器件仿真设计实验三、实验原理:对于阈值电压的调节,可以改变氧化层厚度,氧化层厚度越大,栅对沟道的控制能力越弱,阈值电压越大。
也可以增大沟道区掺杂浓度,浓度越大,沟道区越难反型,阈值电压越大。
MEDICI的使用流程:四、实验目的:通过实验,了解VDMOS器件的结构,掌握VDMOS器件的设计方法,熟悉MEDICI 软件的使用。
五、实验内容:完成一种600V VDMOS器件完整的设计仿真工作,其指标达到预定要求。
其中,主要针对器件耐压、阈值电压、跨导、开态特性进行仿真优化,确定栅氧厚度、沟道浓度、栅长、漂移区掺杂、漂移区厚度等重要的浓度和结构参数。
衬底n+换成p+,再仿真器件的转移特性和击穿特性,比较与VDMOS区别,并分析原因。
VDMOS指标要求:BV > 600VV T 2~3V器件结构构造网格构造器件求解输出MEDICI 输入文件Device Structure SpecificationSolution SpecificationInput/Output预先确定器件结构V20V maxG六、实验器材(设备、元器件):MEDICI软件七、实验步骤:title VDMOSassign name=nd n.val=1e14assign name=pwell n.val=2e18assign name=dpwell n.val=1.2assign name=tepi n.val=35assign name=ld n.val=6mesh smooth=1x.mesh width=@ld h1=0.10y.mesh n=1 L=-0.1y.mesh n=3 L=-0.017y.mesh n=4 L=0y.mesh depth=@dpwell h1=0.05y.mesh depth=@tepi-@dpwell h1=0.05 h2=0.05 h3=1y.mesh depth=0.5 h1=0.05y.mesh depth=0.1 h1=0.05region name=si siliconregion name=sio y.max=0 oxideelectrod name=gate x.min=1 x.max=@ld-1electrod name=source x.max=0.6 y.max=0electrod name=source x.min=@ld-0.6 y.max=0electrod name=drain y.min=@tepi+0.5$$$$$ n drift $$$$$$$profile region=si n-type n.peak=@nd uniform$$$$$ p-well $$$$profile region=si p-type n.peak=@pwell+@nd xy.ratio=0.4 x.min=0 x.max=1.5 y.junction=@dpwellprofile region=si p-type n.peak=@pwell+@nd xy.ratio=0.4 x.min=@ld-1.5 x.max=@ld y.junction=@dpwell$$$$ n+/p+ source $$$$profile region=si p-type n.peak=1e20 xy.ratio=0.4 x.min=0 x.max=0.4y.junction=0.4profile region=si n-type n.peak=1e20 xy.ratio=0.4 x.min=0.5 x.max=1y.junction=0.2profile region=si p-type n.peak=1e20 xy.ratio=0.4 x.min=@ld-0.4 x.max=@ldy.junction=0.4profile region=si n-type n.peak=1e20 xy.ratio=0.4 x.min=@ld-1 x.max=@ld-0.5 y.junction=0.2$$$ drain $$$profile region=si n-type n.peak=1e20 uniform x.min=0 y.min=@tepi y.max=@tepi+0.5regrid ignore=sio doping logarith ratio=1 smooth=1 cos.angle=0.8$$$$ gate material $$$$$contact name=gate n.polysisave out.f=vdmos.mesh$$$$ plot $$$$plot.2d grid fill scale title=" the orignal gird"plot.2d boundary scale junction fill title="the junction profiles"plot.1d doping y.start=0.01 y.end=0.01 title="surface doping log" y.logplot.1d doping y.start=0.01 y.end=0.01 title="surface doping"plot.1d doping y.start=3 y.end=3 title="y=3 doping log" y.logplot.1d doping y.start=3 y.end=3 title="y=3 doping"plot.1d doping x.start=3 x.end=3 title="x=3 doping log" y.logplot.1d doping x.start=3 x.end=3 title="x=3 doping"八、实验数据及结果分析:器件模型:VDMOS的BV特性曲线:更改参数后BV为642V阈值电压曲线:更改参数后阈值电压为2V衬底n+换成p+时:BV为620V 阈值电压为2.45V九、实验结论:1、由BV特性曲线的比较可知,增大击穿电压BV可以采用的方法有增大漂移区浓度与厚度。
模电实验P半导体器件特性仿真OrCAD资料

IDC元件
VDC元件
共射输出特性:
iC f (uCE ) IB 常数
共射输入特性:
iB f (uBE ) UCE 常数
三极管特性测试电路
实验内容4:仿真分析三极管的输出特性
DC Sweep- Primary Sweep (主扫描)设置
实验内容4:仿真分析三极管的输出特性
DC Sweep - Secondny Sweep ( 次扫描、内嵌扫描)设置
(三种不同温度)
+30℃ 0℃
-10℃
二极管的温度特性曲线
实验内容3:仿真分析二极管两端的输出波形
将电源V1用VSIN元件代替,并设置合适的元件参数,仿真 分析二极管两端的输出波形。
VSIN元件
电源信号可以选择: VSRC、VSIN、VDC 等
二极管伏安特性测试电路
实验内容3:仿真分析二极管两端的输出波形
Transient(瞬态分析设置)
对应于2个周期 开始仿真时刻
< 周期的50分之一可得到 光滑曲线,可缺省
实验内容3:仿真分析二极管两端的输出波形— PROBE显示
二极管 导通电压
二极管两端电压波形曲线
实验内容4:仿真分析三极管的输出特性
用OrCAD PSpice 程序仿真分析三极管的输出特性,并估算其电流放大倍数。
实验内容4:仿真分析三极管的输出特性
三极管的输出特性曲线
实验报告
记录仿真分析所得到的二极管伏安特性曲线。 记录仿真分析所得到的二极管温度特性曲线,并讨论温度对
二极管伏安特性的影响。
记录仿真分析所得到的二极管输出电压波形。
记录仿真分析所得到的三极管输出特性曲线,并讨论三极管 输出特性在不同工作区的特点。
实验六半导体器件仿真实

实验六半导体器件仿真实验姓名:林少明专业:微电子学学号11342047【实验目的】1、理解半导体器件仿真的原理,掌握Silvaco TCAD 工具器件结构描述流程及特性仿真流程;2、理解器件结构参数和工艺参数变化对主要电学特性的影响。
【实验原理】1. MOSFET 基本工作原理(以增强型NMOSFET 为例):图1 MOSFET 结构图及其夹断特性当外加栅压为0 时,P 区将N+源漏区隔开,相当于两个背对背PN 结,即使在源漏之间加上一定电压,也只有微小的反向电流,可忽略不计。
当栅极加有正向电压时,P 型区表面将出现耗尽层,随着V GS的增加,半导体表面会由耗尽层转为反型。
当V GS>V T时,表面就会形成N 型反型沟道。
这时,在漏源电压V DS的作用下,沟道中将会有漏源电流通过。
当V DS一定时,V GS越高,沟道越厚,沟道电流则越大。
2. MOSFET 转移特性V DS 恒定时,栅源电压 V GS 和漏源电流 I DS 的关系曲线即是 MOSFET 的转移特性。
对于增强型 NMOSFET ,在一定的 V DS 下, V GS =0 时, I DS =0;只有 V GS >V T 时,才有 I DS >0。
图 2 为增强型 NMOSFET 的转移特性曲线。
图 2 增强型 NMOSFET 的转移特性曲线图中转折点位置处的 V GS (th ) 值为阈值电压。
3. MOSFET 的输出特性对于 NMOS 器件,可以证明漏源电流:令n =oxWC Lμβ,称β为增益因子。
(1)()DS GS T V V V <<-由于 V DS 很小,忽略2DS V 项,可得:I DS 随 V DS 而线性增加,故称为线性区。
(2)()DS GS T V V V <-DS V 增大,但仍小于()GS T V V -,2DS V 项不能忽略。
故:在一定栅源电压下,V DS 越大,沟道越窄,则沟道电阻越大,曲线斜率变小。
半导体热敏电阻仿真实验教学PPT

1. 2. 3.
4.
签到 打开预习报告,以备老师检查 打开电脑,但不要操作任何软件,不要 干与实验无关的事情 认真听见,积极思考,回答老师提问, 有预习分哦
半导体热敏电阻的电阻-温度特性
马亮 东南大学物理系
一、惠特斯电桥原理
电桥平衡:
R1/Rx=R2/R0
RX =
R1 R0 R2
R1/R2 比率臂,倍率 外接电流计
在弹出的对话框中选择function或者在工具栏选择自定义函数解析式指定自变量范围注意实验中的温度范围rt曲线点击rescale才会出现曲线如前修改坐标轴名称修改曲线名称导出图像保存alphat曲线同样的我们也可以自定义得到alphat曲线修改图像到处保存要求不得抄袭数据如有发现抄袭和被抄袭者成绩记零分处理原始数据测量完毕需让我检查签字没有签字的数据一律无效数据可记录在实验报告上也可在execl表格中整理打印贴在实验报告中的相应位置3幅图像需打印可贴到word中打印裁剪至和实验报告一样大小贴在报告中实验完成离开时需关闭电脑清理桌面放好凳子方可离开这部分计入实验操作分哦离开时记得再次刷卡实验报告需在一周内完成并投入报告箱中逾期者后果自负请注意经常查看物理实验中心的留言栏
-3
注意事项: 1.摄氏度与热力学问题的转化:T=t+273.2K 2.有效数字及有效数字的运算。对数函数运算的尾数取与真数相同的位数 3.Execl表格中有效数字的显示 4.1/T的大小(扩大1000倍)
数据处理
桌面-OriginPro 7.5: 双击打开 关闭两个注册对话框,软件界面如下
打开数据表格
选择Top和 Right
复选显示边框
不显示标度 菜单栏File-Export Page,选择jpeg格式,保存在合适的位置
半导体器件模拟仿真

athena - 考虑过程 必需对器件生成的外在条件、物理过程进行描述。
材料定义、
结构定义指令 athena之外的另一种可以生成器件信息的工具。
与devedit类似,用atlas器件仿真器语言编写器件信息。 与devedit不同的是需要编程操作,没有图形操作界面。
2. 熟悉并学会使用器件仿真软件 (1)学习如何用仿真语句编写器件的结构特征信息 (2)学习如何使用atlas器件仿真器进行电学特性仿真
3. 对半导体工艺仿真及器件仿真中所用到的模型加以了解
4*. 利用工艺器件仿真软件,培养和锻炼工艺流程设计和新器件 开发设计等方面的技能。
6. 半导体器件仿真的历史发展
仿真系统
*.str文件 指定工作条件下的 结构文件。包含器 件的载流子分布、 电势分布、电场分 布等信息。
输出端
指令的输入通过deckbuild 软件窗口传送至仿真器
*.log *.str等输出文件通过tonyplot软件窗口来查看 Atlas器件仿真部分
athena 工艺仿真器
Athena概述
用途:开发和优化半导体制造工艺流程。
电路模拟用器件模型参数
IC电路仿真
(IC Circuit Simulation)
3. 有什么用?
一方面,充分认识半导体物理学,半导体器件物理学等这些抽象 难懂的理论基础知识在半导体工业中的实际应用。加强理论教学 的效果。
仿真也可以部分取代了耗费成本的硅片实验,可以降低成本,缩 短了开发周期和提高成品率。也就是说,仿真可以虚拟生产并指 导实际生产。
功能: (1)勾画器件。 (2)生成网格。(修改网格) 既可以对用devedit画好的器件生成网格,或对athena工艺仿真生成含有网格信息的 器件进行网格修改。
半导体器件模拟仿真

2. 在整个学科中所处的位置是什么?
从纵向来讲,和其他CAD类或仿真类课程一样,它是基础理论知 识和实际生产的链接点。 从横向来讲, 电路模拟、工艺模拟、器件模拟之间的关系可以用下 面的结构图来表示
本门课程 重点学习部分
工艺仿真
(Process Simulation)
器件仿真
(Device Simulation)
一、概论:半导体仿真概述 Introduction of Semiconductor Simulation
1. 这门课是研究什么的?
(1)什么是仿真? 仿真和另外一个词汇建模(modeling)是密不可分的。 所谓建模就是用数学方式抽象地总结出客观事物发展的一般规律。 仿真是在这个一般规律的基础上,对某事物在特定条件下的行动 进行推演和预测。 因此可以说建模是仿真的基础,仿真是随着建模的发展而发展的。 建模和仿真的关系可以比作程序设计中算法和语言的关系。
3. 对半导体工艺仿真及器件仿真中所用到的模型加以了解 4*. 利用工艺器件仿真软件,培养和锻炼工艺流程设计和新器件 开发设计等方面的技能。
6. 半导体器件仿真的历史发展
1949年: 半导体器件模拟的概念起源于此年肖克莱(Shockley)发表的论文, 这篇文章奠定了结型二级管和晶体管的基础。但这是一种局部分 析方法,不能分析大注入情况以及集电结的扩展。 1964年: 古默尔(H.K.Gummel)首先用数值方法代替解析方法模拟了一维 双极晶体管,从而使半导体器件模拟向计算机化迈进。 1969年: D.P.Kennedy和R.R.O’Brien第一个用二维数值方法研究了JFET。 J.W.Slotboom用二维数值方法研究了晶体管的DC特性。 从此以后,大量文章报导了二维数值分析在不同情况和不同器件 中的应用。相应地也有各种成熟的模拟软件,如CADDET和 MINIMOS等。
半导体器件模拟仿真

6. 半导体器件仿真的历史发展 1949年: 半导体器件模拟的概念起源于此年肖克莱(Shockley)发表的论文, 这篇文章奠定了结型二级管和晶体管的基础。但这是一种局部分 析方法,不能分析大注入情况以及集电结的扩展。 1964年: 古默尔(H.K.Gummel)首先用数值方法代替解析方法模拟了一维 H.K.Gummel 双极晶体管,从而使半导体器件模拟向计算机化迈进。 1969年: D.P.Kennedy和R.R.O’Brien第一个用二维数值方法研究了JFET。 J.W.Slotboom用二维数值方法研究了晶体管的DC特性。 从此以后,大量文章报导了二维数值分析在不同情况和不同器件 中的应用。相应地也有各种成熟的模拟软件,如CADDET和 MINIMOS等。
一、概论:半导体仿真概述 概论: Introduction of Semiconductor Simulation 1. 这门课是研究什么的? 这门课是研究什么的? (1)什么是仿真? )什么是仿真? 仿真和另外一个词汇建模(modeling)是密不可分的。 所谓建模就是用数学方式抽象地总结出客观事物发展的一般规律。 仿真是在这个一般规律的基础上,对某事物在特定条件下的行动 进行推演和预测。 因此可以说建模是仿真的基础,仿真是随着建模的发展而发展的。 建模和仿真的关系可以比作程序设计中算法和语言的关系。
Silvaco TCAD
用来模拟半导体器件电学性能,进行半导体工艺流程仿真,还可以与其它EDA工具组 合起来使用(比如spice),进行系统级电学模拟。 SivacoTCAD为图形用户 界面,直接从界面选择 输入程序语句,非常易 于操作。 其例子教程直接调用装 载并运行,是例子库最 丰富的TCAD软件之一。 Silvaco TCAD平台 包括: 工艺仿真(ATHENA) 器件仿真(ATLAS) 快速器件仿真(Mercury)
器件仿真实验报告

器件仿真实验报告电力电子仿真仿真实验报告目录实验一:常用电力电子器件特性测试................................................................................... 3 (一)实验目的:................................................................................................ .. (3)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3)掌握各器件的参数设置方法,以及对触发信号的要求。
(3)(二)实验原理.................................................................................................... (3)(三)实验内容.................................................................................................... (3)(四)实验过程与结果分析 (3)1.仿真系统.................................................................................................... (3)2.仿真参数.................................................................................................... .. (4)3.仿真波形与分析.................................................................................................... .. (4)4.结论.................................................................................................... .. (10)实验二:可控整流电路.................................................................................................... .. (11)(一)实验目的.................................................................................................... . (11)(二)实验原理.................................................................................................... . (11)(三)实验内容.................................................................................................... . (11)(四)实验过程与结果分析 (12)1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例.................................................................................................... .. (12)2.仿真参数.................................................................................................... (12)3.仿真波形与分析.................................................................................................... (14)实验三:交流-交流变换电路................................................................................................19(一)实验目的.................................................................................................... . (19)(三)实验过程与结果分析 (19)1)晶闸管单相交流调压电路 (19)实验四:逆变电路.................................................................................................... . (26)(一)实验目的.................................................................................................... . (26)(二)实验内容.................................................................................................... . (26)实验五:单相有源功率校正电路 (38)(一)实验目的.................................................................................................... . (38)(二)实验内容.................................................................................................... . (38)个性化作业:................................................................................................ . (40)(一)实验目的:................................................................................................ . (40)(二)实验原理:................................................................................................ . (40)(三)实验内容.................................................................................................... . (40)(四)结果分析:................................................................................................ . (44)(五)实验总结:................................................................................................ . (45)实验一:常用电力电子器件特性测试(一)实验目的:掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;掌握各器件的参数设置方法,以及对触发信号的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六半导体器件仿真实验姓名:林少明专业:微电子学学号11342047【实验目的】1、理解半导体器件仿真的原理,掌握Silvaco TCAD 工具器件结构描述流程及特性仿真流程;2、理解器件结构参数和工艺参数变化对主要电学特性的影响。
【实验原理】1. MOSFET 基本工作原理(以增强型NMOSFET 为例):图 1 MOSFET 结构图及其夹断特性当外加栅压为0 时,P 区将N+源漏区隔开,相当于两个背对背PN 结,即使在源漏之间加上一定电压,也只有微小的反向电流,可忽略不计。
当栅极加有正向电压时,P 型区表面将出现耗尽层,随着V GS的增加,半导体表面会由耗尽层转为反型。
当V GS>V T时,表面就会形成N 型反型沟道。
这时,在漏源电压V DS的作用下,沟道中将会有漏源电流通过。
当V DS一定时,V GS越高,沟道越厚,沟道电流则越大。
2. MOSFET 转移特性V DS 恒定时,栅源电压 V GS 和漏源电流 I DS 的关系曲线即是 MOSFET 的转移特性。
对于增强型 NMOSFET ,在一定的 V DS 下, V GS =0 时, I DS =0;只有 V GS >V T 时,才有 I DS >0。
图 2 为增强型 NMOSFET 的转移特性曲线。
图 2 增强型 NMOSFET 的转移特性曲线图中转折点位置处的 V GS (th ) 值为阈值电压。
3. MOSFET 的输出特性对于 NMOS 器件,可以证明漏源电流:令n =oxWC Lμβ,称β为增益因子。
(1)()DS GS T V V V <<-由于 V DS 很小,忽略2DS V 项,可得:I DS 随 V DS 而线性增加,故称为线性区。
(2)()DS GS T V V V <-DS V 增大,但仍小于()GS T V V -,2DS V 项不能忽略。
故:在一定栅源电压下,V DS 越大,沟道越窄,则沟道电阻越大,曲线斜率变小。
根据③式知,I DS -V DS 关系曲线为通过原点的抛物线。
当 V DS =(V GS -V T )时,I DS -V DS 关系曲线斜率为 0,表明此时沟道电阻很大。
在该区,沟道电阻逐渐变大,称为可变电阻区,或非饱和区。
(3)()DS GS T V V V ≥-将()DS GS T V V V =-代入①式,得到此时,漏电流 I DS 与漏源电压 V DS 无关,即达到饱和,I DSat 则称为饱和漏电流。
根据上述分析,可分析 MOSFET 的输出特性曲线:图 3 增强型 NMOSFET 输出特性4. 影响阈值电压的因素:可以证明,对于 NMOSFET 的阈值电压 V T 表达式为:其中, Cox 为栅电容,Fp ϕ为费米势,ms φ为接触电势差, Qox 为氧化层电荷密度。
由公式⑤可知,影响阈值电压的主要由栅电容 Cox 、衬底杂质浓度、氧化层电荷密度 Qox 等因素决定。
由0sox oxC t εε=可知,氧化层厚度 tox 越薄,则 Cox 越大,使阈值电压 V T 降低。
费米势:lnAFp iN kT q n ϕ=,当 P 区掺杂浓度 N A 变大,则费米势增大,阈值电压 V T 增大 。
氧化层电荷密度 Qox 增大,则 V T 减小。
5. 影响 MOSFET 输出特性的因素由①式可知,影响输出曲线的因素为增益因子β和阈值电压 V T 。
已知n oxW C Lμβ=,因此,当沟道长度 L 增大时,β减小。
由原理 4 知,影响 V T 的主要因素有栅电容 Cox 、衬底杂质浓度、氧化层电荷密度 Qox 等因素。
【实验仪器】计算机,Silvaco TCAD 软件【实验内容】1.采用ALTAS 器件仿真工具对NMOS 器件电学特性仿真 (1)I-V 输出特性曲线a、Vds=0.1V时,Id-Vgs曲线。
b、Vgs分别为3.3V、4.4V和5.5V时,Id-Vgs曲线。
(2)器件参数提取,如阈值电压、Beta和Theta等。
2.改变器件结构参数和工艺参数,分析其对NMOS器件主要电学特性的影响。
(1)栅氧厚度tox(2)沟道长度L(3)衬底杂志浓度【实验数据记录及分析】1.采用ALTAS器件仿真工具对NMOS器件电学特性仿真在Silvaco 中建立的指定参数器件模型结构如图示:图4指定参数MOSFET 结构模型中,氧化层厚度tox 为0.1 μm,沟道长度L 为 1 μm,p型衬底浓度10^17cm-3,n阱掺杂浓度为10^19cm-3。
选用载流子统计模型(fermidirac)对器件进行模拟,固定漏源电压为0.1V。
所得的转移特性曲线如图所示:图5 转移特性曲线图当 V GS分别为 3.3、4.4、5.5V 时,模拟出器件的输出曲线如图示:图6 器件输出特性曲线由下至上的曲线分别代表V GS为3.3、4.4、5.5V 的情况。
由该模拟结果可得,在V GS>V T 的情况下,随着V GS的增大,饱和漏源电流I DSat增大,与式④所分析的结果相符合。
观察曲线可知,当V DS较小时,曲线近似呈线性,随着V DS增大,曲线趋于平缓,与实验原理分析结果相符。
提取器件参数,从运行窗口中可以看到阀值电压,Beta 和Theta 等,如下:图7 提取参数代码段1提取结果总结如下: 阀值电压:vt=3.41966 V Beta :beta=4.24194e-005 A/V2 Theta :theta=0.0644978 1/V2.改变器件结构参数和工艺参数,分析其对NMOS 器件主要电学特性的影响。
(1)改变栅氧厚度tox 的值,分析其对NMOS 器件电学特性的影响。
①将氧化层厚度tox 从0.1μm 改为0.05μm ,分别就器件结构及器件参数、转移特性曲线、输出特性曲线三个方面进行分析和比较。
器件结构及器件参数比较(1)tox=0.1 μm(2)t ox =0.05 μm图8器件结构及器件参数图对比观察器件结构图和器件参数值可知,栅极和沟道之间的氧化层变薄,而且阈值电压变小了,Beta 值变大了,Theta 值变小了。
转移特性曲线改变比较图9 器件转移特性曲线对比观察图9曲线,可知改变氧化层厚度为0.05 μm 后,V T = V ,比氧化层厚度为0.1 μm 时的V T =3.41699 V 要小,说明氧化层变薄后,阈值电压降低。
由公式⑤以及公式0sox oxC t εε=,分析可知,当氧化层厚度t ox 的值越小时,即氧化层厚度越薄,栅极电容C ox 的值越大,使阈值电压的降低。
可知仿真结果和理论分析相符合。
输出特性曲线比较(V gs 分别为3.3v ,4.4v ,5.5v )图10器件输出特性曲线对比观察图10曲线,可知改变氧化层厚度为0.05 μm 后,在通入同等栅极电压的情况下,氧化层厚度变薄,饱和漏源电流变得比原器件大。
由公式0sox oxC t εε=,n oxW C Lμβ=分析可知,氧化层厚度变薄,C ox 和β的值同时增大。
由此可知,仿真结果和理论分析相符合。
②将氧化层厚度tox 从0.1μm 改为0.2μm ,分别就器件结构及器件参数、转移特性曲线、输出特性曲线三个方面进行分析和比较。
为进一步验证①中的结论,下面将列出厚度为0.2μm 时,器件结构及器件参数、转移特性曲线、输出特性曲线三个方面的仿真情况,不对结果再作详细分析。
器件结构及器件参数比较(1)t ox =0.1 μm(2)t ox =0.2 μm图11器件结构及器件参数图对比转移特性曲线改变比较图12 器件转移特性曲线对比输出特性曲线比较(V gs分别为3.3v,4.4v,5.5v)图13器件输出特性曲线对比分别观察图11,、图12、图13可知,当氧化层厚度增大时,阈值电压增大,饱和漏源电流变得比原器件小,即β值减少。
可知当氧化层厚度增大时,仿真结果和理论分析也一致。
(2)改变沟道长度L的值,分析其对NMOS器件电学特性的影响。
将沟道长度度tox从1μm改为0.6μm,分别就器件结构及器件参数、转移特性曲线、输出特性曲线三个方面进行分析和比较。
器件结构及器件参数比较(1)L=1μm(2)L=0.6 μm图14器件结构及器件参数图对比观察图14,可知当沟道长度减小到0.6μm 后,阈值电压减少到3.32242V ,但变化幅度非常小,另外,β值减小,θ值增大。
转移特性曲线改变比较图15 器件转移特性曲线对比改变沟道长度为0.6μm 后,阈值电压V T =3.32242V ,与沟道长度为1μm vt=3.41699 V 近似相等,说明沟道长度和阈值电压无明显相关性。
结合实验理论分析,在理想状态下,由公式可知,阈值电压与沟道长度没有明显的相关性,仿真结果和理论分析结果相符合。
输出特性曲线比较(V gs 分别为3.3v ,4.4v ,5.5v )图16器件输出特性曲线对比由图可知,沟道长度变短之后,在通入相同栅压的情况下,饱和漏源电流比改变之前要大。
结合实验原理分析,n oxW C Lμβ=,当沟道长度变小时,β值增大,饱和漏源电流增大。
可知仿真结果和理论分析结果相符合。
(3)改变衬底掺杂浓度的值,分析其对NMOS 器件电学特性的影响。
将衬底掺杂浓度从1017cm -1改为1015 cm -1,分别就器件结构及器件参数、转移特性曲线、输出特性曲线三个方面进行分析和比较。
器件结构及器件参数比较(1)N A =1017cm -1(2)N A = 1015 cm -1图17器件结构及器件参数图对比观察图17可知,衬底浓度减小时,阈值电压减小了,β值增大,theta 值减小了。
转移特性曲线改变比较图18 器件转移特性曲线对比改变衬底掺杂浓度为1015cm-1时,阈值电压减小为vt=1.25669 V,比掺杂浓度为1017cm-1时小由公式分析可知,当掺杂浓度减小时,费米电势增大,则阈值电压减小。
所以仿真结果和理论分析结果相符合。
输出特性曲线比较(V gs分别为3.3v,4.4v,5.5v)图19器件输出特性曲线对比观察图19可知,衬底浓度变小后,通入相同的栅极电压下,饱和漏源电流比改变前小。
由半导体物理知识可知,衬底掺杂浓度减小会增大载流子迁移率,根据公式n oxuW C Lμβ=,β值增大,饱和源漏电流增大,所以,可知仿真结果和理论分析结果相符合。
【实验总结】一、通过本次实验,熟悉了利用silvaco 软件进行NMOS 器件结构描述流程和电学特性仿真的流程,通过修改参数进行仿真实验,对于器件参数对器件电流特性的影响有了更加深入的了解。
二、通过改变实验参数,可总结出:1. 随着栅压的提高,横流区的漏极电流也相应提高;2. 恒流区的漏极电流也是随着漏极电压增大而略有增大,不是理想横流特性;3. 随着栅极与沟道间氧化层厚度的变小,栅极对于漏极电流的调控能力增强;4.当栅压过大时,会出现氧化层击穿,会导致漏极电流反而减小;5.由于氧化层太薄,导致漏电流更大了,所以器件开关比变小;6.随着沟道长度的增加,漏极电流会有所下降,但是恒流特性会有所提高;。