找等量关系,列方程专题练习

合集下载

【完整版】2024小升初专项训练等量关系与方程练习及答案解析

【完整版】2024小升初专项训练等量关系与方程练习及答案解析

第16讲等量关系与方程第一关解方程【知识点】等量关系怎么找:1.先读懂题,大的等量关系就在条件中2.若是条件复杂的等量关系,在大的等量关系中出现不止一个未知数,要通过其他小的等量关系去解决例如A×B=N×X(其中X为终极未知数,N是已知数,那么AB都是可以先求出来的未知数)我们可以通过A+M=B×K(M,K可以是已知数或者M,K存在关系)那么可以通过M和K求出A和B进而求出X.【例1】若2x+8=7x-17,求x。

【答案】5【例2】写出方程未知数的解:已知3.6x-0.9x=10.8,求x.【答案】4【例3】如果10+9+8×7÷□+6-5×4-3×2=1,求□。

【答案】28【例4】5×(2+▲)-4=2016,求▲。

【答案】402【例5】在下面的□中填入一个相同的数字,使算式成立.97+□×(19+91÷□)=321【答案】7【例6】在下面算式中的□里填入相同的数,使得22.5-(□×32-24×□)÷3.2=10.这个数应是多少?【答案】5【例7】解方程:x111233 x-= +【答案】28【例8】解方程:8:4=x:8 【答案】16【例9】如果华氏温度是y,摄氏温度是x,则y=1.8x+32,如果小华的y是98.6,则小华的x是多少?【答案】37【例10】“不快指数”是表示闷热程度的指标,它根据干湿球温度计的干球指数与湿球指数按以下公式计算得出:不快指数=(干球温度+湿球温度)×0.72+40.6那么当干球温度为34度,湿球温度为32度时,不快指数是多少?(保留整数).【答案】88第二关【例11】3998是4个连续自然数的和,其中最小的数是多少?【答案】998【例12】有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,求m。

(完整版)五年级列方程解应用题找等量关系经典练习

(完整版)五年级列方程解应用题找等量关系经典练习

五年级列方程解应用题找等量关系经典练习一、译式法将题目中的关键性语句翻译成等量关系。

(一)从关键语句中寻找等量关系。

1、关键句是“求和”句型的.例:先锋水果店运来苹果和梨共720千克,其中苹果是270。

运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。

苹果+梨=720270+x=7202、关键句是“相差关系”句型。

关键词:比一个数多几,比一个数少几,例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?理解:苹果与橘子相比较,多用了0.6元。

(推荐)直译法列式:从“比”字后面开始列:橘子+0.6=苹果2x+0.6=7.4比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元7.4-2x=0.63、关键句是“倍数关系”句型。

饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?理解:公鸡是1倍数,要求,母鸡是1.5倍数,为2400只。

(推荐)列乘法式:(从“是”字后面开始列)公鸡×2=母鸡X ×2=2400列除法式:母鸡÷公鸡=2倍2400÷x=24、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。

(必考考点)一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。

(1倍数设为x,几倍数设为几x。

)如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。

(把较小数设为x,则较大数为x+a。

)例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?解:设梨树为x棵,则桃树为2x棵。

桃树+梨树=2402x+x=240例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。

又知鸭比鹅多27只,鹅和鸭各多少只?解:设鹅为x只,则鸭为4x只。

鹅+27只=鸭鸭-鹅=27只x+27=4x4x-x=27例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?解:设下午运了x包,则上午运了x+14包。

五年级列方程解应用题找等量关系经典练习汇编

五年级列方程解应用题找等量关系经典练习汇编

五年级列方程解应用题找等量关系经典练习整理:王宪纬一、译式法将题目中的关键性语句翻译成等量关系。

(一)从关键语句中寻找等量关系。

1、关键句是“求和”句型的.例:先锋水果店运来苹果和梨共720千克,其中苹果是270。

运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。

苹果+梨=720270+x=7202、关键句是“相差关系”句型。

关键词:比一个数多几,比一个数少几,例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?理解:苹果与橘子相比较,多用了0.6元。

(推荐)直译法列式:从“比”字后面开始列:橘子+0.6=苹果2x+0.6=7.4比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元7.4-2x=0.63、关键句是“倍数关系”句型。

饲养场共养2400只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?理解:公鸡是1倍数,要求,母鸡是1.5倍数,为2400只。

(推荐)列乘法式:(从“是”字后面开始列)公鸡×2=母鸡X ×2=2400列除法式:母鸡÷公鸡=2倍2400÷x=24、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。

(必考考点)一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。

(1倍数设为x,几倍数设为几x。

)如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。

(把较小数设为x,则较大数为x+a。

)例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵?解:设梨树为x棵,则桃树为2x棵。

桃树+梨树=2402x+x=240例:河里有鹅鸭若干只,其中鸭的只数是鹅的只数的4倍。

又知鸭比鹅多27只,鹅和鸭各多少只?解:设鹅为x只,则鸭为4x只。

鹅+27只=鸭鸭-鹅=27只x+27=4x4x-x=27例:后街粮店共运来大米986包,上午比下午多运14包,上午和下午各运多少包?解:设下午运了x包,则上午运了x+14包。

找等量关系式列方程基本练习2

找等量关系式列方程基本练习2

列出下列各题方程,不要求解答。

1、某数的2倍比这个数小1,求这个数。

2、某数的3倍比这个数的一半大2,求这个数。

3、六(1)班有16名女生,女生比男生的1.5倍少2人,男生有多少人?4、甲、乙两组共50人,且甲队人数比乙队人数的2倍少10人,求两队各有多少人?5、李明有1136张中国邮票,中国邮票比外国邮票的8倍还多16张,外国邮票有多少张?6、小王买了6斤苹果,他给了老板50元,老板找回他26元,求苹果的单价。

7、李先生买了6支铅笔和2个文具盒,共花了50元,已知铅笔和文具盒的单价之和为15元,求文具盒的单价。

8、长方形的周长为20米,已知长比宽的2倍少2米,求它的面积。

9、梯形的下底比上底多2米,高5米,面积为40平方米。

求梯形上底。

10、小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?11、某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?12、饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?13、甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?14、幼儿园小朋友分糖,每人6颗则多80颗,每人8颗则少20颗,问有几个小朋友?多少颗糖果?15、一班有48人,在某一次捐款活动中,男生平均每人捐款5元,女生平均每人捐款8元,全班一共捐款285元。

问男生有多少人?16、在生物竞赛中,某校共有22人获得一、二等奖,若一等奖的奖金是50元,二等奖的奖金是30元,22人一共获得奖金860元,问有多少人获得二等奖?17、一批图书分给班上学生,若每人分3本则多出20本,若每人分4本则还差25本。

求班上有多少人?18、第一个正方形的边长比第二个正方形的边长的3倍多1厘米,而它们的周长相差12厘米,求这两个正方形的面积分别为多少?19、甲仓存粮130吨,乙仓存粮80吨,从甲仓运多少吨到乙仓,才能使乙仓存粮比甲仓的4倍多10吨?20、有一群鸭在池塘里嬉戏,河里有78只鸭,岸上有26只鸭,从河里上岸多少只,岸上的鸭就是河里的鸭的4倍少1只?21、要生产一批篮球,若每天生产25个,则到了规定时间还有50个未完成。

找等量关系练习题

找等量关系练习题

找等量关系练习题在数学学习中,等量关系是一个非常重要的概念。

它是指具有相同数量的两个或多个事物之间的关系。

理解和掌握等量关系的概念和运用方法,对于解决各种数学问题具有重要的作用。

接下来,我将为您提供一些关于等量关系的练习题,帮助您进一步巩固和应用这一知识。

练习题一:已知A、B两个正数的和为10,且A比B大2.5,求A和B各自的值。

解答:首先设A=x,B=y,则由题意可以列出以下两个等式:x + y = 10 (式1)x - y = 2.5 (式2)将式2两边分别加上式1两边,可以消去y的项,得到:2x = 12.5解得:x = 6.25将x的值代入式1,可得:6.25 + y = 10解得:y = 3.75因此,A = 6.25,B = 3.75。

练习题二:一个班级里男生人数是女生人数的2倍,如果班级总人数是36人,求男生和女生人数分别是多少?解答:设男生人数为x,女生人数为y,则由题意可以得到以下两个等式:x = 2y (式1)x + y = 36 (式2)将式1代入式2,得到:2y + y = 36解得:y = 12将y的值代入式1,可得:x = 2 * 12 = 24因此,男生人数是24人,女生人数是12人。

练习题三:一个长方形的宽是5cm,周长和面积之间有着怎样的等量关系?解答:设长方形的长为x,根据长方形的性质可知,周长等于两倍的长加上两倍的宽,即:2x + 2 * 5 = 10 + 2x而长方形的面积等于长乘以宽,即:x * 5 = 5x比较上面两个等式,可以得出周长和面积之间的等量关系为:周长 = 2 * 面积练习题四:某商店原价出售一件衣服120元,现在正举行折扣活动,打6折出售。

求折后的价格以及折扣的金额是多少?解答:首先将原价打6折,折扣后价格为120 * 0.6 = 72元。

折扣的金额为原价减去折后价格,即120 - 72 = 48元。

练习题五:甲、乙两个数之间的等量关系是:甲是乙的3倍减去2,如果甲的值是10,求乙的值。

解方程应用题练习题找等量关系

解方程应用题练习题找等量关系

解方程应用题练习题找等量关系在数学中,解方程是一个基本的技能和概念。

解方程的过程中,我们会遇到各种应用题和练习题。

在解这些题目的时候,找到等量关系是非常重要的。

本文将通过一些实际的解方程应用题练习题来展示如何找到等量关系,并给出详细的解题步骤。

练习题一:一个数字的4倍等于26减去这个数字的两倍,求这个数字是多少。

解题步骤:设这个数字为x,根据题意可以得到等式:4x = 26 - 2x。

我们可以通过移项和合并同类项来解这个方程:4x + 2x = 266x = 26x = 26/6x = 4.33所以,这个数字是4.33。

练习题二:父亲的年龄比儿子的年龄大27岁,两年前,父亲的年龄是儿子的两倍,求他们现在的年龄。

解题步骤:设儿子的年龄为x,则父亲的年龄为x + 27。

根据题意可以得到等式:x + 27 - 2 = 2(x - 2)。

我们可以通过移项和合并同类项来解这个方程:x + 25 = 2x - 4x - 2x = -4 - 25-x = -29x = 29所以,儿子现在的年龄是29岁,父亲现在的年龄是29 + 27 = 56岁。

练习题三:一个长方形的长比宽大4,长与宽的和是26,求长和宽各是多少。

解题步骤:设宽为x,则长为x + 4。

根据题意可以得到等式:x + (x + 4) = 26。

我们可以通过合并同类项来解这个方程:2x + 4 = 262x = 26 - 42x = 22x = 22/2x = 11所以,宽是11,长是11 + 4 = 15。

练习题四:一个数与它的三倍的和等于40,求这个数。

解题步骤:设这个数为x。

根据题意可以得到等式:x + 3x = 40。

我们可以通过合并同类项来解这个方程:4x = 40x = 40/4x = 10所以,这个数是10。

通过以上四个练习题,我们可以看到在解方程应用题中,找到等量关系是解题的关键。

对于每个题目,我们可以先设立未知数,然后根据题意建立等式,最后通过移项、合并同类项等步骤解方程。

用方程解决问题练习(写等量关系,列方程)

用方程解决问题练习(写等量关系,列方程)

班别:姓名:
一、将题中的数量关系补充完整。

1、东东比明明多8本故事书。

+ =东东的故事书本数
2、排沙中心小学共有男生与女生720人。

+ =全校的人数
3、买3副乒乓球拍花了78元。

×=78元
4、一堆煤,运走了一部分后剩下2.5吨。

-=2.5吨
+一堆煤
-运走的煤
5、柳树棵数的5倍是杨树棵数。

×=杨树棵数
÷=柳树棵数
÷=5
二、运用方程,解决问题,并且要验算。

1、五一班有学生61人,其中男生有30人,女生有多少人?
等量关系:+ = 五一班人数解:设
2、体育用品商店运来120个篮球,是运来足球个数的3倍,运来足球多少个
等量关系:×= 篮球数
解:设
3、一个正方形的周长是36cm,它的边长是多少cm?
等量关系:×= 正方形的周长
解:设
4、长江是我国第一长河,长6299千米,比黄河长835千米。

黄河长多少千米?
等量关系:+ =长江的长度
解:设:
5、一辆高铁5小时走了1200千米,平均每小时走多少千米?
等量关系×= 路程
解:设。

五年级列方程解应用题找等量关系

五年级列方程解应用题找等量关系

列方程解应用题找等量关系(1)以总路程为等量关系建立方程例题:两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解:设快车小时行X千米数量关系:快车4小时行的+慢车4小时行的=总路程列方程:4X+60×4=536(2)以总量为等量关系建立方程例题:甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?解:设乙仓有粮X包,则甲仓有粮3X包数量关系:甲粮仓的包数+乙粮仓的包数=总共的包数列方程:X+3X=6800(3)以相差数为等量关系建立方程例题:化肥厂三月份用水420吨,四月份用水380吨,四月份比三月份节约水费60元,这两个月各付水费多少元?解:设每吨水费X元数量关系:三月份的水费一四月份的水费=节约的水费列方程:420X一380X=60(4)从事情变化的结果找等量关系。

例如:共有1428个网球,每5个装一筒,装完后还剩3个,一共装了多少筒?解:设一共装了x筒等量关系:网球总个数-装了的个数=剩下的个数列方程:1428-5x=3(5)从关键句中找等量关系。

例如:足球上黑色的皮都是五边形的,白色的皮都是六边形的.白色皮共有20块,比黑色皮的2倍少4块.共有多少块黑色皮?解:设黑色皮有x块数量关系:黑色皮块数×2-4=白色皮块数列方程:2x-4=20(6)从常见的数量关系中找等量关系。

例如:学校买回椅子4把,桌子2张,椅子单价22元,共花198元,求桌子的单价是多少?解:设桌子的单价是x元等量关系:椅子总价+桌子的总价 = 一共花的钱列方程:22×4+2x=198(7)从公式中找等量关系。

例如:用120厘米长的铁丝,围成一个长方形,要使长是42厘米,宽应该是多少厘米?解:设宽应该是x厘米等量关系:(长+宽)×2=长方形周长列方程:(x+42)×2=120(8)从隐蔽条件中找等量关系。

例如:笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?解:设鸡和兔各有X只,等量关系:鸡的腿数+兔的腿数 =总腿数隐藏条件:鸡和2条腿,兔有4条腿列方程:2x+4x=48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空
1、a×b×6的简便写法是()
2、甲数是12.5,比乙数的x倍少6,乙数是()
3、四(2)班有男生a人,比女生多6人,这个班共有学生()人。

4、30盒饼干共花了 a元,平均每盒饼干()元。

5、小丽有a块巧克力,给妹妹2块后,两人就同样多,原来妹妹有()块
6、三个连续自然数,中间的数是m, 两个数是()()
7、三个连续偶数,中间的数是n,它们的和是()
8、……摆一个正方形需要4根小棒,摆2个正方形需要7根小棒,3个需要
10根……摆n个正方形需要()小棒
9、一个两位数,十位上的数字为a,个位上的数字为b,用字母式子表示这个两位数是()
二、看图找出等量关系,列方程
方程一:
方程二:(挑战试一试)
三、根据题意找出等量关系,列方程。

【基础部分】注:一般在列方程时,未知数要参与运算。

1.小明原有一些故事书,送给小红4本,妈妈又给他买了9本,现在还有56本,小明原有故事书多少本?
解:设
3、大楼高29.2米,一楼准备开商店,商店层高4米,上面9层是住宅。

住宅每层高多少米?
解:设2、一块长方形菜地的面积是180平方米,它的宽是12米,长是多少米?
解:设
4、猎豹是世界最快的动物,能达到每小时110km,比大象的2倍还多30km。

大象最快能达到每小时多少千米?
解:设
5、一辆双层巴士共有乘客51人,下层人数是上层的2倍,上层有多少人?。

相关文档
最新文档