数学分析报告精彩试题库--证明题

合集下载

数学分析3测试题

数学分析3测试题
数学分析 3 测试题 1
一、填空题(每小题 4 分,共 24 分) 1. 由 | sin nx | ≤ n n

及 M 判别法可知级数 ∑
sin nx 在x ∈ n =1 n n .

内一致收敛.
2. 幂级数 ∑
3n ( x + 1) n 的收敛域为 n =1 n 1 x −x (e − e ) 在x=0的泰勒展开式 2 .收敛域为

x 的收敛域为 2 n n =1 (1 + x ) x 2 n+1 的收敛范围为 2n + 1

.
2. 幂级数 ∑ (−1)n
n =1
.
1 1 y 2 − x2 3. f , = , 则 f ( x, y ) = 2 xy x y
.
4
4. 设 x 2 + 2 y 2 + xy − z − 9 = 0 , 则 sin nx
( x , y )→ ( 0 , 0 )
.
, lim lim f ( x, y ) =
y → 0 x →0

lim
f ( x, y ) =
。 ,使 f(x,y)在全平面上
8. f ( x, y ) = 连续。 二、
x4 + y3 在(0,0)点定义 f 的值为 x2 + y2
计算及应用题(每小题 9 分,共 45 分)
2. 讨论函数 f ( x, y ) =
1
xy 2 , x 2 + y 2 ≠ 0; 2 4 3. 设 f ( x, y ) = x + y 试讨论函数f(x,y)在原点的连续性和一阶 0, 2 2 x +y =0 偏导数. 4. 用极限定义证明 lim xy − 1 = 3. y +1

数学分析试题及答案解析

数学分析试题及答案解析

2014 -——2015学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名一.判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉)1。

若在连续,则在上的不定积分可表为().2.若为连续函数,则()。

3。

若绝对收敛,条件收敛,则必然条件收敛().4。

若收敛,则必有级数收敛( )5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛().6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大().7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().二.单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续B. 连续C。

可微D。

不能确定2。

若在上可积,而在上仅有有限个点处与不相等,则()A。

在上一定不可积;B. 在上一定可积,但是;C。

在上一定可积,并且;D. 在上的可积性不能确定。

3.级数A。

发散 B.绝对收敛 C.条件收敛 D. 不确定4。

设为任一项级数,则下列说法正确的是( )A.若,则级数一定收敛;B。

若,则级数一定收敛;C。

若,则级数一定收敛;D. 若,则级数一定发散;5。

关于幂级数的说法正确的是( )A. 在收敛区间上各点是绝对收敛的;B. 在收敛域上各点是绝对收敛的;C。

的和函数在收敛域上各点存在各阶导数;D。

在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1。

2。

四. 判断敛散性(每小题5分,共15分)1.2.3.五. 判别在数集D上的一致收敛性(每小题5分,共10分)1。

2。

六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆柱体上切下的这块立体的体积。

(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。

高三数学不等式证明试题答案及解析

高三数学不等式证明试题答案及解析

高三数学不等式证明试题答案及解析1.已知均为正数,证明:.【答案】证明见解析.【解析】不等式是对称式,特别是本题中不等式成立的条件是,因此我们可以用基本不等式,注意对称式的应用,如,对应的有,,这样可得①,同样方法可得,因此有②,①②相加,再应用基本不等式就可证明本题不等式了.因为a,b,c均为正数,由均值不等式得a2+b2≥2ab, b2+c2≥2bc, c2+a2≥2ac.所以a2+b2+c2≥ab+bc+ac.同理,故a2+b2+c2+≥ab+bc+ac+≥6.所以原不等式成立. 10分【考点】不等式的证明.2.已知a,b均为正数,且a+b=1,证明:(1)(2)【答案】见解析【解析】(1)因为a+b=1,所以,a-1=-b,b-1=-a,故=,当且仅当a=b时等号成立。

(2)==当且仅当a=b时等号成立。

3.在中,不等式成立;在凸四边形ABCD中,不等式成立;在凸五边形ABCDE中,不等式成立,,依此类推,在凸n边形中,不等式__ ___成立.【答案】【解析】我们可以利用归纳推理的方法得到不等式,从而得出结论.【考点】归纳推理.4.已知a,b,x,y均为正数且>,x>y.求证:>.【答案】见解析【解析】证明:∵-=,又>且a,b均为正数,∴b>a>0.又x>y>0,∴bx>ay.∴>0,即>.5.若a,b,c为不全相等的正数,求证:lg+lg+lg>lga+lgb+lgc.【答案】见解析【解析】证明:由a,b,c为正数,得lg≥lg;lg≥lg;lg≥lg.而a,b,c不全相等,所以lg+lg+lg>lg+lg+lg="lg" (abc)=lga+lgb+lgc.即lg+lg+lg>lga+lgb+lgc.6.下面四个图案,都是由小正三角形构成,设第个图形中有个正三角形中所有小正三角形边上黑点的总数为.图1 图2 图3 图4(Ⅰ)求出,,,;(Ⅱ)找出与的关系,并求出的表达式;(Ⅲ)求证:().【答案】(Ⅰ)12,27,48,75. (Ⅱ),.(Ⅲ)详见解析.【解析】(Ⅰ)求出,,,,第二个图形的黑点个数为第一个图形的黑点个数加上外面的三角形上的黑点个数,即,第三个图形的黑点个数为第二个图形的黑点个数加上外面的三角形上的黑点个数,即,以此类推可求出,;(Ⅱ)观察,,,可得到,后一个图形的黑点个数是前一个图形外多加一个三角形,而且每一条边都比内一个三角形多两个黑点,即,即,求出的表达式,像这种关系可用叠加法,即写出,,,,,把这个式子叠加,即可得出的表达式;(Ⅲ)求证:(),先求出的关系式,得,由于求证的不等式右边是常数,可考虑利用放缩法,即,这样既可证明.试题解析:(Ⅰ)由题意有,,,,,.(Ⅱ)由题意及(Ⅰ)知,,即,所以,,,, 5分将上面个式子相加,得:6分又,所以. 7分(Ⅲ),∴. 9分当时,,原不等式成立. 10分当时,,原不等式成立. 11分当时,,原不等式成立. 13分综上所述,对于任意,原不等式成立. 14分【考点】归纳推理,放缩法证明不等式.7.设正有理数是的一个近似值,令.(Ⅰ)若,求证:;(Ⅱ)比较与哪一个更接近,请说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)比更接近.【解析】(Ⅰ)若,求证:,只需证即可,即;(Ⅱ)比较与哪一个更接近,只需比较它们与差的绝对值的大小,像这一类题,可采用作差比较法.试题解析:(Ⅰ),,.(Ⅱ),,,而,,所以比更接近.【考点】作差法证明不等式.8.设实数满足,求证:.【答案】详见解析.【解析】作差,分解因式,配方,判断符号.试题解析:作差得 1分4分. 6分因为,所以不同时为0,故,,所以,即有. 10分【考点】不等式的证明.9.设f(x)=lnx+-1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)<.【答案】(1)见解析(2)见解析【解析】证明:(1)(证法一)记g(x)=lnx+-1- (x-1).则当x>1时,g′(x)=+-<0,g(x)在(1,+∞)上单调递减.又g(1)=0,有g(x)<0,即f(x)< (x-1).(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx-x+1,则k(1)=0,k′(x)=-1<0,故k(x)<0,即lnx<x-1.②由①②得,当x>1时,f(x)< (x-1).(2)(证法一)记h(x)=f(x)-,由(1)得h′(x)=+-=-<-=.令g(x)=(x+5)3-216x,则当1<x<3时,g′(x)=3(x+5)2-216<0.因此g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,所以h′(x)<0.因此h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0.于是当1<x<3时,f(x)<. (证法二)记h(x)=(x+5)f(x)-9(x-1),则当1<x<3时,由(1)得h′(x)=f(x)+(x+5)f′(x)-9< (x-1)+(x+5)-9= [3x(x-1)+(x+5)(2+)-18x]<= (7x2-32x+25)<0.因此h(x)在(1,3)内单调递减,又,所以,即.10.( 本小题满分12分)已知集合中的元素都是正整数,且,对任意的且,有.(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)对于,试给出一个满足条件的集合【答案】(Ⅰ) 证明:见解析;(Ⅱ)证明:见解析;(Ⅲ).【解析】(1)因为,对任意的且,有.所以两边分别相加得.即.(2)由(Ⅰ)可得;同理,所以,即.(3)由(1)知,令,可取大于1的任意整数,令;同理令;;,则,令,则,令,则,令,则,令.就得到满足条件的一个集合.(Ⅰ) 证明:依题意有,又,因此.可得.所以.即.…………………4分(Ⅱ)证明:由(Ⅰ)可得.又,可得,因此.同理,可知.又,可得,所以均成立.当时,取,则,可知.又当时,.所以.……………………………………………………8分(Ⅲ)解:对于任意,,由可知,,即.因此,只需对,成立即可.因为;;;,因此可设;;;;.由,可得,取.由,可得,取.由,可得,取.由,可得,取.所以满足条件的一个集合.……………12分其它解法,请酌情给分.11.选修4-5:不等式选讲(本小题满分10分)已知实数满足,且,求证:【答案】见解析。

伍胜健《数学分析》(第2册)配套题库-章节题库(数项级数)

伍胜健《数学分析》(第2册)配套题库-章节题库(数项级数)

第9章数项级数1.试证明下列命题:(1)设a>0,b>a+1,则(2)设a>0,b>a+2,则证明:(1)记,则令从n=0到n=N的各项相加,故得因此.(2)由(1)可知以a+1代a,则(*)式又成为将两式相减,可得.1.求下列级数的和:解:(1)由,有(2)当n=3m时,时,,而且级数都是收敛的,根据顺项可括性,有(3)由于[x]是数x的整数部分,有1.求的和,其中解:记,则考察函数.若,则有f(S)=S,且为此方程的惟一解.由于在上是递减函数,故知因为f(x)在(0,1)上递减,所以.从而得即有下界,且此外又有这说明.1.判别下列级数的敛散性:解:(1)当p≤0时,,该级数显然发散.当p>0时,是递减正数列,从而考察级数.易知它是等比级数,且可得公比时,收敛;时,发散.因此,I在p≤1时发散,p>1时收敛.(2)易知通项是递减正数列.根据凝聚判别法,有由此知,I在p>1时收敛,p≤1时发散.(3)易知通项是递减正数列,用凝聚判别法,考察由此即知I发散.1.试证明下列命题:(1)设级数收敛,则(2)设.若收敛,则(3)设.若收敛,则(4)设,则证明:(1)不妨假定,且记,以及,则用归纳法可推等式(*)当n=1时,显然,故式(*)为真.假定n=m时式(*)为真,则对m+1,有从而式(*)对m+1成立.令m→∞,即可得证.(2)应用Cauchy-Schwarz不等式,可知注意到,即可得证.(2)依题设可知,对任给ε>0,存在,使得“.取,并对和式作分解又放大,可知([r]表示数r的整数部分)从而可得.由此即可得证.(4)注意到等式(,C是Euler常数)故只需指出.实际上,对任给ε>0,依题设知,存在,使得.由此又知从而导致.最后有.证毕.1.试证明下列不等式:,其中是递增正数列,(3)(Hardy-Landau不等式)设同(2),则(4)(Carleman不等式)设是正项收敛级数,则证明:(1)改写通项为再应用在上的微分中值公式,有从而知(2)由(不等式:)可知。

数学分析试题及答案解析

数学分析试题及答案解析

WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

考研真题中国科学技术大学数学分析试题

考研真题中国科学技术大学数学分析试题

考研真题中国科学技术大学数学分析试题2010年中国科学技术大学数学分析试题1,f(x)无穷区间上一致连续,0<a<1,证明f^a(x)也一致连续.< p=""> 2,f(x,y)在除原点以外的地方都可微,在R^2上连续,他的两个偏导数在原点的极限都存在,且为零.证明其在原点有极限.3,具体记不起来了,只记得是说一个抽象函数f(x)的和ex在一起的曲线积分,说它路径无关,求他的值.4,一个二次递推数列求极限的问题,X_0属于从1到3/2的开区间,X_n+1=X_n^1/2+X_n-1/2.5,计算一个在椭球面的上半面的曲面积分x^3dydz+y^3dxdz+z^3dxdy.6,证明含参广义积分arctg(tx)/t^a在(0,正无穷大上定义了一个可微函数f(x),然后证明xdf(x)/dx+(1-a)f(a)+arctgx=0.7,设有一个周期是2π的连续可导的奇函数f,且df(x)/dx=f(π/2-x),求这个函数.8,正项级数a_n收敛,证明a_n^1-1/n也收敛.9,有正项数列a_n,b_n,且b_n/n的极限是0,b_n(a_n/a_n+1-1)有大于0的极限,证明a_n的极限为0,且其收敛.10,忘了.数学分析注意【】符号为处理上下标所用一设函数f(x):[0,+无穷)->[0,+无穷)一致连续,α属于(0,1],求证:函数g(x)=【f^α】(x)也在[0,+无穷)上一致连续。

二设f(x,y)在R^2\{(0,0)}上可微,在(0,0)处连续,且【lim_(x,y)->0】偏f(x,y)/偏x=0,【lim_(x,y)->0】偏f(x,y)/偏y=0。

求证f(x,y)在(0.0)处可微。

三设x_0属于(1,3/2),x_1=(x_0)^2,x_(n+1)=(x_n)^1/2+【x_(n-1)】/2,n=1,2…求证:{x_n}收敛,并求其极限。

数学分析Ⅲ练习答案

数学分析Ⅲ练习答案

练习一答案: 一、填空题1、平面点集{}22(,)|01E x y x y =<+<的内部为 ,边界为 . 解 {}{}222222int (,)|01,(,)|01E x y x y E x y x y x y =<+<∂=+=+=或2、平面点集11,,E n m n m ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭为整数的聚点集为 .解 {}(0,0)3、设(,)f x y =,则函数(,)f x y 的定义域为 .解(){}222,014x y xy y x <+<≤且4、设2222),(y x y x y x f +-=则00limlim (,)x y f x y →→= ,),(lim lim 00y x f x y →→= . 解 222200000limlim (,)limlim lim11x y x y x x y f x y x y →→→→→-===+()222200000limlim (,)limlim lim 11y x y x x x y f x y x y →→→→→-==-=-+ 5、函数1(,)sin sin f x y x y =的间断点集为 .解(){},,,x y x k y l k l ππ==∈Z 或二、选择题1、函数f x y x y (,)=-+-1122的定义域是( D ) A 、闭区域 B 、开区域 C 、开集 D 、闭集解 f x y x y (,)=-+-1122的定义域是(){},1,1E x y x y =≤≥E 是闭集但不具有连通性,故不是闭区域.2、函数y x z -=的定义域是( C )A 、有界开集B 、有界闭集C 、无界闭集D 、无界开集 解 y x z -=的定义域是(){}2,0E x y y x =≤≤E 是无界闭集.3、以下说法中正确的是( A ) A 、开区域必为开集 B 、闭区域必为有界闭集 C 、开集必为开区域 D 、闭集必为闭区域 解 开区域是连通的开集,故开区域必为开集.4、下列命题中正确的是( A )A 、如果二重极限,累次极限均存在,则它们相等;B 、如果累次极限存在,则二重极限必存在;C 、如果二重极限不存在,则累次极限也不存在;D 、如果二重极限存在,则累次极限一定存在. 解 课本P158定理1.5、下列说法正确的是( A )A 、有界点列2}{R P n ⊂必存在收敛的子列;B 、二元函数),(y x f 在D 上关于x ,y 均连续,则),(y x f 在D 上连续;C 、函数),(y x f 在有界区域D 上连续,则),(y x f 在D 上有界;D 、函数),(y x f 定义在点集2R D ⊂上,D P ∈0,且0P 是D 的孤立点,则()f x 在0P 处连续. 解 由课本P151定理6知,有界点列2}{R P n ⊂必存在收敛的子列. 三、求下列极限1、222200lim x y x y x y →→+解 当(,)(0,0)x y ¹时2222222220x y y xx x y x y ?祝++,而200lim 0x y x →→=所以222200lim 0x y x y x y →→=+. 2、2200x y →→解 因为())2222221111x y x y +==++-所以)22000lim12x x y y ==.四、用ε-δ定义证明22200lim 0.x y x yx y →→=+ 证明 由于当(,)(0,0)x y ≠时2222||0||22x y x y x x x y xy -≤=≤+ 故0,,(,):0|0|,0|0|,x y x y εδεδδ∀>∃=∀<-<<-<有2220||x yx x y ε-≤<+故22200lim 0.x y x yx y →→=+练习二答案: 一、填空题 1、设xy e z =,则z x ∂=∂ ,z y∂=∂ . 解,xy xy z zye xe x y∂∂==∂∂ 2、设000000(,)0,(,)4,(,)5x y f x y f x y f x y ''===,则000(,)limx f x x y x ∆→+∆=∆ ,000(,)lim y f x y y y∆→+∆=∆ .解 0000000000(,)(,)(,)limlim (,)4x x x f x x y f x x y f x y f x y x x∆→∆→+∆+∆-'===∆∆ 0000000000(,)(,)(,)limlim (,)5y y y f x y y f x y y f x y f x y y y∆→∆→+∆+∆-'===∆∆ 3、设ln 1x z y ⎛⎫=+ ⎪⎝⎭,则(1,1)dz = .解 21111,()11z z x x x x x y x y y y y x y y y ⎛⎫∂∂=⋅==⋅-=- ⎪∂+∂+⎝⎭++(1,1)(1,1)11,22z z x y ∂∂∴==-∂∂ (1,1)111()222dz dx dy dx dy ∴=-=- 4、设2sin()z x y =,则dz = .解 2222cos(),cos()z zxy x y x x y x y ∂∂==∂∂ ()22222c o s ()c o s ()c o s ()2d z x y x y d x x x y d y x x y y d x x d y∴=+=+ 5、求曲面arctany z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为 ,法线方程 .解 2222,x yy xz z x y x y ⅱ=-=++ 11(1,1),(1,1)22x y z z ⅱ\=-=故曲面arctan y z x =在点⎪⎭⎫⎝⎛4,1,1π处的切平面方程为11(1)(1)422z x y π-=--+-,即202x y z π-+-=法线方程为11411122z x y π---==--,即202204x y x z π+-=⎧⎪⎨--+=⎪⎩ 二、选择题1、设),(y x f 在点(,)a b 处偏导数存在,则lim (,)(,)x f a x b f a x b x→+--0=( C )A 、(,)x f a b 'B 、(2,)x f a b 'C 、2(,)x f a b 'D 、1(,)2x f a b ' 解 [][]xb a f b x a f b a f b x a f x b x a f b x a f x x ),(),(),(),(lim ),(),(lim00----+=--+→→ [][]000(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim (,)(,)2(,)x x x x x x f a x b f a b f a x b f a b xf a x b f a b f a x b f a b x x f a b f a b f a b →→→+----=+---=+-''=+'=2、设),(y x f 在点00(,)x y 处存在关于x 的偏导数,则00(,)(,)x y f x y x ∂=∂( A )A 、x y x f y x x f x ∆-∆+→∆),(),(lim00000 B 、xy x f y y x x f x ∆-∆+∆+→∆),(),(lim 00000C 、x y x x f x ∆∆+→∆),(lim 000D 、xy x x f y y x x f x ∆∆+-∆+∆+→∆),(),(lim 00000解 0000000(,)(,)(,)(,)limx x y f x x y f x y f x y x x∆→+∆-∂=∂∆ 3、函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000在点(0,0)处有( D )A 、连续且偏导数存在B 、连续但偏导数不存在C 、不连续且偏导数不存在D 、不连续但偏导数存在 解 当(,)x y 沿y x =趋于(0,0)时22200001lim (,)lim (,)lim 2x x x y x f x y f x x x x →→→→===+ 当(,)x y 沿0y =趋于(0,0)时00lim (,)lim (,0)lim 00x x x y f x y f x →→→→===故00lim (,)x y f x y →→不存在,于是函数),(y x f 在点(0,0)处不连续.000(,0)(0,0)00(0,)(0,0)0l i ml i m 0,l i m l i m 0x x y x f x f f y f x x yy ∆→∆→∆→∆→∆--∆--====∆∆∆∆ (,)f x y ∴在原点存在偏导数且(0,0)0,(0,0)0x y f f ''==4、在点00(,)x y 处的某邻域内偏导数存在且连续是),(y x f 在该点可微的( B ) A 、必要条件 B 、充分条件 C 、充要条件 D 、无关条件 解 P175定理25、下面命题正确的是( C )A 、若),(y x f 在00(,)x y 连续,则),(y x f 在00(,)x y 的两个偏导数存在;B 、若),(y x f 在00(,)x y 的两个偏导数存在,则),(y x f 在00(,)x y 处连续;C 、若),(y x f 在00(,)x y 可微,则),(y x f 在00(,)x y 的两个偏导数存在;D 、若),(y x f 在00(,)x y 处的两个偏导数存在,则),(y x f 在00(,)x y 处可微. 解 P172定理1三、讨论函数2222222,0(,)0,0x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在原点附近的连续性、偏导数的存在性及可微性.解 2221(,)(0,0)02x y x y xx y ≠≤≤+ 当时,且001lim 02x y x →→=. 2220000lim (,)lim 0(0,0)x x y y x yf x y f x y →→→→∴===+(,)f x y ∴在点(0,0)的连续.0000(,0)(0,0)00(0,)(0,0)00lim lim 0,lim lim 0x x y y f x f f y f x x y y ∆→∆→∆→∆→∆--∆--====∆∆∆∆(,)f x y ∴在点(0,0)存在偏导数且(0,0)(0,0)0x y f f ''==.[]()22223222(,)(0,0)(0,0)(0,0)x y x yf x y f f x f y z dzx yxyρ∆∆⎡⎤''∆∆--∆+∆∆-∆∆===∆+∆当(,)x y ∆∆沿y x ∆=∆趋于(0,0)时()23300222limlimlim x x y z dzx yxyρρ→∆→∆→∆→∆-∆∆===∆+∆ 当(,)x y ∆∆沿0y ∆=趋于(0,0)时()2330222limlimlim0x x y z dzx yx xyρρ→∆→∆→∆→∆-∆∆===∆∆+∆故极限()230222limx y x yxy∆→∆→∆∆∆+∆不存在,从而极限0limz dzρρ→∆-不存在,即(,)f x y 在点(0,0)不可微.一、求下列复合函数的偏导数或导数1、2ln ,,32,u z x y x y u v v ===-求,.z zu v∂∂∂∂解 22ln 3z z x z y x y x u x u y u v y∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 222l n 2z z x z y u x y x v x v y v v y∂∂∂∂∂=⋅+⋅=--∂∂∂∂∂2、,,x y u f y z ⎛⎫= ⎪⎝⎭求,,.u u ux y z ∂∂∂∂∂∂解 令,x y s t y z ==,则函数,,x y u f y z ⎛⎫= ⎪⎝⎭由函数(,),,x yu f s t s t y z ===复合而成,记12,u u f f s t∂∂''==∂∂,则11222211, , .u u s u u s u t x u u t y f f f f x s x y y s y t y y z z t z z ∂∂∂∂∂∂∂∂∂∂∂''''=⋅==⋅+⋅=-+=⋅=-∂∂∂∂∂∂∂∂∂∂∂ 二、求下列函数在给定点沿给定方向的方向导数1、求22(,,)f x y z x xy z =-+在点0(1,0,1)P 沿(2,1,2)l =- 的方向导数. 解 由于l 的方向余弦为212cos , cos , cos 333αβγ====-==()0000()22, ()1, ()22x y P z P P f P x y f P xf P z'''=-==-=-==所以()000212()cos ()cos ()cos 123333x y z f f P f P f P l αβγ∂⎛⎫++⋅+-⋅-+⋅= ⎪∂⎝⎭==2. 2、求u xyz =在点(5,1,2)A 处沿到点(9,4,14)B 的方向AB上的方向导数.解 由于(4,3,12)AB =,故它的方向余弦为4312cos , cos , cos 131313αβγ====()2,()10,()5x y Az A A f A yz f A zxf A xy '''======所以000431298()cos ()cos ()cos 10513131313x y z f f P f P f P l αβγ∂++⋅+⋅+⋅=∂==2一、填空题1、如果 ,则有0000(,)(,)xyyx f x y f x y ''''=. 解 如果函数(,)f x y 在点00(,)P x y 的某邻域G 内存在二个混合偏导数(,)xy f x y ''与(,)yx f x y '',并且它们在点00(,)P x y 连续,则0000(,)(,)xyyx f x y f x y ''''=. 2、设24z x y =,则2zx y ∂=∂∂ .解 2432,8z z xy xy x x y∂∂==∂∂∂ 3、二元函数xy y x y x f ++=),(在点)2,1(的泰勒公式为 .解 222221,1,0,1,0,0(2)n m n m f f f f f fy x n m x y x x y y x y+∂∂∂∂∂∂=+=+====+>∂∂∂∂∂∂∂∂22()(1,2)3,(1,2)2,(1,2)0,(1,2)1,(1,2)0,(1,2)0(2)m nm n x y xy x y x yf f f f f f n m +''''''''∴======+> (,)f x y x y x y ∴=++在点)2,1(的泰勒公式为 (,)f x y x y x y =++ 1(1,2)(1,2)(1)(1,2)(2)1!x y f f x f y ''⎡⎤=+-+-⎣⎦ 22221(1,2)(1)2(1,2)(1)(2)(1,2)(2)2!xy x y f x f x y f y ⎡⎤''''''+-+--+-⎣⎦ 53(1)2(2)(1)(x y x y =+-+-+-- 4、函数22(,)4()f x y x y x y =---在稳定点 处取得极大值,且极大值是 .解 令(,)420(,)420xy f x y x f x y y ⎧'=-=⎪⎨'=--=⎪⎩得稳定点(2,2)-.由于22(,)2, (,)0, (,)2xy xyf x y f x y f x y ''''''=-==-2(2,2)20, (2,2)0,(2,2)2, 4x x x y y y A f B f C f B A C ''''''=-=-<=-==-=-∆=-=-<故函数22(,)4()f x y x y x y =---在稳定点(2,2)-取得极大值,且极大值是(2,2)8f -=.5、设),(),(00y x y x f z 在=存在偏导数,且在),(00y x 处取得极值,则必有 .解 0000(,)0(,)0x y f x y f x y '=⎧⎨'=⎩二、选择题1、二元函数3322339z x y x y x =+++-在点M 处取得极小值,则点M 的坐标是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 解 令22(,)3690(,)360xy f x y x x f x y y y ⎧'=+-=⎪⎨'=+=⎪⎩得稳定点(1,0),(3,0),(1,2),(3,2)----.由于(,)66, (,)0, (,)66xx xy yy f x y x f x y f x y y ''''''=+==+ 在点(1,0),2120, 0, 6, 720A B C B AC =>==∆=-=-<在点(3,0)-,212, 0, 6, 720A B C B AC =-==∆=-=> 在点(1,2)-,212, 0, 6, 720A B C B AC ===-∆=-=>在点(3,2)--,2120, 0, 6, 720A B C B AC =-<==-∆=-=-<故函数3322339z x y x y x =+++-在点(1,2)-,(3,0)-不取得极值,在点(1,0)取得极小值, 在点(3,2)--取得极大值.2、二元函数2222),(22+-+-=x y xy x y x f 的极小值点是( C ) A 、(-1,-1) B 、(0,0) C 、(1,1) D 、(2,2) 解 令(,)4220(,)220xy f x y x y f x y y x ⎧'=--=⎪⎨'=-=⎪⎩得稳定点(1,1).由于(,)4, (,)2, (,)2xx xy yy f x y f x y f x y ''''''==-= 240, 2, 2, 40A B C B A C =>=-=∆=-=-< 故函数2222),(22+-+-=x y xy x y x f 在点(1,1)取得极小值. 3、关于二元函数下列论断①(,)f x y 在),(00y x 取得极值,则),(00y x 是(,)f x y 的稳定点;②),(00y x 是(,)f x y 的稳定点,则(,)f x y 在),(00y x 取得极值; ③(,)f x y 在),(00y x 不存在偏导数,则(,)f x y 在),(00y x 不会取得极值; ④)0,0(以xy z =为极小值点. 其中正确的个数是( A )A 、0B 、1C 、2D 、3解 ①错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)取得极小值,但点(0,0)不是稳定点.②错误:稳定点不一定是极值点,例如在第1题中,点(1,2)-是稳定点,但却不是极值点. ③错误:偏导数不存在的点也可能是极值点,例如z =在点(0,0)的偏导数不存在,但点(0,0)是该函数的极小点.④错误: 令00xy z y z x ⎧'==⎪⎨'==⎪⎩得稳定点(0,0).由于(,)0, (,)1, (,)0xx xy yy z x y z x y z x y ''''''===20, 1, 0, 10A B C B A C ===∆=-=> 故函数z xy =在点(0,0)不取得极值.4、如果点()00,x y 为(,)f x y 的极值点且()()0000,,,x y f x y f x y ''存在,则它是(,)f x y 的( B ) A 、最大值点 B 、稳定点 C 、连续点 D 、最小值点 解 P200定理35、下列命题中,正确的是( D )A 、设点00(,)P x y 为函数(,)f x y 的稳定点,则它一定是(,)f x y 极值点;B 、设点00(,)P x y 为函数(,)f x y 的极值点,则它一定是(,)f x y 稳定点;C 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆=,则它不是(,)f x y 极值点;D 、设点00(,)P x y 为函数(,)f x y 的稳定点且0∆>,则它不是(,)f x y 极值点. 解 P201定理4 三、求解下列各题1、求函数333(0)z axy x y a =-->的极值.解 令22330330xy z ay x z ax y ì¢ï=-=ïí¢ï=-=ïî 得稳定点(0,0)和(,)a a .6, 3, x x x y y y z x z a z y ⅱ =-==- 对于点(0,0),220, 3, 0, 90A B a C B AC a ===D =-=>故点(0,0)不是极值点.对于点(,)a a ,2260, 3, 6, 270A a B a C a B AC a =-<==-D =-=-< 故点(,)a a 是极大点,极大值为3(,)z a a a =.2、在xy 平面上求一点,使它到三直线0,0x y ==及2160x y +-=的距离平方和最小. 解 设(,)x y 为平面上任一点,则它到三直线0,0x y ==及2160x y +-=的距离平方和为()222216(,)5x y S x y x y +-=++于是问题转化为求函数()222216(,)5x y S x y x y +-=++在2R 上的最小值.令()()22162054216205x y x y S x x y S y ì+-ïï¢=+=ïïïíï+-ï¢ï=+=ïïî得(,)S x y 在2R 上的唯一稳定点816,55⎛⎫⎪⎝⎭.12418, , 555x x x y y yS S S ⅱⅱⅱ=== 2124180, , , 80555A B C B A C =>==D =-=-< 故点816,55⎛⎫⎪⎝⎭是极小点.根据问题实际意义,函数(,)S x y 在2R 上一定存在最小值,而(,)S x y 在2R 上只有唯一一个极小点,故(,)S x y 在点816,55⎛⎫ ⎪⎝⎭取得最小值.即平面点816,55⎛⎫⎪⎝⎭到三直线0,0x y ==,2160x y +-=的距离平方和最小.练习五答案: 一、填空题1、设方程0sin 2=-+xy e y x 确定隐函数()y f x =,则dxdy= . 解法一 令2(,)sin x F x y y e xy =+-,则2(,), (,)cos 2x x y F x y e y F x y y xy ''=-=-于是22(,)(,)cos 2cos 2x x x x dy F x y e y y e dx F x y y xy y xy'--=-=-='-- 解法二 方程两边对x 求导得2c o s 20x d y d y y e y x y d x d x ⎛⎫⋅+-+⋅= ⎪⎝⎭ 2cos 2xdy y e dx y xy-=- 2、设方程0z e xyz -=确定隐函数(,)z f x y =,则z x ∂=∂ ,zy∂=∂ .解法一 令(,,)z F x y z e xyz =-,则(,,), (,,), (,,)zx y z F x y z y z F x y z x z F x y z e x y '''=-=-=- 于是(,,)(,,)(,,)(,,)x z z y z z z F x y z yzx F x y z e xyF x y z z xz y F x y z e xy'∂=-='∂-'∂=-='∂-解法二 方程两边分别对,x y 求偏导得00z z z z e y z x x x z z e x z y y y ∂∂⎧⎛⎫⋅-+⋅= ⎪⎪∂∂⎝⎭⎪⎨⎛⎫∂∂⎪⋅-+⋅= ⎪⎪∂∂⎝⎭⎩于是,z z z yz z xzx e xy y e xy∂∂==∂-∂-.3、设sin cos ,sin sin ,cos x r y r z r φθφθφ===,则(,,)(,,)x y z r θφ∂∂= .解2(,,)sin (,,)x y z r r φθφ∂=∂说明:原来给的是“设sin cos ,sin sin ,cos x r y r z r θφθφφ===,则(,,)(,,)x y z r θφ∂∂= .”结果是不一样的!4、若函数组(,),(,)u u x y v v x y ==与(,),(,)x x s t y y s t ==均有连续的偏导数,且(,)(,)14,(,)(,)2u v x y x y s t ∂∂==∂∂,则(,)(,)u v s t ∂=∂ .解(,)(,)(,)142(,)(,)(,)2u v u v x y s t x y s t ∂∂∂=⋅=⨯=∂∂∂ 5、若函数组(,),(,)u u x y v v x y ==有连续的偏导数且(,)2(,)u v x y ∂=∂,则(,)(,)x y u v ∂=∂ .解(,)11(,)(,)2(,)x y x y u v u v ∂==∂∂∂ 二、证明方程ln 1(0,1,1)xz xy z y e ++=在点的某领域内能确定隐函数(,),x x y z =并求,x xy z∂∂∂∂. 解 令(,,)ln 1,xz F x y z xy z y e =++-则(1) (,,),F x y z (,,),xz x F x y z y ze '=+(,,),y zF x y z x y'=+(,,)ln xz z F x y z y xe '=+都在(0,1,1)的某邻域内连续;(2) (0,1,1)0F =; (3) (0,1,1)20x F '=≠.故方程可确定隐函数(,)x f y z =.2(,,)(,,)y xz xzx z x F x y z x xy z yy y ze y yze F x y z +'∂+=-=-=-∂++' (,,)ln (,,)xzz xzx x F x y z y xe z y ze F x y z '∂+=-=-∂+' 三、设方程组⎩⎨⎧=--=--0022xu v y yv u x 确定隐函数组(,),(,)u u x y v v x y ==,求,u vx x ∂∂∂∂. 解 方程组关于x 求偏导得12020u v u y x x v u v u x x x ì抖ïï--=ï抖ïíï抖ï---=ïï抖ïî解此方程组得24u v uy x uv xy ?=?,224v u x x xy uv?=?练习六答案: 一、填空题1、二元函数(,)f x y xy =在条件1x y +=下的存在 (极小值/极大值),其极大(小)值为 .解 由2(1)f xy x x x x ==-=-,令120f x '=-=得稳定点12x =;又由于20f ''=-<,故函数在12x =取得极大值111,224f ⎛⎫= ⎪⎝⎭.2、平面曲线09)(233=-+xy y x 在点(2,1)处的切线方程为 ,法线方程为 . 解 令33(,)2()9F x y x y xy =+-,则22(,)69, (,)69x y F x y x y F x y y x ''=-=-22(,)69(,)69x y d y F x y xyd x F x y y x'-=-=-'- (2,1)54dy k dx == 故所求的切线方程为51(2)4y x -=-,即5460x y --=. 法线方程为41(2)5y x -=--,即45130x y +-=. 3、空间曲线23,,x t y t z t ===在点1t =处的切线方程为 ,法平面方程为 .解 由于21,2,3x y t z t '''===,则(1)1,(1)2,(1)3x y z '''===,故所求的切线方程为111123x y z ---== 法平面方程为(1)2(1)3(1)x y z -+-+-=,即2360x y z ++-=. 4、空间曲面236222x y z ++=在点()1,1,1P 处的切平面方程为 , 法线方程为 .解 由于222(,,)236F x y z x y z =++-,则(,,)4, (,,)6, (,,)2x y z F x y z x F x y z y F x y z z '''=== (1,1,1)4, (1,1,1)6, (1,1,1)2x y z F F F '''===故所求的切平面方程为4(1)6(1)2(1)x yz -+-+-=,即2360x y z ++-= 法线方程为111462x y z ---==,即11123x y z --==-. 5、曲面2132222=++z y x 在点 的切平面与平面460x y z ++=平行. 解 设所求的点为000(,,)x y z ,由于222(,,)2321F x y z x y z =++-,则(,,)2, (,,)4, (,,)6x y z F x y z x F x y z y F x y z z '''===000000000000(,,)2, (,,)4, (,,)6x y z F x y z x F x y z y F x y z z '''===由已知有0002220002461462321x y z x y z ⎧==⎪⎨⎪++=⎩ 解方程得000122x y z =⎧⎪=⎨⎪=⎩或000122x y z =-⎧⎪=-⎨⎪=-⎩,故所求的点为(1,2,2),(1,2,2)---.二、选择题1、在曲线23,,x t y t z t ==-=的所有切线中与平面24x y z ++=平行的切线( B ) A 、只有一条 B 、只有二条 C 、至少有三条 D 、不存在 解 设曲线在0t t =处的切线与平面24x y z ++=平行,由于21,2,3x y t z t '''==-= 则200000()1,()2,()3x t y t t z t t '''==-= 由已知可得2001430t t -+=于是013t =或01t =,故曲线上有两点的切线与平面24x y z ++=平行的点.2、曲线2226x y z x y z ⎧++=⎨++=⎩在点(1,2,1)M -处的切线平行于( C )A 、xoy 平面B 、yoz 平面C 、zox 平面D 、平面0x y z ++= 解法一:令22212(,,)6,(,,)F x y z x y z F x y z x y z =++-=++,则11122211122211122222(,)2(),11(,)22(,)2()11(,)22(,)2()11(,)F F x y x y F F x y F F x y x yF F y z y z F F y z F F y z yzF F z x F F z xz x F F z x z x∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂∂∂∂∂∂===-∂∂∂∂∂ 121212(,)(,)(,)6,6,0(,)(,)(,)M M MF F F F F F x y y z z x ∂∂∂==-=∂∂∂故曲线在点(1,2,1)M -处的切线为121606x y z -+-==-,即202x z y +-=⎧⎨=-⎩该直线平行于xoz 平面.解法二:方程组22260x y z x y z ⎧++=⎨++=⎩对x 求导数得:22200x y y z z x y z ìⅱ+??ïïíïⅱ++=ïî,解得xz x y y z -¢=-,xy xz z y-¢=- 所以(1,2,1)0y ¢-=,(1,2,1)1z ¢-=-所以切线的法向量为(1,0,1)-,切线方程为121101x y z -+-==-,即202x z y +-=⎧⎨=-⎩.三、求解下列题1、求表面积一定而体积最大的长方体.解 设长方体的长、宽、高分别为,,x y z ,表面积为()20,a a >则问题转换为求函数(),,,f x y z xyz =在条件()22xy yz xz a ++=下的最大值.设()2,,,[2()]L x y z xyz xy yz xz a λλ=+++-,令()()()()220202020x y zL yz y z L xz x z L xy x y L xy yz xz a λλλλ'=++=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩解得x y z === 根据问题实际意义,体积最大的长方体一定存在,且稳定点只有一个,故表面积一定的长方体中正方体的体积最大.2、求曲线2222222393x y z z x yìï++=ïíï=+ïî在点(1,1,2)-的切线与法平面方程. 解法一:设222222(,,)239,(,,)3F x y z x y z G x y z z x y =++-=--,在点(1,1,2)-处有4,6,4x y z F F F ⅱ ==-=,6,2,4x y zG G G ⅱ =-== (,)(,)(,)32,40,28(,)(,)(,)F G F G F G y z z x x y 抖 =-=-=-抖所以切线的切向量为(8,10,7),切线方程为1128107x y z -+-== 法平面方程为8(1)10(1)7(2)0x y z -+++-=或8107120x y z ++-=解法二:方程组2222222393x y z z x y ìï++=ïíï=+ïî对x 求导数得:4620262x y y z z z z x y y ìⅱ+??ïïíïⅱ?+ ïî,解得54xy y ¢=-,74x z z ¢=所以5(1,1,2)4y ¢-=,7(1,1,2)8z ¢-= 所以切线的切向量为57(1,,)48,切线方程为11257148x y z -+-==,即1128107x y z -+-==练习七答案: 一、填空题1、=++⎰+∞0284x x dx. 解 ()222000(2)1212lim lim arctan lim arctan 4822224822AA A A A dx d x x A x x x ππ+∞→+∞→+∞→+∞+++⎛⎫===-= ⎪++⎝⎭++⎰⎰ 2、20x xe dx +∞-=⎰= .解()()22222000111limlim lim 1222AA x x x A A A A xe dx xe dx e d x e +∞----→+∞→+∞→+∞==--=--=⎰⎰⎰ 3、无穷积分dxx p 1+∞⎰在 时收敛,在 时发散. 解 无穷积分dxx p1+∞⎰在1p >时收敛,在1p ≤时发散(课本p263例3).4、无穷积分1(,0)1mnxdx m n x ∞≥+⎰在 时收敛,在 时发散. 解 由于lim lim 111m n n mn n x x x x x x x -→+∞→+∞⋅==++,故无穷积分⎰∞≥+0)0,(1n m dx xx n m在1n m ->时收敛,在1n m -≤时发散.5、无穷积分1sin pxdx x +∞⎰在 时绝对收敛,在 时条件收敛. 解 无穷积分1sin p xdx x+∞⎰在1p >时绝对收敛,在1p ≤时条件收敛. 二、选择题1、f x dx ()-∞+∞⎰收敛是f x dx a()+∞⎰与f x dx a()-∞⎰都收敛的( B )A 、无关条件B 、充要条件C 、充分条件D 、必要条件解 如果f x dx ()-∞+∞⎰收敛,则f x dx a()+∞⎰与f x dx a()-∞⎰都收敛,反之也成立. 2、设()0f x >且⎰+∞)(dx x f 收敛,则e f x dx x -+∞⎰()0( C )A 、可能收敛B 、可能发散C 、一定收敛D 、一定发散解 当0x ≥时,()()xe f x f x -≤,而⎰+∞0)(dx x f 收敛,由比较判别法知e f x dx x -+∞⎰()0收敛.3、设)(x f 在[,)a +∞连续且c a <,则下列结论中错误的是( D )A 、如果 )(dx x f a ⎰+∞收敛,则 )(dx x f c ⎰+∞必收敛. B 、如果 )(dx x f a ⎰+∞发散,则 )(dx x f c⎰+∞必发散.C 、 )(dx x f a ⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.D 、 )(dx x f a⎰+∞收敛, )(dx x f c⎰+∞不一定收敛.解 ,A a ∀>由于)(x f 在[,)a +∞连续,故()f x 在[,],[,]a A a c 上连续从而在[,],[,]a A a c 上可积.又由于()()()Ac Aaacf x dx f x dx f x dx =+⎰⎰⎰故l i m ()()l i m (A cAaacA A f x dx f x dx f x dx →+∞→+∞=+⎰⎰⎰即 )(dx x f a⎰+∞与 )(dx x f c⎰+∞同时收敛或同时发散.4、设在[,)a +∞上恒有()()0f x g x ≥>,则( A ) A 、⎰+∞a dx x f )(收敛,⎰+∞a dx x g )(也收敛B 、()af x dx +∞⎰发散,()ag x dx +∞⎰也发散C 、⎰+∞adx x f )(和⎰+∞adx x g )(同敛散D 、无法判断解 由于0()()g x f x <≤,由比较判别法知当⎰+∞adx x f )(收敛时,⎰+∞adx x g )(也收敛(P270定理7).5、⎰∞+adx x f )(收敛是⎰∞+adx x f )(收敛的( C )A 、充分必要条件B 、充分条件C 、必要条件D 、既不是充分也不是必要条件解 由于无穷积分性质知,果⎰∞+adx x f )(收敛,则⎰∞+adx x f )(也收敛(P267推论2).但逆命题不成立.例如无穷积分sin a xdx x +∞⎰收敛,但无穷积分sin a x dx x+∞⎰发散(P275,例11).三、讨论下列无穷限积分的敛散性(1)+∞⎰(2) 0+∞⎰ (3) 31arctan 1x x dx x +∞+⎰ (4) 11x xdx e +∞-⎰ 解 (1) 由于434lim 1,1,13x x d λ→+∞==>=故无穷积分+∞⎰收敛.(2) 由于121lim 1,,1,12x x d λ→+∞==<= 故无穷积分+∞⎰.(3) 由于23arctan lim ,21,122x x x x d x ππλ→+∞⋅==>=+ 故无穷积分31arctan 1x xdx x+∞+⎰收敛. (4) 由于2lim 0,21,01x x xx d e λ→+∞⋅==>=- 故无穷积分11x xdx e +∞-⎰收敛. 四、讨论下列广义积分的绝对收敛性和条件收敛性(1) ()20sgn sin 1x dx x +∞+⎰ (2) 0100xdx x+∞+⎰ 解 (1) 由于()22sgn sin 111x x x≤++,而2011dx x +∞+⎰收敛,故()20sgn sin 1x dx x +∞+⎰绝对收敛.(2) 令()()cos f x g x x ==,由于()f x '= 故当100x >时,()0f x '<.于是()f x 在[100,)+∞上单调递减且lim ()lim0x x f x →+∞→+∞==又由于0()()cos sin A A F A g x dx xdx A ===⎰⎰,()1F A ≤,故由狄里克雷判别法知无穷积分⎰收敛.另一方面)1cos 212(100)2x x +=≥==+⎣⎦可证0⎰发散,而0⎰收敛,故0dx ⎰发散,原积分条件收敛. 五、证明题若无穷积分()af x dx +∞⎰绝对收敛,函数()x ϕ在[,)a +∞上有界,则无穷积分()()af x x dx ϕ+∞⎰收敛.证明 由于函数()x ϕ在[,)a +∞上有界,故0,[,)M x a ∃>∀∈+∞有 ()f x M ≤ 从而()()()f x x M f x ϕ≤ 由于无穷积分()af x dx +∞⎰绝对收敛,故()af x dx +∞⎰收敛.由比较判别法知,无穷积分()()af x x dx ϕ+∞⎰收敛.练习八答案: 一、填空题1、1=⎰ .解由于1lim x -→=∞,故1x =为瑕点,由瑕积分定义知()11120000001lim lim 1lim 2x εεεεεε+++---→→→==--=-⎰⎰⎰0lim11ε+→⎤=-=⎦ 2、10ln xdx =⎰= .解 由于0lim ln x x +→=-∞,故0x =为瑕点,由瑕积分定义知1111110000ln lim ln lim ln ln lim ln xdx xdx x x xd x x x dx εεεεεεεε+++→→→⎡⎤⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰ []0l i m l n (1)1εεεε+→=---=- 3、 是积分0sin xdx xπ⎰的瑕点. 解 0lim1,lim sin sin x x x x x xπ+-→→==∞ x π∴=是积分0sin xdx xπ⎰的瑕点. 4、瑕积分10(0)q dxq x >⎰在 时收敛,在 时发散.解 瑕积分dxx q 01⎰在01q <<时收敛,在1q ≥时发散(P280例3).5、瑕积分201cos (0)mxdx m x π->⎰在 时收敛,在 时发散. 解 0x = 是积分201cos (0)m xdx m xπ->⎰的瑕点且 22001cos 1cos 1limlim 2m m x x x x x x x ++-→→--⋅== ∴瑕积分201cos (0)m xdx m x π->⎰在03m <<时收敛,在3m ≥时发散. 二、选择题1、瑕积分⎰-112xdx( D ) A 、收敛且其值为-2 B 、收敛且其值为2C 、收敛且其值为0D 、发散解 101222110dx dx dx x x x--=+⎰⎰⎰因为11122000011lim lim lim 1dx dx x x x εεεεεε+++→→→⎡⎤⎛⎫==-=-=∞⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰,发散,所以原积分发散. 2、下列积分中不是瑕积分的是( B )A 、⎰e xx dx1lnB 、⎰--12xdxC 、⎰-11x edx D 、⎰2cos πxdx解⎰ex x dx 1ln ,⎰-101x e dx ,⎰20cos πxdx 是瑕积分. 3、下列瑕积分中,发散的是( C )A、0⎰ B 、11211--⎰x dxC 、2211ln dx x x⎰D、1⎰解对于积分0⎰,0x =为瑕点,由于0lim 1sin x x +→=故瑕积分10sin dx x⎰收敛.对于积分11211--⎰x dx ,1x =±为瑕点且12111211lim(1)lim lim (1)lim x x x x x x --++→→→-→--==+==故瑕积分010,-⎰⎰均收敛,故原积分收敛;对于积分2211ln dx x x⎰,1x =为瑕点且22222111111(1)2(1)2lim(1)lim lim lim lim 12ln 2ln ln ln 2ln ln 1x x x x x x x x x x x x x x x x x x x+++++→→→→→---⋅=====+++ 故该积分发散;对于积分10⎰,0x =为瑕点且120lim(0)1x x +→-= 故该积分收敛.4、若瑕积分⎰badx x f )(收敛(a 为瑕点),则下列结论中成立的是( B )A 、()baf x dx ⎰收敛B 、⎰badx x f )(收敛C 、⎰badx x f )(2收敛D 、⎰badx x f )(2发散解 若瑕积分⎰badx x f )(收敛,则()b af x dx ⎰不一定收敛,例如1011sin dx x x⎰收敛,但111sin dx x x⎰发散(P287例10). 若瑕积分⎰b adx x f )(收敛,则⎰badx x f )(2可能收敛也可能发散,例如取()f x =,则瑕积分⎰b a dx x f )(收敛,⎰b a dx x f )(2发散;取()f x =,则瑕积分⎰b a dxx f )(收敛,⎰b adx x f )(2也收敛.5、当 ( A )时,广义积分10(0)1px dx p x <+⎰收敛. A 、 10p -<< B 、1-≤p C 、0<pD 、1-<p解 当0p <时,⎰+101dx x x p为瑕积分,0x =为瑕点且 001lim lim 111p px x x x x x ++-→→⋅==++ 故当1p -<时,即当10p -<<时,广义积分⎰+101dx x xp 收敛. 三、讨论下列假积分的敛散性(1) 302sin x dx x π⎰ (2)1⎰ (3) 10ln 1x dx x -⎰ (4)130arctan 1xdx x -⎰解 (1)0x =为瑕点且123002sin sin lim(0)lim 1x x x x x xx ++→→-⋅== 故该积分收敛.(2)0,1x =为瑕点,10.5100=+⎰⎰⎰,由于1200111lim(0)lim 0ln lim(1lim 1x x x x x x x ++--→→→→-==-==-于是积分0.50⎰收敛,而1⎰发散,故原积分发散.(3)由于01ln ln lim,lim 111x x x xx x+-→→=∞=---,故0x =为瑕点.又由于1200ln lim(0)lim 01x x x x x ++→→-⋅==- 故积分10ln 1xdx x-⎰收敛. (4)1x =为瑕点.由于3211arctan arctan lim(1)lim 1112x x x x x x x x π--→→-⋅==-++ 故积分130arctan 1xdx x -⎰发散.1、⎰→100sin lim dy x xyx = . 解 11100000sin sin 1lim lim 2x x xy xy dy dy ydy x x →→===⎰⎰⎰ 2、=-⎰dx x xx a b 10ln .)0(>>a b 解 11100011lnln 11b a b b b y ya a a x xb dx dx x dy dy x dx dy x y a -+====++⎰⎰⎰⎰⎰⎰ 二、选择题1、21ln()d xy dy dx ⎰=( B )A 、0B 、x1C 、xD 、不存在解 []22221111111ln()ln()d d xy dy xy dy dy dy dx dx x x x ====⎰⎰⎰⎰ 2、⎰+∞-→022lim dy e y x x =( B )A 、2B 、41C 、21 D 、 4解 2[1,3],x yyx ee --∀∈≤,而无穷积分0y e dy +∞-⎰收敛,故含参变量无穷积分2x y e dy +∞-⎰在{}(,)13,0R x y x y =≤≤≤<+∞上一致收敛.又由二元初等函数的连续性知2x y e -在R 上连续,故2240221lim lim 4x yx yy x x edy edy e dy +∞+∞+∞---→→===⎰⎰⎰3、2x e dx +∞-=⎰( )A 、πB 、πC 、2πD 、2π解2x e dx +∞-=⎰(课本P316例13)解 令x =则1111111222220001111(1)(1)(1),2222n n n n x dx t t t dt B ----+⎛⎫-=-=-⋅= ⎪⎝⎭⎰⎰⎰三、证明下列含参量无穷积分在所指定的区间上一致收敛.(1) 0sin ,(0)txe xdx a t a +∞-≤<+∞>⎰ (2) 230cos ,110t tx dx t x t +∞≤≤+⎰ 证明 (1) 由于s i n ,t x a x e x e a t --≤≤<+∞ 而无穷积分0ax e dx +∞-⎰收敛,故含参变量积分0sin tx e xdx +∞-⎰在[,)a +∞上一致收敛.(2) 由于232c o s 10,1101t t x t x t x ≤≤≤++ 而无穷积分2011dx x +∞+⎰收敛,故含参变量积分230cos t tx dx x t +∞+⎰在[1,10]上一致收敛.1、2sin y xdy dx xππππ-=⎰⎰ . 解 2000sin sin sin cos 2x y x x dy dx dx dy xdx x x x πππππππππ+-===-=⎰⎰⎰⎰⎰. 1、211y xdx e dy -=⎰⎰ .解 交换积分次序,得()22221111111122yy yyyxdx edy dy edx yedy e e e----===-=-⎰⎰⎰⎰⎰ 2、Ddxdy =⎰⎰ , 其中D 为椭圆19422=+y x 所围区域. 解Ddxdy ⎰⎰表示区域D 的面积,故6Ddxdy π=⎰⎰.3、()22Df x y dxdy '+=⎰⎰ , 其中D 为圆222x y R +=所围区域.解 作极坐标变换,则()()222D Df x y dxdy f r rdrd θ''+=⎰⎰⎰⎰()()()222220012R R d f r rdr d f r d r ππθθ''==⎰⎰⎰⎰ ()()()()22201002f R f d f R f πθπ⎡⎤⎡⎤=-=-⎣⎦⎣⎦⎰ 4、将二重积分化为累次积分:221x y fdxdy +≤⎰⎰= .解22111x y fdxdy dx fdy -+≤=⎰⎰⎰5、改变累次积分的顺序: 2420222(,)(,)yy y dy f x y dx dy f x y dx +⎰⎰⎰⎰= .解242220222(,)(,)(,)y x y y xdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰二、选择题1、函数(,)f x y 在有界闭域D 上连续是二重积分(,)Df x y dxdy ⎰⎰存在的( B )A 、充要条件B 、充分条件C 、必要条件D 、无关条件解 连续一定可积,但可积不一定连续.2、设(,)f x y 是有界闭域222:a y x D ≤+上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰=( B )A 、不存在B 、(0,0)fC 、(1,1)fD 、(1,0)f解 由积分中值定理知,(,)D ξη∃∈,使2(,)(,)(,)D Df x y d x d y f S a f ξηπξη=⋅=⎰⎰故 22200011lim(,)lim(,)lim (,)(0,0)a a a Df x y dxdy a f f f a a πξηξηππ→→→=⋅==⎰⎰.3、若(,)f x y 在区域{}41),(22≤+≤=y x y x D 上恒等于1,则二重积分f x y dxdy D(,)⎰⎰=( D )A 、0B 、πC 、2πD 、3π解22(,)213DDDf x y dxdy dxdy Sπππ===⋅-⋅=⎰⎰⎰⎰.4、设⎰⎰+=D dxdy y x I 22sin ,{}22224),(ππ≤+≤=y x y x D },则I =( B )A 、26πB 、26π-C 、0D 、6π-解 作极坐标变换,则sin DDI r rdrd θ==⎰⎰⎰⎰2220sin 6d r rdr πππθπ==-⎰⎰5、设D 由曲线1,2,,4xy xy y x y x ====所围成,作坐标变换,yu xy v x==,则二重积分22Dxy dxdy ⎰⎰可化为( B )A 、24211du u dv⎰⎰B 、2241112u du dv v ⎰⎰C 、42211du u dv ⎰⎰D 、2421112u du dv v ⎰⎰ 解 由于 2(,)1111(,)2(,)2(,)1x y u v y y xu v v x y xy x x∂====∂∂∂- 且坐标变换后积分区域为{}(,)12,14D u v u v '=≤≤≤≤,于是224221112Du x y dxdy du dv v =⎰⎰⎰⎰. 三、求解下列各题1、求sin Dxdxdy x ⎰⎰,其中D 由直线,,y x y x πππ===+所围成.解 :0y x D x πππ≤≤+⎧⎨≤≤⎩∴sin Dxdxdy x =⎰⎰0sin x x dx dy x πππ+=⎰⎰0sin xdx π=⎰0cos 2x π-=.2、求2Dxy dxdy ⎰⎰,其中D 由直线224x y +=及y 所围成右半闭区域.解0:22x D y ⎧⎪≤≤⎨-≤≤⎪⎩∴2Dxy dxdy =⎰⎰2220dy dx -=⎰⎰22221(4)2y y dy --=⎰23521416423515y y -⎛⎫-= ⎪⎝⎭. 注:也可以用极坐标变换来求解.3、求22ln(1)Dx y dxdy ++⎰⎰,其中D 由曲线221x y +=及坐标轴所围成的在第一象限的闭区域.解 令cos sin x r y r θθ=⎧⎨=⎩,则01:02r D πθ≤≤⎧⎪⎨≤≤⎪⎩∴22ln(1)Dx y dxdy ++=⎰⎰2ln(1)Dr rdrd θ+=⎰⎰122ln(1)d r rdr πθ+=⎰⎰12201ln(1)(1)22r d r π⋅++⎰。

浙江师范大学《数学分析》试题答案4页

浙江师范大学《数学分析》试题答案4页

浙江师范大学《数学分析》试题答案与评分参考)一、 (21%)计算题(每小题7分,共21分)1. 求1lim(sin 2cos )xx x x →+解 因00sin 2cos 12cos 2sin limlim 21x x x x x xx →→+--==, (3分)故 原式1sin 2cos 1sin 2cos 10lim(1sin 2cos 1)x x x x xx x x +-+-→=++-=2e (7分)2. 求120ln(1)d (2)x x x +-⎰解 11200ln(1)l d ln(1)d (2)2x x x x x +=+--⎰⎰1100ln(1)l d 2(1)(2)x x x x x +⎡⎤=-⎢⎥-+-⎣⎦⎰ 101l ln 2()d 12x x x =-++-⎰[]10ln 2ln(1)ln(2)x x =-+--1ln 23=3. 求d sin 22sin xx x +⎰解 令cos x u =,则2d sin d sin 22sin (1cos )sin x x x x x x x =++⎰⎰2d cos (1cos )(1cos )xx x =++⎰2d (1)(1)u u u =++⎰21111d 811(1)u u u u ⎛⎫=++ ⎪-++⎝⎭⎰12ln 1ln 181u u C u ⎡⎤=--+++⎢⎥+⎣⎦ 12ln(1cos )ln(1cos )81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦ (7分)二、 (40%)证明题(每小题8分,共40分)1、 设函数()f x 在[0,2]上连续,在(0,2)可导,且21()d (0)f x x f =⎰证明存在一点(0,2)c ∈,使()0f c '=.证 由积分中值定理,存在()1,2ξ∈使21()d ()f x x f ξ=⎰(3分)再由21()d (0)f x x f =⎰知()(0)f f ξ=,因函数()f x 在[0,]ξ上连续,在(0,)ξ可导且()(0)f f ξ=,故由洛尔定理知,存在一点(0,2)c ∈,使()0f c '= (8分)2、 设()0f x ''<,(0)0f =,证明对任何10x >,20x >,有1212()()()f x x f x f x +≤+证法1 设22()()()()g x f x x f x f x =+--,则 (0)(0)0g f =-=, 3分)2()()()g x f x x f x '''=+-,因()0f x ''<,故()f x '单调减少,从而由20x >知2x x x +>,2()()f x x f x ''+<,即2()()()0g x f x x f x '''=+-<, 因此22()()()()g x f x x f x f x =+--单调减少.最后,由10x >知,1g()0x <,即11212()()()()0g x f x x f x f x =+--<.(8分) 证法2 不妨设12x x ≤,则在区间[]212,x x x +和[]10,x 分别应用拉格朗日定理,得1212()()()f x x f x f x +--1221[()()][()(0)]f x x f x f x f =+---121[()()]f f x ξξ''=- (3分)这里2121120x x x x ξξ<<≤<<+,最后再由拉格朗日定理知,存在()21,ηξξ∈, 使得1212()()()()f f f ξξξξη'''-=- (6分) 因此1212()()()f x x f x f x +--121121[()()]()()0f f x f x ξξξξη'''=-=-< (8分)3、 设lim 5n n a →∞=,试用定义证明12lim5nn a a a n→∞+++=证 令5n n b a =-,则因lim 5n n a →∞=,故lim 0n n b →∞=,从而0ε∀>,k +∃∈Z ,使得2n b ε<()n k >.记12n n B b b b =+++ ,则由lim0k n B n →∞=知,对上述的ε,1k +∃∈Z 使得2k B n ε<1()n k >且不妨设1k k >. 因此,当1n k >时,12125n n a a a b b b n n ++++++-= 222k B n k n n εεεε-≤+<+=, 表明12lim 5n n a a a n →∞+++= 4、 设()f x 在[0,π]上连续,π0()d 0f x x =⎰,π()cos d 0f x x x =⎰,则在(0,π)内至少存在不同的两点12,ξξ,使12()()0f f ξξ==.证:0()()d t F t f x x =⎰,则因(0)(π)0F F ==,故应用分部积分得 ππ0()cos d cos d ()f x x x x F x ==⎰⎰πππ00()cos d ()cos ()sin d f x x x F x x F x x x ==+⎰⎰π()sin d F x x x =⎰由积分中值定理,存在()0,πξ∈使π0()sin d ()sin F x x x F ξξ=⎰,因此()0F ξ=,最后由(0)()(π)0F F F ξ===和0πξ<<以及洛尔定理知,存在12,ξξ,使 1()0F ξ'=,2()0F ξ'=且120πξξ<<<. 又因11()()F f ξξ'=,22()()F f ξξ'=,故在(0,π)内至少存在不同的两点12,ξξ,使12()()0f f ξξ==5、 设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤,其中,a b 都是非负常数,c 是(0,1) 内的任一点,证明()22bf c a '≤+. 证:()f x 在[0,1]上具有二阶导数,故存在1(0,)c ξ∈使得211(0)()()(0)()(0)2f f c f c c f c ξ''=+-+- 同理存在2(,1)c ξ∈使得221(1)()()(1)()(1)2f f c f c c f c ξ''=+-+-将上面的两个等式两边分别作差,得 222111(1)(0)()()(1)()22f f f c f c f c ξξ'''-=+-- 即222111()(1)(0)()(1)()22f c f f f c f c ξξ'''=---+因此222111()(1)(0)()(1)()22f c f f f c f c ξξ'''≤++-+ 222(1)22b b ac c ≤+-+而222(1)2212(1)11c c c c c c -+=-+=-+≤,故()22bf c a '≤+(8分) 湖州师院第二届《高等数学》竞赛试卷(专业组)一、 计算题 1、求nnn n n n n ln )ln ln (lim -+∞→的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析题库(1-22章)五.证明题1.设A ,B 为R 中的非空数集,且满足下述条件:(1)对任何B b A a ∈∈,有b a <;(2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ⋃=,证明:(1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明352325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞→lim 的正面述?并验证|2n |和|n )1(-|是发散数列.5.用δε-方法验证:3)23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证:211lim2-=-+-∞→xx x x . 7 . 设a x x x =→)(lim 0ϕ,在0x 某邻域);(10δx U ︒a x ≠)(ϕ,又.)(lim A t f at =→证明A x f x x =→))((lim 0ϕ.8.设)(x f 在点0x 的邻域有定义.试证:若对任何满足下述条件的数列{}n x ,(1))(0x U x n ︒∈,0x x n →,(2)0010x x x x n n -<-<+,都有A x f n n =∞→)(lim ,则A x f x x =→)(lim 0.9. 证明函数⎩⎨⎧=为无理数为有理数x ,x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.10.设)(x f 在(0,1)有定义,且函数)(x f e x 与)(x f e -在(0,1)是递增的,试证)(x f 在(0,1)连续.11. 试证函数2sin x y =,在),0[+∞上是不一致连续的.12. 设函数)(x f 在(a,b )连续,且)(lim x f a x +→=)(lim x f b x -→=0,证明)(x f 在(a,b )有最大值或最小值.13. 证明:若在有限区间(a,b )单调有界函数)(x f 是连续的,则此函数在(a,b )是一致连续的.14 . 证明:若)(x f 在点a 处可导,f (x )在点a 处可导.15. 设函数),()(b a x f 在可导,在[a,b]上连续,且导函数)(x f '严格递增,若)()(b f a f =证明,对一切),(b a x ∈均有()()()f x f a f b =<16. 设函数)(x f 在],[+∞a 可导,并且()0f a <,试证:若当),(+∞∈a x 时,有()0f x c '>>则存在唯一的),(+∞∈a ξ使得0)(=ξf ,又若把条件()f x c '>减弱为/()0()f x a x ∞><<+,所述结论是否成立?17. 证明不等式21(0)2xx e x x >++>18.设f 为(,)-∞+∞上的连续函数,对所有,()0x f x >,且lim x →+∞()f x lim x →-∞=()0f x =,证明()f x 必能取到最大值.19. 若函数()f x 在[0,1]上二阶可导, 且(0)0f =,(1)1f =,(0)(1)0f f ''==,则存在(0,1)c ∈使得|()|2f c ''≥.20. 应用函数的单调性证明2sin ,(0,);2xx x x ππ<<∈ 21. 设函数⎪⎩⎪⎨⎧=≠=0,00,1sin )(x x xx x f m(m 为实数), 试问:(1)m 等于何值时,f 在0x =连续; (2)m 等于何值时,f 在0x =可导; (3)m 等于何值时,f '在0x =连续;22. 设()f x 在[0,1]上具有二阶导数,且满足条件()f x a ≤,()f x b ''≤,其中,a b 都是非负常数,c 是(0,1)的任一点,证明()22b fc a '≤+23. 设函数],[)(b a x f 在上连续,在(a,b )二阶可导,则存在),(b a ∈ξ使得)(4)()()2(2)(2ξf a b a f b a f b f ''-=++-24. 若)(x f 在点0x 的某个领域上有)1(+n 阶连续导函数,试由泰勒公式的拉格朗日型余项推导佩亚诺型余项公式.25. 用泰勒公式证明:设函数)(x f 在[]b a ,上连续,在()b a ,二阶可导,则存在),(b a ∈ξ,使得)(4)()()2(2)(''2ξf a b a f b a f b f -=++-.26. 设函数)(x f 在[]2,0上二阶可导,且在[]2,0上1)(≤x f ,1)(''≤x f .证明在[]2,0上成立2)(''≤x f .27. 设f 是开区间I 上的凸函数,则对任何[]I ⊂βα,,f 在βα,上满足利普希茨(Lipschitz)条件,即存在0L >,对任何[]βα,,'''∈x x ,成立'''''')()(x x L x f x f -≤-.28. 设()f x 在 [,](0)a a +∞ >上满足Lipschitz 条件:|()()|||f x f y k x y -≤-, 证明()f x x在[,]a +∞上一致连续.29. 试证明方程11nn x xx -++⋅⋅⋅+=在区间1(,1)2有唯一实根。

30. 设函数)(x f 在点a 具有连续的二阶导数,试证明:)()(2)()(lim''2a f ha f h a f h a f h =--++→ 31. 设)(x f 在),(b a 上可导,且A x f x f b x a x ==-→+→)(lim )(lim 0.求证:存在),(b a ∈ξ,使0)(='ξf .32. 设)(x f 在],[b a 上连续,在),(b a 有n 阶导数,且存在1-n 个点),(,,,121b a x x x n ∈-Λ满足:)()()()()()2()1(121121b f x f x f x f a f b x x x a n n =====<<<<<--ΛΛ求证:存在),(b a ∈ξ,使0)()(=ξn f .33. 设函数f 在点0x 存在左右导数,试证f 在点0x 连续. 34. 设函数f 在],[b a 上可导,证明:存在),(b a ∈ξ,使得)()()]()([222ξξf a b a f b f '-=-.35.应用拉格朗日中值定理证明下列不等式:aab a b b a b -<<-ln ,其中b a <<0.36.证明:任何有限数集都没有聚点. 37.设(){},nna b 是一个严格开区间套,即满足1221n n a a a b b b <<<<<<<L L ,且()lim 0n n n b a →∞-=.证明:存在唯一的一点ξ,使得,1,2,n n a b n ξ<<=L . 38.设{}n x 为单调数列.证明:若{}n x 存在聚点,则必是唯一的,且为{}n x 的确界. 39.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上一致连续. 40.若函数()f x 在闭区间[,]a b 上连续, 证明()f x 在[,]a b 上有界. 41.若函数()f x 在闭区间[,]a b 上连续,证明()f x 在[,]a b 上有最大值.42.若函数()f x 在闭区间[,]a b 上连续且单调增加,1(),(,],()(),,x a f t dt x a b x a F x f a x a ⎧∈⎪-=⎨⎪=⎩⎰证明()F x 为[,]a b 上的增函数. 43.函数()f x 在闭区间[0,1]上连续.证明220(sin )(cos )f x dx f x dx ππ=⎰⎰.44.若函数()f x 在闭区间[,]a b 上单调,证明()f x 在[,]a b 上可积. 45.若函数()f x 在闭区间[,]a b 上连续,且()f x 不恒等于零,证明()2()0ba f x dx >⎰.46.设函数()f x 为(,)-∞+∞上以p 为周期的连续周期函数.证明对任何实数a ,恒有()()a ppaf x dx f x dx +=⎰⎰.47.若函数()f x 在[0,)+∞上连续,且lim ()x f x A →+∞=,证明01lim()xx f t dt A x →+∞=⎰.48.若函数()f x 和()g x 在[,]a b 上可积,证明()()()222()()()()bbba aaf x dxg x dx f x g x dx ⋅≥⎰⎰⎰.49.若函数()f x 在[,]a a -上可积,且为偶函数,证明0()2()aaaf x dx f x dx -=⎰⎰.50.若函数()f x 在[,]a b 上可积,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上连续.51.若函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任何实数,则存在0[,]x a b ∈,使得0()f x μ=. 52. 若函数()f x 在[,]a b 上连续,证明函数()(),[,]xax f t dt x a b Φ=∈⎰在[,]a b 上处处可导,且()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰.53.若数列{}n b 有lim n n b →∞=∞,则级数()11n n n bb ∞+=-∑发散.54.设1n n u ∞=∑为正项级数,且存在常数(0,1)q ∈,使得对一切1n ≥,成立1n nu q u +≤.证明级数1nn u∞=∑收敛.55.设1n n u ∞=∑和1n n v ∞=∑为正项级数,且对一切1n ≥,成立11n n n n u v u v ++≤.级数1n n v ∞=∑收敛.证明级数1nn u∞=∑也收敛.56.设正项级数1nn u∞=∑收敛.证明级数21nn u∞=∑也收敛.试问反之是否成立?57.设0,1,2,n a n ≥=L ,且{}n na 有界,证明级数21nn a∞=∑收敛.58.设级数21n n a ∞=∑收敛.证明级数1(0)nn n a a n ∞=>∑也收敛. 59.若lim 0nn n a k b →∞=≠,且级数1n n b ∞=∑绝对收敛,证明级数1n n a ∞=∑也收敛. 若上述条件中只知道级数1nn b∞=∑收敛,能推得级数1nn a∞=∑也收敛吗?60.设0n a >,证明级数()()()112111nn na a a a ∞=+++∑L 收敛. 61. 221)(x n xx S n +=. 证明在) , (∞+∞-)(x S n −→−−→−0, ) (∞→n .62. 设数列}{n a 单调收敛于零.试证明:级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.63. 几何级数∑∞=0n nx在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-非一致收敛.64. 设数列}{n a 单调收敛于零 . 证明 : 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.65. 证明级数∑∞=-+-121) 1(n n nx在R 一致收敛 .66. 证明函数∑∞==0!2)(n nn n x x f 满足微分方程 R ∈=-'-''x y y y ,02.67. 设⎪⎩⎪⎨⎧=≠=.0, 1,0 ,sin )(x x x xx f 证明对)0( , )(n f n ∀存在并求其值.68. 证明:幂级数∑∞=1n n n x 的和函数为∑∞=1n n nx )1ln(x --=,∈x ) 1 , 1 [-.并求级数∑∞=+1132n nn n 和Leibniz 级数∑∞=+-11) 1(n n n 的和.69. 证明:幂级数∑∞=1n nnx的和函数为∑∞=1n nnx2(1)xx =- , 1 ||<x .并利用该幂级数的和函数求幂级数∑∞=+1123n n n nx 的和函数以及数项级数∑∞=-+1121n n n 的和. 70. 证明幂级数∑∞=++-01212) 1 (n n n n x 的和函数为arctgx ,并利用该幂级数的和函数求数项级数∑∞=+-012) 1 (n nn 的和. 71. 设)(x f 是以π2为周期的分段连续函数, 又 )(x f 满足)()(x f x f -=+π.求证 )(x f 的Fourier 系数 满足,0,0220===n n b a a .,2,1Λ=n72. 设)(x f 是以π2为周期的分段连续函数, 又设 )(x f 是偶函数,且满足()()f x f x =-π.求证: )(x f 的Fourier 系数,012=-n a .,2,1Λ=n73.求证函数系{}ΛΛnx x x sin ,,2sin ,sin 是],0[π上的正交函数系. 74.设)(x f 是以2L 为周期的连续的偶函数。

相关文档
最新文档