红外防盗报警器

合集下载

红外线防盗报警器电路原理图

红外线防盗报警器电路原理图

红外线防盗报警器电路原理图该红外线防盗报警器的特点是,当有人经过防盗物的主要通道、靠近防盗物或破门而入时,即能发出较洪亮的报警声,并延长一段时间才会停止。

如果盗贼仍然在此位置左右移动,则报警声仍然持续发出。

工作原理红外线防盗报警器电路原理图如图1所示。

红外线发射器由IC2(NE555)、R1、R2、C3等元件组成振荡频率为40kHz的多谐振荡器。

VLS是红外线发射探头,其40kHz高频信号由它向外辐射,形成红外线光束。

VDL是红外线接收探头,它与IC3 (CX20 106A)组成红外线接收、整形和放大电路,放大后的红外线信号变成电脉冲信号。

IC4及其外围元器件组成报警执行电路,一旦其2脚为低电平,电路立即翻转,信号输出端3脚立即转为高电平输出,同时具有延时功能。

平时,VDL接收到VDL辐射的红外光束。

红外线接收专用前置放大集成电路(它的特点是灵敏度高、不用电感谐振线圈)IC3的信号输出端7脚为低电平,VT1呈截止状态,IC4的2脚为高电平,3脚为低电平输出,因此后续电路均不会工作,无报警声发出。

当有人经过防盗物的主要通道、进人房门或靠近防盗物时,挡了一下红外光线,在挡住的瞬间,IC3的7脚立即转为高电平,从而使VTl饱和导通,2脚立即为低电平,故IC4翻转,3脚为高电平,K得电吸合,接通模拟声报警专用集成电路IC5的电源,扬声器BL就发出响亮的警报声。

与此同时,IC4进人延时阶段,约经过2nun(计算公式为t=1 .1RgC8)时间后,IC4置位,使3脚又转为低电平,报警声停止。

如果这时红外线又被挡住,电路会再次工作。

元器件选择IC1选用CW7806或LM7806集成电路;IC2,IC4均选用555时基集成电路;IC3选用CX20106或KA2184集成电路;IC5选用KD -9561四声模拟声集成电路。

VT1选用3DG12或9013型硅晶体管;VT2选用8050型NPN晶体管,要求电流放大系数β>10 00VD1一VD4选用1 N4004 x 4整流桥堆,V D5选用2CP10型二极管。

红外线防盗器原理

红外线防盗器原理

红外线防盗器原理
红外线防盗器是一种常见的安防设备,它基于红外线的工作原理来实现监测和报警功能。

红外线是处于可见光和微波之间的电磁辐射,具有较长的波长。

红外线防盗器利用红外线传感器和控制电路,实现对入侵物体的检测。

红外线防盗器主要由两个组成部分构成:红外线发射器和红外线接收器。

发射器会持续地发射红外线信号,而接收器则会接收并分析这些信号。

当有物体进入红外线的探测范围时,物体会对红外线进行反射或吸收。

接收器会检测到红外线信号的变化,如果变化超过设定的阈值,则触发报警。

红外线防盗器的工作原理基于物体对红外线的遮挡或反射。

当没有任何物体遮挡红外线时,接收器会接收到发射器发出的红外线信号,处于正常状态。

然而,当有人或其他物体进入红外线的探测范围时,物体会遮挡或反射掉一部分红外线。

这个变化会被接收器检测到,触发警报系统。

值得一提的是,红外线防盗器可以通过调整探测范围和灵敏度来实现不同的安全需求。

一般来说,红外线防盗器的探测范围可以达到几米,而灵敏度可以调节以适应不同环境下的使用。

红外线防盗器在家庭、商店、仓库等许多场所都得到了广泛应用。

它可以及时检测到陌生人或潜在的入侵者,有效地预防和防范盗窃行为。

另外,红外线防盗器还可以与其他安全设备如摄像头、报警器等联动,提供更加全面和可靠的安全保护。

综上所述,红外线防盗器通过利用红外线的工作原理,实现对入
侵物体的检测和警报功能,为人们的生活和财产安全提供了有效的保障。

红外线报警器的工作原理

红外线报警器的工作原理

红外线报警器的工作原理
红外线报警器是一种常用的安防设备,其工作原理基于红外线传感技术。

红外线是一种电磁波,位于可见光谱和微波之间的频率范围内。

红外线报警器通常由红外线发射器和红外线接收器两个部分组成。

红外线发射器会发射一束红外线,而红外线接收器则会接收这束红外线。

当没有物体阻挡红外线传播时,红外线发射器发出的红外线会直接照射到红外线接收器上。

此时,红外线接收器会正常工作且不会产生报警信号。

然而,当有物体进入红外线传感器的监测范围内时,物体会阻挡红外线的传播。

经过物体后,残余的红外线会重新照射到红外线接收器上。

由于被物体阻挡后的红外线能量较弱,红外线接收器会检测到红外线能量的变化,进而将这一变化转化为电信号。

接着,这个电信号会被红外线报警器内部的电路所处理,如果电路判断出这个变化超过了设定的报警阈值,红外线报警器将发出警报信号,如声音或光线闪烁,以提醒人们有可疑物体进入监测区域。

总体来说,红外线报警器的工作原理是通过红外线的发射和接收来检测物体是否进入了监测区域,并根据红外线能量的变化
判断是否触发报警。

这一工作原理使得红外线报警器在安全防护中起到了重要的作用。

对射式红外线防盗报警器的设计

对射式红外线防盗报警器的设计

第一章绪论在一些电影、电视剧中我们常可以看到,有些博物馆等安全性要求比较高的场所,在安防电脑系统的屏幕上面,显示着一根根红线,如果有人进入不小心“触”到了这根红线,那么报警器就会发响。

这就是红外线报警器。

1.1 课题研究的意义红外线报警器分主动式和被动式两种[1]。

主动式红外线报警器,是报警器主动发出红外线,红外线碰到障碍物,就会反弹回来,被报警器的探头接收。

如果探头监测到,红外线是静止不动的,也就是不断发出红线线又不断反弹的,那么报警器就不会报警。

当有会动的物体触犯了这根看不见的红线的时候,探头就会检测到有异常,就会报警。

被动式报警器少了一项功能,就是发射红外线。

物理学上告诉我们,当物体的温度高于0K的时候,就会发出红外线,换句话说任何物体都能发出红外线[2]。

而其后的原理,被动式报警器和主动式是一样的。

红外线报警器对温度敏感,温度越高的物体辐射出的红外线越强,当感应到环境中存在高出背景强度的辐射时,就触发报警。

主动式红外探测器是由收、发装置两部分组成[3]。

发射装置向装在几米甚至于几百米远的接收装置辐射一束红外线,当被遮断时,接收装置即发出报警信号,因此,它也是阻挡式报警器,或称对射式探测器。

通常,发射装置由多谐振荡器、波形变换电路、红外发光管及光学透镜等组成。

振荡器产生脉冲信号,经波形变换及放大后控制红外发光管产生红外脉冲光线,通过聚焦透镜将红外光变为较细的红外光束,射向接收端。

接收装置由光学透镜、红外光电管、放大整形电路、功率驱动器及执行机构等组成[4]。

光电管将接收到的红外光信号转变为电信号,经整形放大后推动执行机构启动报警设备。

主动式红外报警器有较远的传输距离,因红外线属于非可见光源,入侵者难以发觉与躲避,防御界线非常明确。

主动式红外报警器是点型、线型探测装置,除了用作单机的点警戒和线警戒外,为了在更大范围有效地防范,也可以利用多机采取光墙或光网安装方式组成警戒封锁区或警戒封锁网,乃至组成立体警戒区。

电子红外线报警器工作原理

电子红外线报警器工作原理

电子红外线报警器工作原理电子红外线报警器是一种智能安防设备,广泛应用于家庭、商业和工业领域。

它利用红外线技术感知周围环境的变化,并及时发出警报,保护人们的生命和财产安全。

本文将详细介绍电子红外线报警器的工作原理。

1. 基本原理电子红外线报警器采用了被动红外线(PIR)技术。

被动红外线是指设备只接收红外线信号,而不发射。

当有外部物体进入红外线的监测范围内时,物体会发射红外线辐射,被红外线传感器接收到。

2. 红外线传感器电子红外线报警器的核心部件是红外线传感器。

红外线传感器一般采用双元素热释电探测器,也就是使用两个热敏元件进行探测。

这两个元件受到红外线热能的影响,产生微小的电压变化。

3. 信号处理红外线传感器将接收到的信号传递给信号处理器。

信号处理器会对接收到的信号进行分析和处理,以区分真实的人体运动信号和其他干扰信号,确保报警的准确性。

信号处理器通常采用数字信号处理(DSP)和模式识别算法。

4. 报警系统一旦信号处理器判断出有可疑的人体运动信号,电子红外线报警器就会触发报警系统。

报警系统可以通过声光报警器、短信通知或联动其他安防设备等方式,向使用者发出警报,提醒他们注意并采取相应的措施。

5. 防遮挡技术为了提高红外线报警器的稳定性,防止被恶意遮挡导致误报警情况的发生,现代的电子红外线报警器采用了多重防遮挡技术。

这些技术包括红外线穿透、微波感应、双技术防护等,有效减少了误报警的可能性。

6. 适用场景电子红外线报警器适用于各种室内和室外环境,如住宅、商店、办公室、仓库等。

它可以监测人体和大型动物的活动,有效检测入侵行为,并及时采取措施。

7. 注意事项在安装和使用电子红外线报警器时,有一些注意事项需要遵守。

首先,应选择合适的安装位置,避免遮挡和干扰物体。

其次,需要定期进行维护和检测,保证设备的正常运行。

最后,应妥善设置报警系统,确保及时收到报警信息。

总结:电子红外线报警器利用被动红外线技术,通过红外线传感器感知环境的变化,经过信号处理后触发报警系统。

小学生科技创新发明:红外线防盗器1

小学生科技创新发明:红外线防盗器1

作品
红外线防盗器
名称
发明缘由:
安防设备是现代居家生活中的重要设备,它能快速的感应到哪些区域的安全受到了威胁,所以我想发明一个防盗器,让小偷还没进门就发出警报,保护家庭财产安全。

作品简介:
这个红外线激光防盗器具有两大部分,一个是光线发射端,一个是光感控制端。

光线发射端首先用到的是激光红外线激光红外线的光束是直线型,且不闪光能够精准定位照射。

光感控制端是用光敏电阻来监测激光红外线,当红外线一直照射在光感控制端,报警器和报警灯就不会响,当中间有阻碍物遮挡,报警器和报警灯同时响,向人们发出警报。

制作价值:
把这个红外线防盗器安装在家里的门框的两端,可以很好地防止小偷闯入住宅,而且成本较低,使用的灵敏性很高。

红外防盗报警器原理

红外防盗报警器原理

红外防盗报警器原理
红外防盗报警器常用于保护房屋、商店、办公室等场所的安全,其工作原理是基于红外线的检测。

红外防盗报警器主要包含了红外传感器和报警装置。

红外传感器是整个系统的核心部件,它通过感知红外线的变化来判断是否有人进入被保护区域。

当有人进入时,红外传感器将会检测到人体发出的红外辐射,然后将这个信号传送给报警装置。

红外传感器通常采用的是被动红外传感技术(PIR技术)。


技术基于人体发出的红外辐射具有不同的热量特征,传感器可以通过检测这种热量的变化来判断是否有人靠近。

在无人经过时,红外辐射保持稳定,但当有人经过时,人体会带来一个热量的扰动,导致红外辐射的变化。

红外传感器检测到这种变化后,会触发报警。

报警装置是红外防盗报警器的另一个重要组成部分,其作用是在红外传感器检测到入侵行为后发出警报信号。

报警装置可以是声光报警器、电话报警器,甚至是与安防中心相连的报警系统。

根据不同的安全需求,可以选择相应的报警装置。

红外防盗报警器的工作原理基于红外线的检测,通过红外传感器感知到人体的热量变化来判断是否有人进入被保护区域,并在检测到入侵行为后触发报警装置发出警报信号。

这种工作原理使得红外防盗报警器成为一种高效可靠的安防设备。

弱电工程红外防盗报警系统知识

弱电工程红外防盗报警系统知识

弱电工程红外防盗报警系统知识红外防盗报警系统是弱电工程中的一种非常重要的安全系统,它的作用是在监控区内通过红外线来探测异常行为,并实时触发报警器警示人员。

这个系统不仅适用于家庭或办公室的安全保护,也可以被广泛应用于商业、工厂以及公共场所的安保工程中。

本文将深入探讨红外防盗报警系统的基础知识以及其原理、组成、安装等方面的细节。

一、原理红外防盗报警系统利用人工智能的技术以及初、中、高频干扰等手段,对监控区域进行精准监控。

当监视区有人或物体进行异常活动时,红外线便会被触发,从而启动报警系统,并第一时间通知安保人员,这样就可以保证安全事件在最短时间内得以处理,避免人身财产受到损失。

二、组成红外防盗报警系统主要由红外探测器、输入部分、输出部分、中央处理部分等组成。

1. 红外探测器红外探测器是系统中最重要的组成部分,它通过感应区域的温度变化来监听附近的动态变化。

这个探测器的作用是监控环境变化,并将变化信号进行传递和处理。

探测器的种类有很多,但在弱电工程中比较常用的是红外单芯片、双单红外线探测器和红外对射探测器。

其中,双单红外线探测器较为灵敏,而红外对射探测器的抗干扰能力更强。

2.输入部输入部主要通过一个触发器为警报器分配电源,当红外探测器执行监控行为时,触发器就会产生信号并使警报器响起。

3.输出部输出部通常采用可控硅等组件来实现报警器的特定功能。

当有可疑事件发生时,警报器将发出报警声或闪烁装置,以提醒所在区域的安防人员。

4.中央处理部中央处理部主要由集成电路(IC)和微处理器(MCU)组成,它负责对整个系统进行自动化控制,提高整个系统的效率和稳定性,并通过无线电台连接报警控制中心等设备,进行快速信息传递和响应。

三、安装要点在进行安装过程中,红外防盗报警系统需要注意以下几点:1.选择安装位置在选择安装位置时,应注意红外探测器的监控范围,其受到距离和反向环境因素的影响。

因此,建议在需要监控的区域安装多个红外探测器,以提高监控精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外防盗报警器————————————————————————————————作者: ————————————————————————————————日期:ﻩ基于单片机的红外防盗报警系统简介热释电红外线传感器作为一种高热电系数的探测元件,可过滤接收人体辐射特定波长范围的红外线,将红外辐射转变成微弱的电压信号放大后向外输出。

它能组成防入侵报警器或各种自动化节能装置,能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。

本设计从模块上划分为:热释电红外传感器探测模块、放大电路、时钟电路、复位电路、放光二极管报警电路、声音报警电路。

硬件实现:本系统所用到的器件为:单片机STC89C51、热释电红外传感器、LED、按键、反相器74LS04、蜂鸣器,以及单片机的手工复位电路等。

系统功能描述:系统等待外部热释电传感脉冲信号输入,接收到输入表示有人闯入,启动声光报警电路,报警持续10秒后结束,若有新的信号输入,开始新的检测循环。

同时手工按键可以强制报警中断。

一、设计要求和技术指标:1.1设计要求(1)利用单片机AT89C51、热释电红外传感器、LED、反相器74LS14、蜂鸣器等元器件模拟出红外防盗报警器。

(2)熟练掌握proteus和keil uvision2软件的使用1.2 技术指标(1)报警接收方式:无线发射输出,发射距离≥150米(2)报警持续时间:10秒(3)主机外接鸣响分贝:≥110dB(4)工作频率:315MHz/433MHz(5)石英晶体振荡器的振荡频率为12MH Z二、设计需要完成的任务:2.1.明白此防盗系统的工作方式当人员外出时,可把报警系统设置在外出布防状态,探测器工作起来,当有人闯入时,热释电红外传感器将探测到动作,设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL电平至89C51单片机,经单片机处理运算后驱动执行报警电路使警号发声。

2.2 了解Proteus软件的大致内容并会使用Proteus软件是英国Labcenter electronics公司出版的EDA工具软件,它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。

它是目前最好的仿真单片机及外围器件的工具。

虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。

proteus从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。

是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。

在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

三、主要参考元器件:本次设计所需所以元器件如表1所示:序号元器件数量备注1 AT89C51 151内核系列单片机(4K)2 74LS14 1 施密特触发器的六反相器3 CRYSTAL 1 石晶振荡器4 BUTTON 1 按钮5 CAP-ELEC1电解电容6 CAP 3 电容7 NPN 1 三极管 8 LE D 5 红色*4绿色*19 RE S 7 电阻 10SPEAKER1蜂鸣器表1 主要元器件四、设计内容4.1具体设计方案本设计包括硬件和软件设计两个部分。

模块划分为数据采集、键盘控制、报警等子模块。

电路结构可划分为:热释电红外传感器、报警器、单片机控制电路、L ED 控制电路及相关的控制管理软件组成。

用户终端完成信息采集、处理、数据传送、功能设定、本地报警等功能。

就此设计的核心模块来说,单片机就是设计的中心单元,所以此系统也是单片机应用系统的一种应用。

单片机应用系统也是有硬件和软件组成。

硬件包括单片机、输入/输出设备、以及外围应用电路等组成的系统,软件是各种工作程序的总称。

单片机应用系统的研制过程包括总体设计、硬件设计、软件设计等几个阶段。

从设计的要求来分析该设计包含如下结构:热释电红外传感探头、报警电路、单片机、复位电路及相关的控制管理软件组成;它们之间的构成框图如图4.1总体设计框图所示:图4.1 总体设计框图时钟复位AT89C51单灯光驱驱声音处理器采用51系列单片机AT89C51。

整个系统是在系统软件控制下工作的。

设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL电平至STC89C51单片机。

在单片机内,经软件查询、识别判决等环节实时发出入侵报警状态控制信号。

驱动电路将控制信号放大并推动声光报警设备完成相应动作。

当报警延迟10s一段时间后自动解除,也可人工手动解除报警信号,当警情消除后复位电路使系统复位,或者是在声光报警10s钟后有定时器实现自动消除报警。

4.2 硬件模块设计4.2.1时钟电路的设计XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL 2应不接。

因为一个机器周期含有6个状态周期,而每个状态周期为2个振荡周期,所以一个机器周期共有12个振荡周期,如果外接石英晶体振荡器的振荡频率为12M HZ,一个振荡周期为1/12us,故而一个机器周期为1/12us。

如图4.2.1所示为时钟电路。

图4.2.1时钟电路4.2.2 复位电路设计复位方法一般有上电自动复位和外部按键手动复位,单片机在时钟电路工作以后,在RESET端持续给出2个机器周期的高电平时就可以完成复位操作。

使用晶振频率为12MH z时,则复位信号持续时间应不小于2us。

本设计采用的是外部手动按键复位电路。

如图4.2.2示为复位电路。

图4.2.2复位电路4.2.3 发光二极管报警电路设计该设计使本红外线防盗报警器报警时发出刺眼的红光提醒人们有小偷,以保证财产安全。

该电路由4个发光二极管接上电阻后连上单片的R X D 的引脚,外接VCC,当单片机的RXD引脚被置低电平后,发光二极管被点亮,起到报警作用。

图3-10所示为发光二极管报警电路。

4.2.3发光报警电路4.2.4声音报警电路设计该设计使本红外线防盗报警器报警时发出刺耳的报警声音提醒人们有小偷。

如下图所示,用一个Speaker和三极管、电阻接到单片机的TXD引脚上,构成声音报警电路,如图4.2.4示为声音报路。

图4.2.4声音报警电路4.2.5 系统硬件的选择从以上各种条件下得到如下硬件:STC89C51、热释电红外传感器、L E D 、按键、反相器74LS04、蜂鸣器等一些单片机外围应用电路,以及单片机的手工复位电路等。

D 1是正常工作指示灯,D2-D5是起报警指示作用,当R X D 脚被置低电平时,D2-D5红灯闪烁开始报警,同样,T XD 脚置高电平时声音报警电路开始工作。

电路设有2个按键,S1键作为倒计时的暂停键, S 2键作为作为电路复位键。

4.3 软件设计 4.3.1 主程序工作流程开系统初声光报警结束 声光报检测外部有无信号输入是否还启动声光报警电YNYYN由此流程框图可看出,当红外探测器接收到一个信号系统开始初始化,然后有C51单片机判断是否有人闯入监控区域,如果不是的话报警器将不会工作,是的话开启声光报警系统,然后判断是否开始持续10秒报警,是的话则是报警即将结束,不是的话则开始继续判断是否还有需要报警的信号,有的话开始持续报警,没有的话则此次报警结束。

4.3.3软件仿真本设计通过利用Proteus仿真,将所编写的程序用Kei l软件编译,本设计所要求达到的目标是在接收到红外探头带来的高电平信号,可使图中的绿灯由亮变暗,红灯闪烁,蜂鸣器发出声音产生报警,可观察到红灯一闪一闪的。

当报警结束后,绿灯亮起,红灯熄灭,蜂鸣器不发声。

图4.3.3为电路开始工作的状态图4.3.3 软件仿真图(开始)红色发光二极管D3,D4,D5,D6(发光二极管简称为LED。

由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。

发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性)蜂鸣器LS(蜂鸣器的作用:蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。

蜂鸣器的分类:蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。

本设计采用的则是压电式蜂鸣器,压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。

有的压电式蜂鸣器外壳上还装有发光二极管。

多谐振荡器由晶体管或集成电路构成。

当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kHz的音频信号,阻抗匹配器推动压电蜂鸣片发声)(1)电路实现功能针对中断系统的显示,设计了一种实用化基于单片机AT89C51的手工暂停电路。

该电路可通过按按钮S1能够实现手工解除警报信号。

电平信号经放大电路到声光报警器后,当报警延时10s一段时间后会自动解除,同样也可以通过按下按键,单片机接收INT0的中断信号,调用INT0中断子程序,从而解除报警。

(2)电路原理XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,XTAL2应不接。

有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

复位则是通过某种方式, 使单片机内各寄存器的值变为初始状态的操作称为复位。

复位方式是单片机的初始化操作。

单片机除了正常的初始化外,当程序运行出错或由于操作错误而使系统处于死循环时,也需要按复位键重启机器。

MCS—51单片机复位后,程序计数器PC和特殊功能寄存器复位的状态如表2-1所示。

复位不影响片内RAM存放的内容, 而ALE、/PSEN 在复位期间将输出高电平。

由表2.1可以看出,复位后:(1)(PC)=0000H 表示复位后程序的入口地址为0000H,即单片机复位后从0000H单元开始执行程序;(2)(PSW)=00H,其中RS1(PSW.4)=0,RS0(PSW.3)=0,表示复位后单片机选择工作寄存器0组;(3)(SP)=07H 表示复位后堆栈在片内RAM的08H单元处建立;(4) P0口~P3口锁存器为全1状态,说明复位后这些并行接口可以直接作输入口,无须向端口写1。

相关文档
最新文档