2022新教材高中数学课时检测22简单幂函数的图象和性质含解析北师大版必修第一册
北师大版数学必修一《简单的幂函数》教学课件

=3x2 及 y=2 均不符合幂函数的形式 y=xα, 故均不是 幂函数.
2.若奇函数f(x)在x=0处有意义,则f(0)是什么? 【提示】 由奇函数定义,f(-x)=-f(x),则f(-0)=-f(0),∴f(0)=0.
幂函数的概念
下列函数中是幂函数的是( ) ①y=-x2;②y=2x;③y=xπ;④y=(x-1)3; 1 1 ⑤y= 2;⑥y=x2+ . x x A.①③⑤ C.③⑤ B.①②⑤ D.只有⑤
yx ;
1 2
(2)观察上面的函数图象会发现以下特征: ①图象都过点(1,1). ②在第一象限内函数y=x,y=x2,y=x3, y
x
1 2
的图象自左向右看都是
上升的,也就是在[0,+∞)上都是增函数,且这几种函数的图象都过原点. ③函数y=x-1的图象在第一象限内自左向右看是下降的,即y=x-1在(0, +∞)上是减函数.
【思路点拨】 依据幂函数的定义进行判断.
【解析】 y=-x2 幂前系数是-1 而不是 1,故不是幂函数; y=2x 指数不是常量,不是幂函数;y=(x-1)3 的底数是 x-1 而不是 x,故不是 1 1 幂函数; y=x2+ 是两个幂函数和的形式, 也不是幂函数.y= 2=x-2 和 y=xπ 具有 x x 幂函数 y=xα 的形式,所以选
解决有关幂函数问题的关键是会定性分析
x
q p
中,p,q
为正、负、奇、偶等各种情况的大体图象,要从函数的奇偶性、单调性出 发对函数进行探讨,重点要研究在第一象限内的各种情况.注意:所有幂函 q q 数在第一象限内均有图象,且过点(1,1), >0,则为递增, <0,则为 p p 递减.
2.用描点法画出①y=x;②y=x2;③y=x3;④ ⑤y=x-1的图象并指出其特点. 【解析】 (1)图象如下图所示:
09-第四节 函数的奇偶性与简单的幂函数-课时2 简单幂函数的图象和性质高中数学必修一北师大版

知识点2 幂函数的图象和性质 4年3考
3.下列命题正确的是( D )
A.幂函数的图象都经过 0,0 , 1,1 两点
B.当 = 0时,函数 = 的图象是一条直线
C.如果两个幂函数的图象有三个公共点,那么这两个函数一定相同
D.如果幂函数为偶函数,则图象一定经过点 −1,1
【解析】 对于A,幂函数 = 的图象都经过点 1,1 ,当 ≤ 0时,不过点
D.若 > 1,则 > 1
1
,故A正确.
2
1
2
= ,则函数 的定义
1
2
域为[0, +∞),且 为非奇非偶函数,故B,C错误.因为 = > 0,所以函数
1
2
= 在区间[0, +∞)上单调递增,所以当 > 1时, > 1 = 1,故D
正确.
6.有四个幂函数:① = −1 ;② = −2 ;③ = 2 ;
情形,②是 = 2的情形,⑤是 =
1
− 的情形,所以①②⑤都是幂函数;③是
2
常函数,不是幂函数;④中 2 的系数是2,所以不是幂函数.故选C.
【归纳总结】幂函数 = (为常数)具有形式上的严格性,在幂函数
的表达式中,要注意以下四点:
(1) 的系数为1;(2) 的底数是自变量;(3)指数为常数;
−∞, 0 ∪ 0, +∞ ,且在 0, +∞ 上单调递减,满足条件;对于②, = −2
是 −∞, 0 ∪ 0, +∞ 上的偶函数,值域是 0, +∞ ,且在 0, +∞ 上单调递减,
满足条件;对于③, = 2 是上的偶函数,值域是[0, +∞),在 0, +∞ 上
第二章-4.2-简单幂函数的图象和性质高中数学必修第一册北师大版

§4 函数的奇偶性与简单的幂函数
4.2 简单幂函数的图象和性质
教材帮|必备知识解读
知识点1 幂函数的概念
例1-1 在函数 = −4 , = 3 2 , = 2 + 2, = 1中,幂函数的个数为( B
A.0
B.1
C.2
D.3
【解析】函数 = −4 为幂函数;
函数 = 3 2 中 2 的系数不是1,所以它不是幂函数;
的增大而减小;
当 = −3时,2 − 2 − 3 = 12, = 12 是幂函数,但不满足当 ∈ 0, +∞ 时,
随的增大而减小,故舍去.
∴ 实数的值为2.
【学会了吗|变式题】
2.(2024·广东省汕头市期末)已知函数 = 2 − 2 − 2 ⋅ −2 是幂函数,且在
故A正确;
幂函数 = 的图象只在第一象限内和原点,故B不正确;
当 > 0时, > 0,所以幂函数的图象不可能在第四象限,故C不正确;
幂函数 = 与 = 3 的图象的交点为 −1, −1 , 0,0 , 1,1 ,共三个,故D不正确.
方法帮|关键能力构建
题型1 幂函数的定义域和值域
0, +∞ 上单调递增,则实数 =( C
A.−1
B.−1或3
)
C.3
D.2
【解析】由题意知,2 − 2 − 2 = 1,即 + 1 − 3 = 0,
解得 = −1或 = 3,
∴ 当 = −1时, − 2 = −3,则 = −3 在 0, +∞ 上单调递减,不合题意;
当 = 3时, − 2 = 1,则 = 在 0, +∞ 上单调递增,符合题意,∴ = 3,
新教材高中数学第二章函数4函数的奇偶性与简单的幂函数 简单幂函数的图象和性质课件北师大版必修第一册

必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点1 幂函数的概念 一般地,形如_____y_=__x_α_(α_为__常__数__)___的函数,即底数是自变量、指数
是常数的函数称为幂函数. 思考1:幂函数的解析式有什么特征? 提示:①系数为1;②底数x为自变量;③幂指数为常数.
y=x2 __偶___函数
_[_0_,+__∞__)
y=x3 _奇___函数 ___R___
y=1x
1
y=x2
__奇___函数
_非__奇__非__偶__ 函数
无
_[_0_,_+__∞_)__
减区间
无
__(-__∞__,0_)_
无
_(-__∞__,0_)_,_(0_, +__∞__) ____
无
定点
___(_1_,_1_) ___
思考2:在区间(0,+∞)上,幂函数有怎样的单调性? 提示:幂函数在区间(0,+∞)上,当α>0,y=xα是增函数;当α<0时,y =xα是减函数.
基础自测
1.下列函数为幂函数的是
( D)
A.y=2x4
B.y=2x3-1
C.y=2x
D.y=x2
[解析] y=2x4 中,x4 的系数为 2,故 A 不是幂函数;y=2x3-1 不
第二章 函 数
§4 函数的奇偶性与简单的幂函数 4.2 简单幂函数的图象和性质
【素养目标】 1.通过具体实例,理解幂的概念.(数学抽象) 2.会画简单幂函数的图象,并能根据图象得出这些函数的性质.(直 观想象) 3.理解常见幂函数的基本性质.(逻辑推理)
【学法解读】 以五种常见的幂函数为载体,学生应自己动手在同一个平面直角坐标 系下画出这五种幂函数的图象,通过观察比较研究其图象和性质,进而研 究一般幂函数的图象和性质.
北师大版高中数学课件第二章 4.2 简单幂函数的图象和性质

(3)由幂函数的图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象
限内的图象(类似于 y=x 或
-1
1
y= 2 ,y=x3)来判断.
(4)当α>0时,幂函数在区间(0,+∞)上都单调递增;当α<0时,幂函数在区间
(0,+∞)上都单调递减.
变式训练 2如图所示,曲线C1与C2分别是函数y=xm和y=xn在第一象限内的
断a,b,c的大小关系.
解析由幂函数的图象特征,知c<0,a>1,0<b<1.故c<b<a.
答案A
反思感悟 对于函数y=xα(α为常数)而言,其图象有以下特点:
(1)恒过点(1,1).
(2)当x∈(0,1)时,指数越大,幂函数图象越靠近x轴(简记为“指大图低”);当
x∈(1,+∞)时,指数越大,幂函数的图象越远离x轴(简记为“指大图高”).
设 g(x)=xb(b∈R).
1
∵点 -2, 4 在幂函数 g(x)的图象上,
1
∴4=(-2)b,解得 b=-2.∴g(x)=x-2.
在同一直角坐标系中作出f(x)=x2和g(x)=x-2的图象,如图所示:
(1)当x>1或x<-1时,f(x)>g(x);
(2)当x=1或x=-1时,f(x)=g(x);
数)的形式,即:(1)系数为1;(2)指数为常数;(3)后面不加任何项.反之,若一个
函数为幂函数,则该函数必具有这种形式.
变式训练1如果幂函数y=(m2-3m+3)
2 --2
的图象不过原点,求实数m的取值.
解由幂函数的定义得m2-3m+3=1,解得m=1,或m=2;
新教材高中数学4函数的奇偶性与简单的幂函数4-2简单幂函数的图象和性质课后习题北师大版必修第一册

4.2 简单幂函数的图象和性质A级必备知识基础练1.函数y=3xα-2的图象过定点()A.(1,1)B.(-1,1)C.(1,-1)D.(-1,-1)2.在下列幂函数中,既是奇函数又在区间(0,+∞)上单调递增的是()A.f(x)=x-1B.f(x)=x-2C.f(x)=x3D.f(x)=x 1 23.(多选题)下列说法错误的是()A.幂函数的图象不经过第四象限B.y=x0的图象是一条直线C.若函数y=1x 的定义域为{x|x>2},则它的值域为y y<12D.若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|-2≤x≤2}4.当x∈(1,+∞)时,函数y=xα的图象恒在直线y=x的下方,则α的取值范围是()A.(0,1)B.(-∞,0)C.(-∞,1)D.(1,+∞)5.幂函数y=x m与y=x n在第一象限内的图象如图所示,则()A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m>1D.n<-1,m>16.若(a+1)13<(3-2a)13,则a的取值范围是.7.已知幂函数f(x)=x m2-2m-3(m∈Z)的图象关于y轴对称,并且f(x)在第一象限内是单调递减函数,则m= .8.已知函数y=(a2-3a+2)x a2-5a+5(a为常数).(1)当a为何值时,此函数为幂函数?(2)当a为何值时,此函数为正比例函数?(3)当a为何值时,此函数为反比例函数?B 级关键能力提升练9.(多选题)已知函数f (x )=x α的图象经过点(4,2),则下列结论正确的有( ) A.函数f (x )为增函数 B.函数f (x )为偶函数 C.若x>1,则f (x )>1 D.若0<x 1<x 2,则f(x 1)+f(x 2)2<fx 1+x 2210.已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,若a ,b ∈R ,且a+b>0,ab<0,则f (a )+f (b )的值( )A.恒大于0B.恒小于0C.等于0D.无法判断11.已知幂函数f (x )=mx n的图象过点(√2,2√2),设a=f (m ),b=f (n ),c=f (-2),则( ) A.c<b<a B.c<a<b C.b<c<aD.a<b<c12.(多选题)已知实数a ,b 满足等式a 12=b 13,则下列关系式可能成立的是( ) A.0<b<a<1 B.-1<a<b<0 C.1<a<bD.a=b13.已知幂函数f (x )=(m-1)2x m 2-4m+2在区间(0,+∞)上单调递增,函数g (x )=2x-k.(1)求实数m 的值;(2)当x ∈(1,2]时,记ƒ(x ),g (x )的值域分别为集合A ,B ,若A ∪B=A ,求实数k 的取值范围.14.已知幂函数f(x)=(2m2-6m+5)x m+1为偶函数.(1)求函数f(x)的解析式;(2)若函数y=f(x)-2(a-1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.C级学科素养创新练15.已知幂函数f(x)=x(2-k)(1+k),k∈Z,且f(x)在区间(0,+∞)上单调递增.(1)求实数k的值,并写出相应的函数f(x)的解析式.(2)若函数F(x)=2f(x)-4x+3在区间[2a,a+1]上不单调,求实数a的取值范围.],若存在, (3)试判断是否存在正数q,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,178求出q的值;若不存在,请说明理由.4.2 简单幂函数的图象和性质1.A2.C3.BCD 对于A,由幂函数的图象知,它不经过第四象限,所以A 对;对于B,因为当x=0时,x 0无意义,即在x=0无定义,所以B 错;对于C,函数y=1x 的定义域为{x|x>2},则它的值域为y 0<y<12,不是y y<12,所以C 错;对于D,定义域不一定是{x|-2≤x ≤2},如{x|0≤x ≤2},所以D 错.故选BCD .4.C 由幂函数的图象特征知α<1.5.B 由于y=x m在区间(0,+∞)上单调递增,且为上凸函数,故0<m<1.由于y=x n在区间(0,+∞)上单调递减,且在直线x=1的右侧时,y=x n的图象在y=x -1的图象的下方,故n<-1.故选B . 6.(-∞,23) 因为函数f (x )=x 13的定义域为R ,且为增函数,所以a+1<3-2a ,解得a<23. 7.1 因为幂函数f (x )=x m2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m-3为偶数.又因为f (x )在第一象限内单调递减,所以m 2-2m-3<0,即-1<m<3,又m ∈Z ,所以m=1. 8.解(1)由题意知a 2-3a+2=1,即a 2-3a+1=0, 解得a=3±√52. (2)由题意知{a 2-5a +5=1,a 2-3a +2≠0,解得a=4.(3)由题意知{a 2-5a +5=-1,a 2-3a +2≠0,解得a=3.9.ACD 因为函数f (x )=x α的图象经过点(4,2), 所以α=12.所以f (x )=x 12.显然f (x )在定义域[0,+∞)上为增函数,所以A 正确;f (x )的定义域为[0,+∞),所以f (x )不具有奇偶性,所以B 不正确;当x>1时,√x >1,即f (x )>1,所以C 正确; 当0<x 1<x 2时,f(x 1)+f(x 2)22-[f(x 1+x 22)]2=√x 1+√x 222-(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2-x 1-x 24=-(√x 1-√x 2)24<0. 即f(x 1)+f(x 2)2<fx 1+x 22成立,所以D 正确.10.A 由已知函数f (x )=(m 2-m-1)x m2+m -3是幂函数,可得m 2-m-1=1,解得m=2或m=-1,当m=2时,f (x )=x 3,当m=-1时,f (x )=x -3,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f(x 1)-f(x 2)x 1-x 2>0,函数f (x )单调递增,所以m=2,此时f (x )=x 3.又a+b>0,ab<0,可知a ,b 异号,且正数的绝对值大于负数的绝对值,则f (a )+f (b )恒大于0,故选A .11.B 幂函数f (x )=mx n的图象过点(√2,2√2),则{m =1,(√2)n =2√2⇒{m =1,n =3,所以幂函数的解析式为f (x )=x 3,且函数f (x )单调递增.又-2<1<3,所以f (-2)<f (1)<f (3),即c<a<b ,故选B .12.ACD 画出函数y=x 12与y=x 13的图象如图所示,设a 12=b 13=m ,作直线y=m. 从图象知,若m=0或m=1,则a=b ; 若0<m<1,则0<b<a<1; 若m>1,则1<a<b. 故其中可能成立的是ACD .13.解(1)依题意得(m-1)2=1.∴m=0或m=2.当m=2时,f (x )=x -2在区间(0,+∞)上单调递减,与题设矛盾,舍去.当m=0时,f (x )=x 2,符合题设,故m=0.(2)由(1)可知f (x )=x 2,当x ∈(1,2]时,函数f (x )和g (x )均单调递增.∴集合A=(1,4],B=(2-k ,4-k ]. ∵A ∪B=A ,∴B ⊆A.∴{2-k ≥1,4-k ≤4.∴0≤k ≤1.∴实数k 的取值范围是[0,1].14.解(1)由f (x )为幂函数知2m 2-6m+5=1,即m 2-3m+2=0,得m=1或m=2,当m=1时,f (x )=x 2是偶函数,符合题意;当m=2时,f (x )=x 3为奇函数,不符合题意,舍去. 故f (x )=x 2.(2)由(1)可知y=x 2-2(a-1)x+1, 函数y 的对称轴为直线x=a-1,由题意知函数y 在区间(2,3)上为单调函数, ∴a-1≤2或a-1≥3,解得a ≤3或a ≥4. ∴a 的取值范围为(-∞,3]∪[4,+∞). 15.解(1)由题意知(2-k )(1+k )>0,解得-1<k<2. 又k ∈Z ,∴k=0或k=1,分别代入原函数,得f (x )=x 2.(2)由已知得F (x )=2x 2-4x+3,对称轴为直线x=1.要使函数F (x )在区间[2a ,a+1]上不单调,则2a<1<a+1,则0<a<12.即实数a 的取值范围是(0,12).(3)由已知,g (x )=-qx 2+(2q-1)x+1. 假设存在这样的正数q 符合题意,则函数g (x )的图象是开口向下的抛物线,其对称轴为直线x=2q -12q=1-12q <1,因而,函数g (x )在区间[-1,2]上的最小值只能在x=-1或x=2处取得, 又g (2)=-1≠-4,从而g (-1)=2-3q=-4,解得q=2.此时,g (x )=-2x 2+3x+1,其图象的对称轴为直线x=34∈[-1,2],∴g (x )在区间[-1,2]上的最大值为g (34)=-2×(34)2+3×34+1=178,符合题意. ∴存在q=2,使函数g (x )=1-qf (x )+(2q-1)x 在区间[-1,2]上的值域为[-4,178].。
新教材高中数学第二章函数4函数的奇偶性与简单的幂函数 函数的奇偶性课件北师大版必修第一册

[注意] ①由于这里的-x<0,因此应将-x 代入 f(x)=-12x2-1;② 由于这里的-x>0,因此应将-x 代入 f(x)=12x2+1.
[归纳提升] 判断函数奇偶性的方法 (1)定义法:
(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数 图象关于y轴对称,则函数为偶函数.此法多用在解选择题、填空题中.
必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点 函数的奇偶性
奇偶性
偶函数
奇函数
条件 一般地,设函数f(x)的定义域是A,如果对任意的x∈A,有-x∈A
结论 图象特点
f(-x)=__________ 关于_______f(_x对) 称
y轴
f(-x)=____________ 关于_____-__f(_x对) 称 原点
(3)函数的定义域为(-∞,0)∪(0,+∞),关于原点对称.
当x>0时,-x<0,则f(-x)=-12(-x)2-1=-(12x2+1)=-f(x);
①
当x<0时,-x>0,f(-x)=21(-x)2+1=12x2+1=-(-12x2-1)=-
f(x).
②
综上可知,函数f(x)=12-x221+x2-1(x1>(x<0) 0)是奇函数.
∴f(x)=1x是奇函数. (2)函数 f(x)=-3x2+1 的定义域为 R,关于原点对称,且 f(-x)=- 3(-x)2+1=-3x2+1=f(x), ∴f(x)=-3x2+1 是偶函数.
(3)显然函数f(x)的定义域关于原点对称. 当x>0时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当x<0时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x),∴函数f(x)为奇函数. (4)函数f(x)的定义域为(-∞,1)∪(1,+∞),不关于原点对称,故函数f(x) 不具有奇偶性.
【学案与检测】高中数学-幂函数(解析版)-高中数学考点精讲精练

3.3 幂函数新课标要求通过具体实例,结合231,,,,y x y y x y x y x x=====的图象,理解它们的变化规律,了解幂函数。
知识梳理一、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数. 二、五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y =x ;(2)y =12x ;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1 定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞)R [0,+∞) {y |y ≠0} 奇偶性 奇 偶奇 非奇非偶 奇单调性 增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞)上减, 在(-∞,0)上减三、一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.名师导学知识点1 幂函数的概念幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式. 【例1-1】在函数y =1x 2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为( )A .0B .1C .2D .3 答案 B解析 ∵y =1x 2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数. 【例1-2】已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.解 由题意得⎩⎪⎨⎪⎧m 2+2m -2=1,2n -3=0,解得⎩⎪⎨⎪⎧ m =-3,n =32或⎩⎪⎨⎪⎧m =1,n =32.所以m =-3或1,n =32.【变式训练1-1】给出下列函数:①y=x 3;②y=x 2+2x ;③y=4x 2;④y=x 5+1;⑤y=(x-1)2;⑥y=x ;⑦y=x -2.其中幂函数的个数为 ( ) A .1 B .2 C .3D .4C [解析] 由幂函数的定义知,只有①⑥⑦是幂函数,故选C .【变式训练1-2】已知幂函数y=(m 2-m-1),求此幂函数的解析式,并指出其定义域.解:∵y=(m 2-m-1)为幂函数,∴m 2-m-1=1,解得m=2或m=-1.当m=2时,m 2-2m-3=-3,则y=x -3(x ≠0);当m=-1时,m 2-2m-3=0,则y=x 0(x ≠0).故所求幂函数的解析式为y=x -3(x ≠0)或y=x 0(x ≠0).知识点2 幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.(2)解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.【例2-1】若点(2,2)在幂函数f (x )的图象上,点⎝⎛⎭⎫-2,14在幂函数g (x )的图象上,问当x 为何值时,(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).解 设f (x )=x α,因为点(2,2)在幂函数f (x )的图象上,所以将点(2,2)代入f (x )=x α中,得2=(2)α,解得α=2,则f (x )=x 2.同理可求得g (x )=x -2. 在同一坐标系中作出函数f (x )=x 2和g (x )=x-2的图象(如图所示),观察图象可得,(1)当x >1或x <-1时,f (x )>g (x ); (2)当x =1或x =-1时,f (x )=g (x ); (3)当-1<x <1且x ≠0时,f (x )<g (x ).【变式训练2-1】如图所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12;当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2.知识点3 幂函数的性质比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”. 【例2-1】[2021·安徽亳州二中高一期中] 已知函数f (x )=(m 2-m-1)是幂函数,且在(0,+∞)上单调递减,则实数m= ( )A .2B .-1C .4D .2或-1A 【解析】因为f (x )为幂函数,所以m 2-m-1=1,解得m=2或m=-1.因为f (x )在(0,+∞)上单调递减,所以m 2-2m-2<0,所以m=2.故选A .【例2-2】比较下列各组数中两个数的大小: (1)⎝⎛⎭⎫250.5与⎝⎛⎭⎫130.5; (2)⎝⎛⎭⎫-23-1与⎝⎛⎭⎫-35-1; (3)3432⎛⎫⎪⎝⎭与3234⎛⎫⎪⎝⎭. 解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴⎝⎛⎭⎫250.5>⎝⎛⎭⎫130.5. (2)∵幂函数y =x-1在(-∞,0)上是单调递减的,又-23<-35,∴⎝⎛⎭⎫-23-1>⎝⎛⎭⎫-35-1. (3)∵函数y 1=34x 在(0,+∞)上单调递增, 又32>1,∴3432⎛⎫⎪⎝⎭>341 =1. 又∵函数y 2=32x 在(0,+∞)上单调递增,且34<1,∴3234⎛⎫⎪⎝⎭<321 =1,∴3432⎛⎫ ⎪⎝⎭>3234⎛⎫⎪⎝⎭. 【变式训练2-1】比较下列各组数的大小: (1)⎝⎛⎭⎫230.3与⎝⎛⎭⎫130.3;(2)-3.143与-π3.解 (1)∵y =x 0.3在[0,+∞)上单调递增且23>13,∴⎝⎛⎭⎫230.3>⎝⎛⎭⎫130.3.(2)∵y =x 3是R 上的增函数,且3.14<π, ∴3.143<π3,∴-3.143>-π3.【变式训练2-2】已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称且在(0,+∞)上单调递减,求满足()31ma -+ <()332m a -- 的a 的取值范围.解 因为函数在(0,+∞)上单调递减,所以3m -9<0, 解得m <3.又因为m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称, 所以3m -9为偶数,故m =1. 则原不等式可化为()131a -+<()1332a --.因为y =13x- 在(-∞,0),(0,+∞)上均单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a , 解得23<a <32或a <-1.故a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a <-1或23<a <32.名师导练A 组-[应知应会]1.已知点,在幂函数y=f (x )的图像上,则 ( ) A .f (x )= B .f (x )=x 3 C .f (x )=x -2D .f (x )=xB [解析] 设f (x )=x a ,由题意知a==3,所以a=3,所以f (x )=x 3.故选B .2.(2021秋•三明期末)已知幂函数21()m f x x -=的图象经过点(2,8),则实数m 的值是() A .1-B .12C .2D .3【分析】把点的坐标代入幂函数解析式,即可求出m 的值. 【解答】解:幂函数21()m f x x -=的图象经过点(2,8), 2128m -∴=,2m ∴=,故选:C .3.(2021秋•下城区校级期末)若一个幂函数的图象经过点1(2,)4,则它的单调增区间( )A .(,1)-∞B .(0,)+∞C .(,0)-∞D .R【分析】先求出幂函数的解析式,再得出其单调增区间. 【解答】解:设幂函数()f x x α=,函数()f x 经过点1(2,)4,∴124α=,解得2α=-, ∴221()f x x x -==, 故它的单调递增区间为(,0)-∞. 故选:C .4.(2021秋•杨浦区校级期末)已知常数a Q ∈,如图为幂函数a y x =的图象,则a 的值可以为( )A .23B .32 C .23-D .32-【分析】根据幂函数的图象关于y 轴对称,且在第一象限内单调递减,可以得出C 选项正确. 【解答】解:根据幂函数a y x =的图象关于y 轴对称,函数是偶函数,排除B 、D 选项; 再根据幂函数a y x =的图象在第一象限内从左到右下降,是单调减函数, 所以0a <,排除A ,即C 选项正确. 故选:C .5.已知幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,则实数m 的值为 ( )A .-1B .3C .-1或3D .1或-3B [解析] 因为幂函数y=(m 2-2m-2)在(0,+∞)上单调递增,所以m 2-2m-2=1且m 2+m-1>0,解得m=3,则实数m 的值为3.6.(2021秋•白山期末)若函数21()(22)m f x m m x -=--是幂函数,且()y f x =在(0,)+∞上单调递增,则f (2)(= ) A .14B .12C .2D .4【分析】根据幂函数的定义,令2221m m --=,求出m 的值,再判断m 是否满足幂函数在(0,)x ∈+∞上为增函数即可,确定m 的值,从而求出幂函数的解析式,得出结果.【解答】解:因为函数21()(22)m f x m m x -=--是幂函数, 所以2221m m --=,解得1m =-或3m =.又因为()y f x =在(0,)+∞上单调递增,所以10m -, 所以3m =,2()f x x =, 从而f (2)224==, 故选:D .7.(2020秋•河南月考)幂函数223()mm y x m Z +-=∈的图象如图所示,则m 的值为( )A .2-或0B .1-C .0D .2-【分析】依题意,2m =-或1-或0,结合函数为奇函数,依次验证即可得到答案.【解答】解:由幂函数在第一象限的单调性可得,2230m m +-<,解得31m -<<, 再由m Z ∈可得,2m =-或1-或0. 又从图象可知该函数是奇函数,若2m =-,则2233m m +-=-,符合题意; 若1m =-,则2234m m +-=-,不合题意; 若0m =,则2233m m +-=-,符合题意, 综上,2m =-或0. 故选:A .8.(2022春•沈河区校级月考)设113244342(),(),()433a b c ===,则a ,b ,c 的大小顺序是( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:112439()()1416a ==<,144()13b =>,314428()()1327c ==<;且89012716<<<,函数14y x =在(0,)+∞上是单调增函数,所以114489()()2716<,所以c a <; 综上知,c a b <<. 故选:A .9.(多选题)已知幂函数f (x )= (m ,n ∈N *,m ,n 互质),则下列关于f (x )的结论正确的是( )A .当m ,n 是奇数时,幂函数f (x )是奇函数B .当m 是偶数,n 是奇数时,幂函数f (x )是偶函数C .当0<<1时,幂函数f (x )在(0,+∞)上单调递减D .当m ,n 是奇数时,幂函数f (x )的定义域为R ABD [解析] f (x )==.当m ,n 是奇数时,幂函数f (x )是奇函数,故A 中的结论正确;当m 是偶数,n 是奇数时,幂函数f (x )是偶函数,故B 中的结论正确;当0<<1时,幂函数f (x )在(0,+∞)上单调递增,故C 中的结论错误;当m ,n 是奇数时,幂函数f (x )=的定义域为R,故D 中的结论正确.故选ABD .10.(多选)(2021秋•徐州期末)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线C .当2α=时函数是偶函数D .当3α=时函数有一个零点0【分析】根据幂函数的图象与性质,判断选项中的命题是否正确即可.【解答】解:对于A ,1α=-时幂函数1y x -=在(,0)-∞和(0,)+∞是减函数,在其定义域上不是减函数,A 错误;对于B ,0α=时幂函数01(0)y x x ==≠,其图象是一条直线,去掉点(0,1),B 错误; 对于C ,2α=时幂函数2y x =在定义域R 上是偶函数,C 正确;对于D ,3α=时幂函数3y x =在R 上的奇函数,且是增函数,有唯一零点是0,D 正确. 故选:CD .11.(2019秋•金山区校级期末)幂函数()y f x =的图象经过点1(4,)2,则1()16f 的值为 .【分析】利用待定系数法求出幂函数()y f x =的解析式,再计算1()16f 的值.【解答】解:设幂函数()y f x x α==,R α∈;其图象过点1(4,)2,所以142α=,解得12α=-;所以12()f x x -=,所以112211()()1641616f -===.故答案为:4.12.[2021·厦门外国语学校高一期中] 已知幂函数f (x )=(m 2-5m+7)x m-1为偶函数,则实数m 的值为 .3 [解析] ∵f (x )为幂函数,∴m 2-5m+7=1,解得m=2或m=3.当m=2时,f (x )=x 为奇函数,不满足题意;当m=3时,f (x )=x 2为偶函数,满足题意.综上所述,m=3.13.(2021秋•湖州期末)幂函数()()f x x R αα=∈的图象经过点(2,8),则α的值为 ;函数()f x 为 函数.(填“奇”或“偶” )【分析】先求出幂函数解析式,再判断奇偶性即可. 【解答】解:幂函数()()f x x R αα=∈的图象经过点(2,8), 28α∴=,3α∴=,3()f x x ∴=,定义域为R ,又33()()()f x x x f x -=-=-=-,()f x ∴是奇函数,故答案为:3,奇.14.(2020春•嘉陵区月考)若幂函数22(22)m y m m x -=--在(0,)x ∈+∞上为减函数,则实数m 的值是【分析】根据给出的函数为幂函数,由幂函数概念知2221m m --=,再根据函数在(0,)+∞上为减函数,得到幂指数应该小于0,求得的m 值应满足以上两条.【解答】解:因为函数22(22)m y m m x -=--既是幂函数又是(0,)+∞的减函数, 所以222120m m m ⎧--=⎨-<⎩⇒312m m m ==-⎧⎨<⎩或,解得:1m =-. 故答案为:1-.15.(2021秋•道里区校级月考)当01x <<时, 1.1()f x x =,0.9()g x x =,2()h x x -=的大小关系是 .【分析】画出这三个函数在区间(0,1)上的图象可得答案. 【解答】解:画出幂函数的图象如下图可知()()()f x g x h x <<故答案为()()()f x g x h x <<16.(2021•西湖区校级模拟)已知函数223()(2,)n n f x x n k k N -++==∈的图象在[0,)+∞上单调递增则n = ,f (2)= .【分析】根据幂函数的单调性,列出不等式求出n 的值,写出()f x 的解析式,再计算f (2)的值.【解答】解:函数223()n n f x x -++=的图象在[0,)+∞上单调递增,所以2230n n -++>, 即2230n n --<,解得13n -<<;又2n k =,且k N ∈,所以0n =,2,当0n =时,3()f x x =;当0n =时,3()f x x =;所以f (2)328==.故答案为:0,2;8.17.[2021·浙江宁波高一期中] 已知幂函数f (x )的图像过点P 8,.(1)求函数f (x )的解析式;(2)画出函数f (x )的图像,并指出其单调区间.解:(1)设f (x )=x α. ∵f (x )的图像过点P 8,,∴8α=,即23α=2-1,解得α=-,故函数f (x )的解析式为f (x )=(x ≠0). (2)作出函数f (x )的图像如图所示.由图可知,函数f (x )的单调递减区间为(-∞,0),(0,+∞),无单调递增区间.18.[2021·广州六中高一期中] 已知幂函数f (x )的图像过点(2,).(1)求出函数f (x )的解析式,判断并证明f (x )在[0,+∞)上的单调性;(2)若函数g (x )是R 上的偶函数,当x ≥0时,g (x )=f (x ),求满足g (1-m )≤的实数m 的取值范围. 解:(1)设f (x )=x α,将点(2,)的坐标代入,得=2α,解得α=, 所以f (x )=.幂函数f (x )==在[0,+∞)上单调递增.证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=-==, 因为x 1-x 2<0,+>0,所以f (x 1)<f (x 2), 故幂函数f (x )=在[0,+∞)上单调递增.(2)当x ≥0时,g (x )=f (x ),而幂函数f (x )=在[0,+∞)上单调递增, 所以当x ≥0时,g (x )单调递增.因为函数g (x )是R 上的偶函数,所以g (x )在(-∞,0)上单调递减. 由g (5)=,g (1-m )≤可得|1-m|≤5,解得-4≤m ≤6,所以满足g (1-m )≤的实数m 的取值范围为[-4,6]. B 组-[素养提升]1.已知幂函数y =223m m x-- (m ∈Z )的图象与x 轴和y 轴没有交点,且关于y 轴对称,则m 等于( )A .1B .0,2C .-1,1,3D .0,1,2答案 C解析 ∵幂函数y =223m m x -- (m ∈Z )的图象与x 轴、y 轴没有交点,且关于y 轴对称, ∴m 2-2m -3≤0,且m 2-2m -3(m ∈Z )为偶数,由m 2-2m -3≤0,得-1≤m ≤3,又m ∈Z ,∴m =-1,0,1,2,3.当m =-1时,m 2-2m -3=1+2-3=0,为偶数,符合题意;当m =0时,m 2-2m -3=-3,为奇数,不符合题意;当m =1时,m 2-2m -3=1-2-3=-4,为偶数,符合题意;当m =2时,m 2-2m -3=4-4-3=-3,为奇数,不符合题意;当m =3时,m 2-2m -3=9-6-3=0,为偶数,符合题意.综上所述,m =-1,1,3.2.(2022春•凯里市校级期中)已知一次函数()f x 的图象过点(0,1)-和(2,1),()(1)m g x m x =-为幂函数.(Ⅰ)求函数()f x 与()g x 的解析式;(Ⅱ)当a R ∈时,解关于x 的不等式:()()af x g x <.【分析】(1)利用待定系数法求出解析式即可;(2)分0a <或4a >,0a =,4a =,04a <<四种情况讨论即可.【解答】解:()I 根据一次函数()f x 的图象过点(0,1)-和(2,1),设()f x kx b =+,则112b k b -=⎧⎨=+⎩,解得11k b =⎧⎨=-⎩,则()1f x x =- ()(1)m g x m x =-为幂函数,则2m =,故2()g x x =()()()II af x g x <即2(1)a x x -<,则△24(4)a a a a =-=-当0a <或4a >时,不等式的解集为24{|}a a a x x --或24{|}a a a x x +->, 当0a =时,不等式的解集为{|0}x x ≠;当4a =时,不等式的解集为{|2}x x ≠当04a <<时,不等式的解集为R .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单幂函数的图象和性质
[A 级 基础巩固]
1.(多选)已知α∈{-1,1,2,3},则使函数y =x α
的值域为R ,且为奇函数的所有α的值为( )
A .1
B .-1
C .3
D .-3
解析:选AC 当α=-1时,y =x -1=1x
,为奇函数,但值域为{y |y ≠0},不满足条件. 当α=1时,y =x 为奇函数,值域为R ,满足条件.
当α=2时,y =x 2
为偶函数,值域为{y |y ≥0},不满足条件.
当α=3时,y =x 3为奇函数,值域为R ,满足条件.故选A 、C.
2.幂函数f (x )=x 2
3的大致图象为图中的( )
解析:选B 由于f (0)=0,所以排除C 、D 选项.又f (-x )=(-x )23=3(-x )2=3x
2=f (x ),且f (x )的定义域为R ,所以f (x )是偶函数,图象关于y 轴对称.
3.若f (x )是幂函数,且满足
f (4)f (2)=4,则f ⎝ ⎛⎭⎪⎫12=( ) A .-4
B .4
C .-12
D .14 解析:选D 设f (x )=x α,则f (4)=4α=22α,f (2)=2α
. ∵f (4)f (2)=22α
2
α=2α=4=22, ∴α=2,∴f (x )=x 2
, ∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122
=14
,故选D. 4.函数y =x m
n (m ,n ∈N +,且m ,n 互质)的图象如图所示,则( )
A .m ,n 是奇数,m n <1
B .m 是偶数,n 是奇数,m n >1
C .m 是偶数,n 是奇数,m n <1
D .m 是奇数,n 是偶数,m n
>1 解析:选C 由函数图象可知y =x m n 是偶函数,而m ,n 是互质的,故m 是偶数,n 是奇
数.又当x ∈(1,+∞)时,y =x m n 的图象在y =x 的图象下方,故m n
<1. 5.已知当x ∈[0,1]时,函数y =(mx -1)2
的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )
A .(0,1]∪[23,+∞)
B .(0,1]∪[3,+∞)
C .(0, 2 ]∪[23,+∞)
D .(0, 2 ]∪[3,+∞) 解析:选B 当0<m ≤1时,1m
≥1,y =(mx -1)2在[0,1]上单调递减,值域为[(m -1)2,1];y =x +m 在[0,1]上单调递增,值域为[m ,1+m ],此时两个函数图象有且仅有一个交
点.当m >1时,0<1m <1,y =(mx -1)2在⎣⎢⎡⎦
⎥⎤1m ,1上单调递增,所以要与y =x +m 的图象有且仅有一个交点,需(m -1)2≥1+m ,即m ≥3.综上所述,0<m ≤1或m ≥3.故选B.
6.已知幂函数f (x )=(m 2-3m +1)x
m 2-4m +1的图象不经过原点,则实数m 的值为________.
解析:依题意得m 2-3m +1=1,解得m =0或m =3.当m =0时,f (x )=x ,其图象经过原点,不符合题意;当m =3时,f (x )=x -2,其图象不经过原点,符合题意,因此实数m 的值为3.
答案:3
7.若幂函数y =(m 2-2m -2)x
-4m -2在(0,+∞)上单调递减,则实数m 的值是________. 解析:由题意可知m 2-2m -2=1,得m =3或m =-1.当m =3时,-4m -2=-14,幂
函数y =x -14在(0,+∞)上单调递减,满足题意;当m =-1时,-4m -2=2,幂函数y =x 2在(0,+∞)上单调递增,不满足题意,所以m =-1舍去.故m =3.
答案:3
8.有四个幂函数:①f (x )=x -1;②f (x )=x -2;③f (x )=x 3
;④f (x )=x 1
3.某同学研究了其中的一个函数,并给出这个函数的三个性质:
(1)是偶函数;(2)值域是{y |y ∈R ,且y ≠0};(3)在(-∞,0)上单调递增.
如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是________(填序号). 解析:对于函数①,f (x )=x -1是一个奇函数,值域是{y |y ∈R ,且y ≠0},在(-∞,
0)上单调递减,所以三个性质中有两个不正确;对于函数②,f (x )=x -2是一个偶函数,其
值域是{y |y ∈R ,且y >0},在(-∞,0)上单调递增,所以三个性质中有两个正确,符合条件;同理可判断③④中函数不符合条件.
答案:②
9.已知幂函数y =x m 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无交点,且关于y 轴对称,
求m 的值,并画出它的图象.
解:∵m ∈Z ,且图象与x 轴、y 轴均无交点,
∴m 2
-2m -3=(m +1)(m -3)≤0,
即-1≤m ≤3(m ∈Z).
又∵图象关于y 轴对称,
∴m 2-2m -3的值是偶数,得m =-1或m =1或m =3.
其中当m =1时,函数为y =x -4,图象如图①所示;
当m =-1或m =3时,
函数为y =x 0=1(x ≠0),图象如图②所示.
10.已知幂函数f (x )=x -2m 2-m +3,其中-2<m <2,且m ∈Z ,满足:
①在区间(0,+∞)上是增函数;
②对任意的x ∈R ,都有f (-x )+f (x )=0.
求同时满足条件①②的幂函数f (x )的解析式,并求x ∈[0,3]时,f (x )的值域. 解:因为-2<m <2,且m ∈Z ,所以m =-1,0,1.
因为对任意的x ∈R ,都有f (-x )+f (x )=0,即f (-x )=-f (x ),所以f (x )是奇函数. 当m =-1时,f (x )=x 2只满足条件①而不满足条件②;
当m =1时,f (x )=x 0,条件①②都不满足;
当m =0时,f (x )=x 3,条件①②都满足.
因此f (x )=x 3,且f (x )在区间[0,3]上是增函数,所以0≤f (x )≤27,
故f (x )的值域为[0,27].
[B 级 综合运用]
11.有一种密钥密码系统可以保证信息的安全传输,其加密、解密原理为:发送方根据
加密密钥把明文转为密文(加密),接收方根据加密密钥把密文转为明文(解密).现在已知加密密钥为y =x α
(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.
解析:由题目可知加密密钥y =x α(α是常数)是一个幂函数,所以要想求得解密后得到
的明文,就必须先求出α的值.由题意得2=4α,解得α=12,则y =x 12.由x 12=3,得x =9.
答案:9
12.已知幂函数f (x )=x 1
m 2
+m (m ∈N +). (1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;
(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足f (2-a )>f (a -1)的实数a 的取值范围.
解:(1)∵m ∈N +,
∴m 2+m =m (m +1)为偶数.
令m 2+m =2k ,k ∈N +,
则f (x )=2k x ,
∴f (x )的定义域为[0,+∞),且f (x )在[0,+∞)上为增函数.
(2)由题意可得2=212=21m 2+m ,∴m 2+m =2,解得m =1或m =-2(舍去),
∴f (x )=x 12,
由(1)知f (x )在定义域[0,+∞)上为增函数,
∴f (2-a )>f (a -1)等价于2-a >a -1≥0,解得1≤a <32,故实数a 的取值范围为⎣⎢⎡⎭
⎪⎫1,32.。