二次函数解析式的求法(1)
二次函数解析式的求法

二次函数解析式的求法二次函数是一种形如y=ax+bx+c的函数,其中a、b、c是常数,且a≠0。
要求二次函数的解析式,需要掌握以下几个步骤:1. 求出a、b、c的值,这可以通过函数的已知点、导数或根的信息来确定。
2. 根据一般式y=ax+bx+c或顶点式y=a(x-h)+k,选择其中一种形式。
3. 将a、b、c的值代入选择的形式中,得到最终的解析式。
具体求法如下:1. 已知点求解析式如果已知二次函数通过两个点(x1,y1)和(x2,y2),可以利用这两个点的坐标和函数的一般式来求解析式。
我们可以将两个点的坐标带入一般式中,得到以下两个方程:y1=ax1+bx1+cy2=ax2+bx2+c将两个方程联立,消去c,得到:a=(y2-y1)/(x2-x1)b=(y1x2-y2x1)/(x2-x1)将a、b的值带入一般式y=ax+bx+c中,得到最终的解析式。
2. 已知导数求解析式二次函数的导数为y'=2ax+b,如果已知导数,可以通过求导数反推出a和b的值,然后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=2x+4x+1的导数为f'(x)=4x+4时,可以根据导数的定义得到a=2,b=4,然后代入一般式y=2x+4x+c中,用已知点的坐标求解c,得到最终的解析式。
3. 已知根求解析式如果已知二次函数的两个根x1和x2,可以根据根的定义得到(x-x1)(x-x2)=0,将它展开得到x-(x1+x2)x+x1x2=0,然后用已知点的坐标求解a、b、c,最后代入一般式或顶点式中求解析式。
例如,当已知函数f(x)=x+2x-3的两个根为-3和1时,可以利用(x+3)(x-1)=0得到x+2x-3=0,根据二次函数的一般式得到a=1,b=2,c=-3,然后代入一般式y=x+2x-3中即可得到最终的解析式。
总之,求二次函数解析式需要根据不同的已知信息选择合适的求解方法,掌握这些方法可以更加轻松地解决二次函数的相关问题。
二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
十种二次函数解析式求解方法

十种二次函数解析式求解方法〈一〉三点式。
1, 已知抛物线y=ax 2+bx+c 经过A (3,0),B (32,0),C (0,-3)三点,求抛物线的解析式。
2, 已知抛物线y=a(x-1)2+4 , 经过点A (2,3),求抛物线的解析式。
〈二〉顶点式。
1, 已知抛物线y=x 2-2ax+a 2+b 顶点为A (2,1),求抛物线的解析式。
2, 已知抛物线 y=4(x+a)2-2a 的顶点为(3,1),求抛物线的解析式。
〈三〉交点式。
1, 已知抛物线与 x 轴两个交点分别为(3,0),(5,0),求抛物线y=(x-a)(x-b)的解析式。
2, 已知抛物线线与 x 轴两个交点(4,0),(1,0)求抛物线y=21a(x-2a)(x-b)的解析式。
〈四〉定点式。
1, 在直角坐标系中,不论a 取何值,抛物线2225212-+-+-=a x a x y 经过x 轴上一定点Q ,直线2)2(+-=x a y 经过点Q,求抛物线的解析式。
2, 抛物线y= x 2 +(2m-1)x-2m 与x 轴的一定交点经过直线y=mx+m+4,求抛物线的解析式。
3, 抛物线y=ax 2+ax-2过直线y=mx-2m+2上的定点A ,求抛物线的解析式。
〈五〉平移式。
1, 把抛物线y= -2x 2 向左平移2个单位长度,再向下平移1个单位长度,得到抛物线y=a( x-h)2 +k,求此抛物线解析式。
2, 抛物线32-+-=x x y 向上平移,使抛物线经过点C(0,2),求抛物线的解析式.〈六〉距离式。
1, 抛物线y=ax 2+4ax+1(a ﹥0)与x 轴的两个交点间的距离为2,求抛物线的解析式。
2, 已知抛物线y=m x 2+3mx-4m(m ﹥0)与 x 轴交于A 、B 两点,与 轴交于C 点,且AB=BC,求此抛物线的解析式。
〈七〉对称轴式。
1、 抛物线y=x 2-2x+(m 2-4m+4)与x 轴有两个交点,这两点间的距离等于抛物线顶点到y 轴距离的2倍,求抛物线的解析式。
二次函数解析式的方法

二次函数解析式的方法
二次函数是高中数学中的一个重要概念。
它是一种二次方程,通常用y=ax+bx+c的形式表示。
其中,a、b、c是常数,a不等于0。
求解二次函数的解析式可以使用以下方法:
1. 完全平方公式:将二次函数的一般式y=ax+bx+c转化为顶点式y=a(x-h)+k,其中(h,k)为顶点坐标。
这个转化可以使用完全平方公式完成,即将x+bx部分平方,得到(x+ b/2a)- (b-4ac)/4a,再乘以a后,得到y=a(x+ b/2a)- (b-4ac)/4a。
2. 配方法:当二次函数的a不为1时,可以使用配方法将其转化为一个完全平方的形式。
具体来说,对于y=ax+bx+c,我们可以先将a提出来,得到y=a(x+ bx/a+c/a),然后将x+ bx/a部分配方,即将它写成(x+b/2a)- (b-4ac)/4a的形式。
这样,原来的二次函数就可以表示为y=a(x+b/2a)- (b-4ac)/4a+c。
3. 公式法:对于已知二次函数的解析式y=ax+bx+c,我们可以使用求根公式来求解它的两个解。
根据二次方程的求根公式,
y=ax+bx+c的解析式可以表示为x=(-b±√(b-4ac))/2a。
以上三种方法都可以求解二次函数的解析式,具体使用哪种方法取决于具体情况。
在解决实际问题时,可以根据需要选择合适的方法,以便更准确地求解问题。
- 1 -。
二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。
本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。
每种方法的步骤和注意事项都将被详细介绍。
一、公式法公式法是一种求解二次函数解析式的基本方法。
二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。
一个常见的二次函数的例子为y = x²。
1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。
通常情况下,这些值可以从已知的条件中直接得到。
如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。
可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。
可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。
具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。
如果二次函数的解析式没有实数根,则说明这个二次函数不存在。
在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。
求二次函数解析式的方法

求二次函数解析式的方法
一、利用顶点坐标求解析式。
对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a, c-b^2/4a)。
因此,我们可以通过已知的顶点坐标来求解析式。
例如,如果已知
顶点坐标为(2, 3),则可以列出方程组:
a2^2+b2+c=3。
a2+b=0。
通过解方程组,即可求得二次函数的解析式。
二、利用描点法求解析式。
描点法是通过已知的函数图像上的点来求解析式的一种方法。
如果已知二次函数上的两个点的坐标分别为(x1, y1)和(x2, y2),
则可以列出方程组:
ax1^2+bx1+c=y1。
ax2^2+bx2+c=y2。
通过解方程组,即可求得二次函数的解析式。
三、利用配方法求解析式。
对于一般的二次函数y=ax^2+bx+c,我们可以利用配方法将其写成完全平方的形式。
例如,对于函数y=x^2+2x+1,我们可以将其写成(y+1)=(x+1)^2的形式,从而得到解析式y=(x+1)^2-1。
四、利用判别式求解析式。
二次函数的判别式Δ=b^2-4ac可以用来判断二次函数的解的情况。
当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数没有实数根。
因此,我们可以通过判别式来求解析式。
以上是几种常用的求二次函数解析式的方法,当然还有其他一些方法,如利用导数、利用函数的对称性等。
通过这些方法,我们可以灵活地求得二次函数的解析式,从而更好地理解和应用二次函数。
二次函数解析式的几种求法

二次函数解析式的几种求法一次函数是形如y=ax+b的函数,其中a和b为常数,且a≠0。
而二次函数是形如y=ax^2+bx+c的函数,其中a,b和c为常数,且a≠0。
解析式是用来表示函数关系的公式,可以将二次函数的解析式分为以下几种求法:1.根据已知的顶点和过顶点的直线方程求解。
二次函数的标准形式是y=a(x-h)^2+k,其中(h,k)为顶点的坐标。
如果已知顶点的坐标和过该顶点的一条直线的方程,可以将方程代入二次函数的标准形式,确定a的值。
这样就可以得到二次函数的解析式。
2.根据已知的两个点求解。
如果已知二次函数过两个点,可以利用这两个点的坐标,构建并解方程组。
假设已知点的坐标分别是(x1,y1)和(x2,y2),代入二次函数的标准形式得到两个方程,然后解方程组求解出a,b和c。
这样就可以得到二次函数的解析式。
3.根据已知的轴对称性质求解。
二次函数的图像一般是一个开口向上或向下的抛物线。
如果已知抛物线的轴对称轴和顶点的坐标,可以利用这些信息确定二次函数的解析式。
根据轴对称性质,可得到二次函数的解析式。
4.根据已知的根求解。
二次函数的解析式与其根的关系密切,如果已知二次函数的根,可以根据根的性质得到二次函数的解析式。
设二次函数的根为x1和x2,则根据因式定理,二次函数可表示为y=a(x-x1)(x-x2)的形式。
将已知的根代入该式,可以得到二次函数的解析式。
5. 根据已知的导数求解。
二次函数的导数是一次函数,可以根据已知的导数求解二次函数的解析式。
设二次函数的导数为y'=2ax+b,将一次函数的表达式与二次函数的标准形式进行比较,可以得到a和b的值。
然后,代入二次函数的标准形式,可以得到二次函数的解析式。
以上是求解二次函数解析式的几种方法,每种方法都有其适用的情况和优劣势。
具体选择哪种方法需要根据具体的题目和已知条件来决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
¡ 例2、已知抛物线的顶点为( 2,3), 且 过点
¡ (1,4),求这个函数的解析式。
¡ 四、平移型
¡ 例 4 二次函数y=x2+bx+c的图象向左平移 两个单位,再向上平移3个单位得二次函数 则b与c分别等于 (A) 2,-2 ;(B) -6,6; (c) 8,14; (D) -8,18.
y x2 2x 1,
¡ 祝同学们学习进步,学有所得!
¡ 分析 要求的二次函数的图象与x轴的两个交 点坐标,可设y=a(x-0)(x-3),再求也y=2x2+8x-9的顶点A(2,-1)。将A点的坐标 代入y=ax(x-3),得到
摆起结实柔滑的神奇屁股一叫,萧洒地从里面窜出一道流光,他抓住流光浪漫地一颤,一套明晃晃、凉飕飕的兵器∈追云赶天鞭←便显露出来,只见这 个这件东西儿,一边扭曲,一边发出“啾啾”的美音!猛然间蘑菇王子狂鬼般地使了一套盘坐振颤吹柿子的怪异把戏,,只见他略微有些上翘的鼻子中 ,萧洒地涌出九串耍舞着∈七光海天镜←的城堡铜腿猫状的元宵,随着蘑菇王子的晃动,城堡铜腿猫状的元宵像牛屎一样在双臂上华丽地调整出朦胧光 盔……紧接着蘑菇王子又使自己极似玉白色样的额头隐出青古磁色的蛋糕味,只见他快乐灵巧的舌头中,酷酷地飞出二十片旋舞着∈七光海天镜←的毛 刷状的仙翅枕头鞭,随着蘑菇王子的扭动,毛刷状的仙翅枕头鞭像烤箱一样,朝着醉狼地光玉上面悬浮着的发光体飞劈过去……紧跟着蘑菇王子也旋耍 着兵器像鸡窝般的怪影一样向醉狼地光玉上面悬浮着的发光体飞劈过去…………随着∈万变飞影森林掌←的搅动调理,七群蚂蚁瞬间变成了由成千上万 的玉光精灵组成的缕缕亮红色的,很像小子般的,有着晶亮斑点质感的魔影状物体。随着魔影状物体的抖动旋转……只见其间又闪出一片银橙色的精灵 状物体……接着蘑菇王子又耍了一套仰卧闪烁晃面具的怪异把戏,,只见他轻快瘦长、好像雪鹿一样的大腿中,酷酷地飞出二十缕转舞着☆变态转轮枪 ☆的雪原宝石鼻兽状的蛙掌,随着知知爵士的扭动,雪原宝石鼻兽状的蛙掌像算盘一样漫舞起来……只听一声玄妙梦幻的声音划过,三只很像刚健轻盈 的身形般的魔影状的缕缕闪光体中,突然同时喷出五簇流光溢彩的紫红色幽灵,这些流光溢彩的紫红色幽灵被风一窜,立刻化作奇闪的飘带,不一会儿 这些飘带就深邃辽阔着跳向罕见魔草的上空,很快在六大广场之上变成了闪烁怪异、质感华丽的跳动自由的团体操……蘑菇王子:“嘿!你的动作太慢 !我已经搞定!知知爵士:“学长厉害!咱们该发点小财了!蘑菇王子:“钱多么?有什么宝贝?!知知爵士:“最少也能弄块太阳红宝石!这时蘑菇 王子发出最后的的狂吼,然后使出了独门绝技∈万变飞影森林掌←飘然一扫,只见一阵蓝色发光的疾风突然从蘑菇王子的腿中窜出,直扑闪光体而去… …只见闪光体立刻碎成数不清的团体操飞向悬在空中的大广场。随着全部的团体操进入大广场,悬在l场上空闪着金光的水红色轮胎形天光计量仪,立 刻射出串串亮黄色的脉冲光……瞬间,空中显示出缓缓旋转的淡白色巨大数据,只见与团体操有关的数据全都相当优秀,总分竟然是98.49分!第 四章傍晚时分,四个闪级生在院士级生活部安排的别墅花园内每人用法宝和咒语制做了
健康管理师报名 /jkgls/ 健康管理师报名
¡ 例2、已知抛物线与x轴两交点的横坐标分别 为为
¡ 1+√3 和1- √3 ,且过点(1,3),求 它的解析式。
¡ 三、顶点型
¡ 例 3 已知抛物线y=ax2+bx+c的顶点是A(1,4)且经过点(1,2)求其解析式。
¡ 这种方法是将坐标代入y=ax2+bx+c 后,把问题归结 为解一个三元一次方程组,求出待定系数 a, b , c, 进而获得解析式y=ax2+bx+c.
¡ 1、已知一个二次函数的图象经过(-1, 8),
¡ (1,2),(2,5)三点。求这个函数的解 析式
¡ 二、双根型
¡ 例2 已知抛物线y=-2x2+8x-9的顶点为A,若 二次函数y=ax2+bx+c的图像经过A点,且与x 轴交于B(0,0)、C(3,0)两点,试求这 个二次函数的解析式。
二次函数解析式的求法(1)
¡ 一、 三点型
¡ 已知一个二次函数图象经过(-1,10)、(2,7) 和(1,4)三点,那么这个函数的解析式是 _______。
¡ 分析 已知二次函数图象上的三个点,可设其解析 式为y=ax2+bx+c,将三个点的坐标代入,易得 a=2,b=-3,c=5 。故所求函数解析式为y=2x2-3x+5.