期望 方差公式的证明全集

合集下载

泊松分布的期望方差

泊松分布的期望方差

泊松分布的期望方差1.泊松分布的期望和方差公式及详细证明过程如果X~P(a)那么E(x)=D(x)=a;证明过程实在不好写(很多符号)先证明E(x)=a;然后按定义展开E(x^2)=a^2+a;因为D(x)=E(x^2)-[E(x)]^2;得证。

典型的有:2.泊松分布均值和方差怎么求?X~P(λ) 期望E(X)=λ,方差D(X)=λ利用泊松分布公式P(x=k)=e^(-λ)*λ^k/k!P表示概率,x表示某种函数关系,k表示数量,扩展资料应用场景:例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等。

以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。

3.设X服从λ=2的泊松分布,则X的数学期望和方差分别是多少?期望为λ,方差也为λ。

4.poisson分布的母函数怕p(s)=exp{λ(s-1)},求数学期望和方差期望为λ,方差也为λ,这可以根据泊松分布的定义求,可以根据矩母函数或者特征函数导函数与矩的关系求。

5.设随机变量x服从参数0.2的泊松分布,则随机变量x的期望和方差分别为你好!泊松分布的的期望与方差都等于参数的值,经济数学团队帮你解答。

6.概率论泊松分布,λ=0.03,怎么求期望和方差Var(X)=入7.在求无偏估计量的方差下界中I是如何求的,即求其期望的具体过程是什么如果ξ~P(λ),那么E(ξ)= D(ξ)= λ其中P(λ)表示泊松分布无偏估计量的定义是:设(ξ∧)是ξ的一个估计量,若E(ξ∧)=ξ,则称ξ∧是ξ的无偏估计量下面说明题目中的四个估计量都是λ的无偏估计量。

因为ξ1、ξ2、ξ3 都是取自参数为λ的泊松总体的样本,所以它们的期望和方差都是λ,则(1)无偏性E(λ1∧)= E(ξ1)= λE(λ2∧)= E[(ξ1+ξ2)/2 = λE(λ3∧)= E[(ξ1+2*ξ2)/3]= (λ+λ+λ)/即最小方差性D(λ1∧)= D(ξ1)= λD(λ2∧)= D[(ξ1+ξ2)/2]= [D(ξ1)+D(ξ2)]/4 = λ/2D(λ3∧)= D[(ξ1+2*ξ2)/3]= [D(ξ1)+4D(ξ2)]/9= (λ+4λ)/。

期望方差公式-V1

期望方差公式-V1

期望方差公式-V1期望方差公式是统计学中的一个重要公式,用来计算一个随机变量与其期望之间的偏离程度,也是许多概率论和数理统计中的基本工具。

在此,我们重新整理一下期望方差公式,希望能够更好地理解和应用。

一、期望的定义期望是随机变量的平均值,表示某个随机变量可能取到不同取值时的平均预期结果。

设随机变量为 $X$,$X$ 取 $n$ 个不同的取值$x_1,x_2,\cdots,x_n$,概率分别为$p(x_1),p(x_2),\cdots,p(x_n)$,则 $X$ 的期望为:$$E(X)=\sum_{i=1}^{n} x_i p(x_i)$$二、方差的定义方差是随机变量与其期望值之间差异程度的度量,是对随机变量分布的离散程度的一个度量。

它的计算公式为:$$Var(X)=E[(X-E(X))^2]=E(X^2)-[E(X)]^2$$其中,$E(X^2)$ 表示 $X^2$ 的期望。

三、期望方差公式根据期望和方差的定义,可以得到期望方差公式:$$Var(X)=E(X^2)-[E(X)]^2=\sum_{i=1}^{n} x_i^2 p(x_i) -[\sum_{i=1}^{n} x_i p(x_i)]^2$$即方差是每个取值平方与概率的乘积之和减去期望的平方。

四、应用举例假设现有一批产品,生产厂家声称其产品的尺寸标准差为 $0.5$,而消费者却认为实际标准差应该在 $0.3$ 左右。

通过对产品进行抽样测量,可得到随机变量 $X$ 的取值,表示产品尺寸与标准尺寸偏差的大小,此时就可以使用期望方差公式来计算产品尺寸的标准差。

假设样本的大小为 $n=100$,那么相应地,$X$ 的期望可以表示为:$$E(X)=\frac{1}{100}\sum_{i=1}^{100} x_i$$同时,$X^2$ 的期望可以表示为:$$E(X^2)=\frac{1}{100}\sum_{i=1}^{100} (x_i)^2$$根据期望方差公式,可以计算出随机变量 $X$ 的标准差为:SD(X)=\sqrt{Var(X)}=\sqrt{E(X^2)-[E(X)]^2}$$对于本例中的产品尺寸样本,应当将 $n$ 设置成实际样本数量,并代入以上公式进行计算,进而得到标准差的值,以判断产品尺寸是否符合承诺。

期望与方差公式汇总

期望与方差公式汇总

期望与方差公式汇总
期望与方差是统计学中最基本的概念,它们是用来衡量随机变量分布特征的两个重要指标。

期望是概率分布的数学期望,它反映了随机变量的期望值,即随机变量取值的期望值。

期望的计算公式为:E(X)=∑xP(X),其中x表示随机变量的取值,P(X)表示随机变量取值x
的概率。

方差是概率分布的数学期望,它反映了随机变量的变异程度,即随机变量取值的变异程度。

方差的计算公式为:D(X)=∑(x-E(X))^2P(X),其中x表示随机变量的取值,E(X)表示随机
变量的期望值,P(X)表示随机变量取值x的概率。

期望与方差是统计学中最基本的概念,它们可以帮助我们了解随机变量的分布特征。

期望与方差的计算公式分别为E(X)=∑xP(X)和D(X)=∑(x-E(X))^2P(X)。

高中数学 二项分布-超几何分布数学期望与方差公式的推导

高中数学 二项分布-超几何分布数学期望与方差公式的推导

x ) m 的二项展开式中 xk 的系数相等可证.
一、二项分布
在独立重复实验中, 某结 果发生 的概率 均为 p (不 发生
的概率为 q, 有 p + q = 1), 那么在 n次 实验中 该结果 发生的
次数 的概率分布为:
0
1
2
3
P C0n qn C1npqn - 1 C2np2 qn- 2 Cn3p3 qn- 3
Cin--
2 2
p
i-
2
qn
-
i
+
i= 2
n
np
Cin--
1 12p 2
i= 1
= p 2n ( n - 1) ( p + q ) n- 2 + np ( p + q ) n- 1 - n2p 2
= p 2n ( n - 1) + np - n2p2
= np - p2 n
= np ( 1- p ). 二、超几何分布
二项分布、超几何分布数学期望
与方差公式的推导
韩晓东 (江苏省淮阴中 学 223002)
高中教材中 对二 项分布、超 几何 分布数 学期 望与 方差
公式没有给出推 导过 程, 现 笔者 给出 一推导 过程 仅供 读者
参考.
预备公式 1
iCni
=
n
Cin--
1 1
(n
1), 利用组合数计算公式即可证明.
=
M CNn
l
iCMi --11
CNn
-
i M
-
i= 1
Mn 2 N
=
M CNn
l i= 1
(
i-
1)
C C i- 1 n- i M- 1 N -M

期望方差公式

期望方差公式

期望-方差公式期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。

当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。

因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。

这个故事里出现了“期望”这个词,数学期望由此而来。

定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为ip (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。

[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。

(2)若k 是常数,则E (kX )=kE (X )。

(3))E(X )E(X )X E(X 2121+=+。

三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。

但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。

定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。

期望-方差公式-方差和期望公式

期望-方差公式-方差和期望公式

期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。

当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。

因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。

这个故事里出现了“期望”这个词,数学期望由此而来。

定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。

[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。

(2)若k 是常数,则E (kX )=kE (X )。

(3))E(X )E(X )X E(X 2121+=+。

三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。

但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。

定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。

正态分布的期望和方差公式

正态分布的期望和方差公式

正态分布的期望和方差公式
期望:Eξ=x1p1+x2p2+……+xnpn
方差公式:s=1/n{(x1-x)+(x2-x)+……+(xn-x)}。

正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力
扩展资料:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。

因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。

样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。

标准差为方差的算术平方根,用S表示。

期望-方差公式

期望-方差公式

期望与方差的相关公式 -、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。

当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。

因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。

这个故事里出现了“期望”这个词,数学期望由此而来。

定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。

[]1定义 2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。

(2)若k 是常数,则E (kX )=kE (X )。

(3))E(X )E(X )X E(X 2121+=+。

三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。

但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。

定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期望与方差的相关公式的证明-、数学期望的来由早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。

当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。

因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。

这个故事里出现了“期望”这个词,数学期望由此而来。

定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞=1i i i p a ,如果i i i p a ∑∞=1=∞,则数学期望不存在。

[]1定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.二、数学期望的性质(1)设C 是常数,则E(C )=C 。

(2)若k 是常数,则E (kX )=kE (X )。

(3))E(X )E(X )X E(X 2121+=+。

三、 方差的定义前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。

但是在一些场合下,仅仅知道随机变量取值的平均值是不够的,还需要知道随机变量取值在其平均值附近的离散程度,这就是方差的概念。

定义3方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差.ξD 叫标准差,反映了ξ的离散程度.定义4设随机变量X 的数学期望)(X E 存在,若]))([(2X E X E -存在,则称]))([(2X E X E -为随机变量X 的方差,记作)(X D ,即]))([()(2X E X E X D -=。

方差的算术平方根)(X D 称为随机变量X 的标准差,记作)(X σ,即)()(X D X =σ由于)(X σ与X 具有相同的度量单位,故在实际问题中经常使用。

D ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.方差刻画了随机变量的取值对于其数学期望的离散程度,若X 的取值相对于其数学期望比较集中,则其方差较小;若X 的取值相对于其数学期望比较分散,则方差较大。

若方差)(X D =0,则随机变量X 以概率1取常数值。

由定义4知,方差是随机变量X 的函数2)]([)(X E X X g -=的数学期望,故⎪⎩⎪⎨⎧--=⎰∑∞∞-∞=连续时当离散时当X dx x f X E x p X E x X D k k k k ,)()]([X ,)]([)(212当X 离散时, X 的概率函数为 ,2 ,1 ,)()(====k P x X P x P K K k ; 当X 连续时,X 的密度函数为)(x f 。

求证方差的一个简单公式:公式1:22)]([)()(X E X E X D -=证明一:22222)]([)(])]([)(2[]))([()(X E X E x E X XE X E X E X E X D -=+-=-=证明二:21()ni i i D x E p ξξ==-⋅∑2212211122222[2()]2()2()()()ni i ii nn ni i i i i i i i x x E E p x p E x p E p E E E E E ξξξξξξξξξ=====-+⋅=-⋅+⋅=-+=-∑∑∑∑22()D E E ξξξ∴=-可以用此公式计算常见分布的方差四、方差的性质(1)设C 是常数,则D (C )=0。

(2)若C 是常数,则)()(2X D C CX D =。

(3)若X 与Y 独立,则公式2: )()()(Y D X D Y X D +=+。

证 由数学期望的性质及求方差的公式得{}{})()()]([)()]([)()()(2)]([)]([)()(2)()()]()([]2[)]([])[()(2222222222222Y D X D Y E Y E X E X E Y E X E Y E X E Y E X E Y E X E Y E x E XY Y X E Y X E Y X E Y X D +=-+-=---++=+-++=+-+=+可推广为:若1X ,2X ,…,n X 相互独立,则∑∑===ni i ni i X D X D 11)(][∑∑===ni i i n i i i X D C X C D 121)(][(4) D (X )=0 ⇔P (X = C )=1, 这里C =E (X )。

五、常见的期望和方差公式的推导过程(一)离散型随机变量的期望和方差的计算公式与运算性质列举及证明1.由概率的性质可知,任一离散型随机变量的分布列具有下述两个性质: (1)p i ≥0,i =1,2,...; (2)p 1+p 2+ (1)2.离散型随机变量期望和方差的性质: E (a ξ+b)=a E ξ+b ,D (a ξ+b)=a 2 D ξ。

(1) 公式3:E (a ξ+b )=aE ξ+b ,证明:令a b ηξ=+ ,a b 为常数 η也为随机变量 ()()i i P ax b P x ξ+== 1,2,3...i = 所以 η的分布列为1122()()...()n n E ax b p ax b p ax b p η=++++++=112212(......)(......)n n n a x p x p x p b p p p ++++++++E η=aE b ξ+()E a b aE b ξξ+=+说明随机变量ξ的线性函数a b ηξ=+的期望等于随机变量ξ期望的线性函数(2) 公式4:D (a ξ+b )=a 2D ξ(a 、b 为常数).证法一: 因为 21()ni i i D x E p ξξ==-⋅∑2212211122222[2()]2()2()()()ni i ii nn ni i i i i i i i x x E E p x p E x p E p E E E E E ξξξξξξξξξ=====-+⋅=-⋅+⋅=-+=-∑∑∑∑22()D E E ξξξ∴=-所以有:222211()[()]()nni i ii i i D a b ax b aE b p ax E p a D ξξξξ==+=+-+⋅=-⋅=∑∑ 证毕证法二:D ξ=222221111()2()()nnnni i i i i i ii i i i x E p x p E x p E pE E ξξξξξ====-⋅=-+=-∑∑∑∑.E(aξ+b)=aEξ+b , D(aξ+b)=a 2Dξ.222211()[()]()nni i ii i i D a b ax b aE b p ax E p a D ξξξξ==+=+-+⋅=-⋅=∑∑(二)二项分布公式列举及证明1.二项分布定义:若随机变量ξ的分布列为:P (ξ=k )=C n k p k q n-k 。

(k =0,1,2,…,n ,0<p <1,q =1-p ,则称ξ服从二项分布,记作ξ~B (n ,p ),其中n 、 p 为参数,并记C n k p k q n-k =b(k ;n ,p )。

2.对二项分布来说,概率分布的两个性质成立。

即:(1)P (ξ=k )=C n k p k q n-k >0,k =0,1,2,…,n ; (2)∑=nk 0P (ξ=k )=∑=nk 0C n k p k q n-k =(p +q) n =1。

二项分布是一种常见的离散型随机变量的分布,它有着广泛的应用。

3.服从二项分布的随机变量ξ的期望与方差公式: 若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ).(3) 公式5:求证:E ξ=np方法一:在独立重复实验中,某结果发生的概率均为p (不发生的概率为q ,有1p q +=),那么在n 次实验中该结果发生的次数ξ的概率分布为服从二项分布的随机变量ξ的期望E np ξ=.证明如下:预备公式 11k k n n kc nc --=100110220211(1)()11011111()(......)n n n n k k n n k n n n n n n n p q c p q c p q c p q c p q c p q ----------------+=++++++ 因为()(1),k k n k k k n kn np k c p p c p q ξ--==-= 所以 001112220012......n n n k k n k n nn n n n n E c p q c p q c p q k c p q nc p q ξ---=⨯+⨯++⨯++⨯++ =00110220211(1)()11011111(......)n n n k k n n k n n n n n n n np c p q c p q c p q c p q c pq ---------------++++++ =1()n np p q np -+= 所以 E ξ= np 得证方法二: 证明:若 ),(~p n B X ,则X 表示n 重贝努里试验中的“成功” 次数,现在我们来求X 的数学期望。

若设⎩⎨⎧=次试验失败如第次试验成功如第i i X i 01 i =1,2,…,n则12...n X X X X =+++,因为 P X P i ==)1(,q P X P i =-==1)0( 所以p p q X E i =*+*=10)(,则=)(X E np X E X E ni i ni i ==∑∑==11)(][可见,服从参数为n 和p 的二项分布的随机变量X 的数学期望是np 。

需要指出,不是所有的随机变量都存在数学期望。

公式621212(1)k k k n n n k C nC n n C ----=+-211k k n n k C knC --=1111111212[(1)1](1)(1)k n k k n n k k n n n k C nC n k C nC n n C ----------=-+=+-=+- 21212(1)k k k n n n k C nC n n C ----∴=+-求证:服从二项分布的随机变量ξ的方差公式7:D ξ=npq (q =1-p ). 方法一:证明: 220ni i n in i E i C p q ξ-==∑111212221110122211212111221122(1)(1)()(1)()(1)nnn i i n ii i n inn n i i nnn i i n in i i n in n n i i n n n n n n C pq nCp qn n C p q npqnp Cp qnpC q n n pCp q npq np p q npq n n p p q npq np npq n n p np n p -------==-----------==------=++-=+-+-=++-+-+=+-+-=+∑∑∑∑222222(1)np np p n p npq n p -=-+=+由公式1知22()D E E ξξξ=-222()npq n p np npq=+-=方法二: 设~(,)B n p ξ, 则X 表示n 重贝努里试验中的“成功” 次数。

相关文档
最新文档