实验 射极跟随器
射极跟随器实验报告

肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R i图1电路R i=r be+(1+β)R E如考虑偏置电阻R B 和负载R L 的影响,则 R i =R B ∥[r be +(1+β)(R E ∥R L )]由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK )R U U U I U R is ii i i -==即只要测得A 、B 两点的对地电位即可计算出R i 。
2、输出电阻R O 图1电路βr R ∥βr R be E be O ≈=如考虑信号源内阻R S ,则β)R ∥(R r R ∥β)R ∥(R r R B S beE B S be O +≈+=由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L后的输出电压U L ,根据O LO LL U R R R U +=即可求出 R OL LOO 1)R U U (R -= 3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
射极跟随器的实验报告

射极跟随器的实验报告
《射极跟随器的实验报告》
射极跟随器是一种重要的电子元件,它在电子设备中起着非常重要的作用。
在本次实验中,我们对射极跟随器进行了深入的研究和实验,以期能够更加深入地了解其工作原理和特性。
首先,我们对射极跟随器的基本原理进行了深入的研究。
射极跟随器是一种用于放大电流的电子元件,它能够在输入信号的作用下,输出一个放大后的电流信号。
这种特性使得射极跟随器在电子设备中应用非常广泛,例如在放大器、滤波器和功率放大器中都有着重要的作用。
接着,我们设计了一套完整的实验方案,对射极跟随器进行了实际的测试。
通过实验,我们验证了射极跟随器的放大特性和稳定性,并对其在不同工作条件下的性能进行了详细的分析和评估。
实验结果表明,射极跟随器在不同频率和电压条件下都能够稳定地工作,并且具有较好的线性放大特性。
最后,我们总结了本次实验的结果,并对射极跟随器的应用前景进行了展望。
射极跟随器作为一种重要的电子元件,具有广阔的应用前景,特别是在通信、电子设备和自动化控制系统中有着重要的作用。
我们相信,通过对射极跟随器的深入研究和实验,将能够为其在实际应用中发挥更大的作用提供重要的理论和实验基础。
总之,本次实验对射极跟随器进行了深入的研究和实验,取得了一系列重要的实验结果和结论。
这些结果不仅对于深入理解射极跟随器的工作原理和特性具有重要的意义,同时也为其在实际应用中发挥更大作用提供了重要的理论和实验基础。
希望我们的研究成果能够为射极跟随器的进一步发展和应用提供重要
的参考和指导。
《模拟电子技术基础》实验指导书02射极跟随器

实验四射极跟随器一、实验目的1.进一步学习放大器参数的测量方法2.掌握射极跟随器的特性及测试方法二、预习要求1.熟悉射极跟随器的原理及特点。
2.结合教材练习静态工作点的估算和交、直流负载线的画法。
三、实验内容和步骤射极跟随器电路如图4-1所示。
1.按图4-1连线。
检查无误后通电,准备测量。
2.静态工作点的调整和测量令交流输入u s=0(即A点接地)。
调节R p使V E约在7V左右,测V C和V E并填入表4-1。
计算V BE、V CE,估算I E、r be。
设β=50~60。
图4-1V B(V) V E(V) V C(V) V BE (V) V CE(V)估算值I E(mA) r be(kΩ)3.理论计算根据图4-1中的元件参数,计算射极跟随器的电压放大倍、源电压放大倍数、输入电阻和输出电阻,并填入表4-2中。
A u1(R L=∞) A u2(R L=1k) A us1(R L=∞) A us2(R L=1k) R i R o4.测量A u、R i、R o保持R p不变,调节信号波发生器使其输出f=1kHz,u s=0.5V的正弦波,用晶体管毫伏表测量输入电压u i(B点对地电压)及空载输出电压u o1和负载输出电压u o2。
填入表4-3。
u s(V) u i(V) u o1(R L=∞) u o2(R L=1k) A u1A u2A s1A s2(1) 其中。
,,,so us s o us i o u i o u u uA u u A u u A u u A 12112211====与理论值比较。
(2) 计算s i s ii R u u u R -=和 s o o o R u u R ⎪⎪⎭⎫ ⎝⎛-=121,与理论值比较。
5. 电压跟随特性测试接入负载电阻,并在电路输入端加入f=1kHz 的正弦信号。
用示波器观察输出信号,直至输出电压幅度最大(没有失真),用晶体管毫伏表测u i 和u o ,填入表4-4中。
实验5 射极跟随器

实验五 射极跟随器班级 学号 姓名 成绩一、实验目的1、掌握射极跟随器的线路组成;2、掌握共集放大器(射极跟随器)射极跟随器的静态工作点的测量方法;3、掌握共集放大器(射极跟随器)射极跟随器的特性和测试方法;4、学会放大电路的各项参数的测试方法。
5、观察射极跟随器输入与输出电压波形之间的相位差。
二、实验仪器和设备应用模拟电路实验箱 1个 +12V 直流电源 1个 示波器 1台 信号发生器 1台 数字万用表 1个 电阻 1K Ω 1个三、实验原理射极跟随器(共集放大电路)如图1所示,它具有输入电阻高,输出电阻低,电压放大倍数接近1的特点,输出电压能够在较大的范围内跟随输入电压作线形变化,故又称电压跟随器,可用于放大电路的输入级、输出级和缓冲级使用。
由理论分析可得出:1、输入电阻: b L e be i R R R r r //]//)1([β++=2、输出电阻: e b s be o R R R r r ///1)//(++=β 图1 3、电压放大倍数: '')1()1(Lbe Lu R r R A ββ+++= 式中:e L L R R R //'=四、实验内容在模拟电路实验箱上建立如图2所示的射击跟随器实验电路,信号发生器、数字万用表和示波器按图设置。
图21、静态工作点测量:接通+12V 直流电源,不输入交流信号,用直流电压表测量晶体管各电极对地电位,将测得数据记入表1。
2、测量电压放大倍数Au1)由函数信号发生器中f =1KHz 的信号作为输入信号源us ; 2)接入负载RL =1K Ω;3)在A 点加由函数信号发生器产生的正弦信号us ,调节输入信号幅度,用万用表交流电压档(2V`)测量B 点,使B 点输入电压ui 为1V ;4)在输出不失真情况下用万用表交流电压档(2V`)测ui 、uo ,并用示波器观察输出电压波形,将测得数据记入表2。
表23、测量输入电阻Ri由理论得:则有:测量出us 和ui 填入表3中表34、测量输出电阻R0RL 时,输出端可等效成如图3:此时,可测出U ,当接负载RL =1K 后,则可等效成图4。
射极跟随器分析

实验四 射极跟随器
教师:吴永辉
河南大学基础实验教学中心
一、实验目的
➢ 1、 掌握射极跟随器的特性及测试方法 ➢ 2、 进一步学习放大器各项参数测试方法
二、实验原理
射极跟随器具有输入电阻高,输出电阻低, 电压放大倍数接近于1,输出电压能够在较 大范围内跟随输入电压作线性变化以及输入、 输出信号同相等特点。射极跟随器的输出取 自发射极,故称其为射极输出器。
∥RE
rbe Rb 1 β
UL
RL RO RL
UO
RO
(
U U
O L
1)RL
输出电阻的测试:
RO
(
U U
O L
1)RL
100Ω
电压放大倍数
AV
(1β)(R E ∥R L ) rbe (1β)(R E ∥R L )
上式说明射极跟随器的电压放大倍数小于近于1, 且为正值。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。
输入电阻Ri 如考虑偏置电阻RB和 负载RL的影响时
Ri=rbe+(1+β)RE Ri=RB∥[rbe+(1+β) (RE∥RL)]
输入电阻Ri的测量
Ri
Ui Ii
Ui UR
Hale Waihona Puke Ui US UiR
R
• 测量时应注意下列几点:
•
① 由于电阻R两端没有电路公共接地点,所
以测量R两端电压 UR时必须分别测出US和Ui,然 后按UR=US-Ui求出UR值。
三、实验内容及步骤
1、调节静态工作点 接通+12V直流电源,调节Rw使UE=6.5V,
测量静态工作点。 2、测量电压放大倍数
实验三:电子实做实验(射极跟随器)

实验三 射极跟随器实验1. 实验目的(1)熟悉射极跟随器的工程估算,掌握射极跟随器静态工作点的调整与测试方法。
(2)熟悉电路参数变化对静态工作点的影响;熟悉静态工作点对放大器性能的影响。
(3)掌握放大器电压放大倍数、输入电阻、输出电阻及频率特性的测试方法。
(4)了解自举电路在提高射极跟随器的输入电阻中的作用。
2. 实验仪表及器材 (1)双踪示波器(2)双路直流稳压电源 (3)函数信号发生器 (4)数字万用表(5)双路晶体管毫伏表3. 实验电路图4. 知识准备(1)复习共集电极放大器的相关理论知识。
(2)根据理论知识对实验电路的静态工作点、电压增益、输入电阻、输出电阻进行工程估算。
5. 实验原理 (1)基本原理共集放大器又称射极输出器,它的输出信号取自于发射极,其电压放大倍数小于且接近于1,图1-1 射极跟随器输入信号与输出信号是同相的,即输出信号基本上是随输入信号变化而变化,因此它又称为射极跟随器。
由于射极跟随器的输入电阻高,向信号源索取的电流小;输出电阻小,有较强的带负载能力;因此它可以作为信号源或低阻负载的缓冲级,也可以在多级放大电路中作为输入级,以提高输入电阻,向信号源索取较小的电流,保证放大精度;同时也可以作为多级放大电路的输出级,用以增大带负载的能力。
但由于基极偏置电阻的存在使输入电阻降低,从而发挥不出输入电阻高的优点;通常采用自举电路来起到大大提高输入电阻的作用;在使用射极跟随器的时候,要注意最大不失真输出电压的幅度,即跟踪范围。
为了尽可能增大跟踪范围,应当把静态工作点安排在交流负载线的中点。
(2)静态工作点的调整实验电路通过调节电位器R p 来调节静态工作点。
(3)静态工作点的测量放大器的静态工作点是指当放大器的输入端短路时,流过三极管的直流电流I CQ 、I EQ 及三极管极间直流电压V CEQ 、V BEQ 。
静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。
射极跟随器实验报告

实验六 射极跟随器一、实验目的l 、掌握射极跟随器的特性及测量方法。
2、进一步学习放大器各项参数的测量方法。
二、实验原理下图为射极跟随器实验电路。
跟随器输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性。
1、输入电阻R i实际测量时,在输入端串接一个已知电阻R 1,在A 端输入的信号是V i ,在B 端的输入信号是i V ',显然射极输出器的输入电流为:1R V V I iii'-=' i I '是流过R 的电流,于是射极输出器之输入电阻为:11-'='-'=''=ii i i ii ii V V R R V V V I V R 所以只要测得图中A 、B 两点信号电压的大小就可按上式计算出输入电阻R i 。
2、输出电阻R 0在放大器的输出端的D 、F 两点,带上负载R L ,则放大器的输出信号电压V L 将比不带负载时的V 0有所下降,因此放大器的输出端D 、F 看进去整个放大器相当于一个等效电源,该等到效电源的电动势为V S ,内阻即为放大器的输出电阻R 0,按图中等效电路先使放大器开路,测出其输出电压为V 0,显然V 0=V S ,再使放大器带上负载R L ,由于R 0的影响,输出电压将降为:LSL R R V R V +'=S V V =0Θ 则L S R V V R ⎪⎭⎫⎝⎛-=100所以在已知负载R L 的条件下,只要测出V 0和V L ,就可按上式算出射极输出器的输出电阻R 0。
3、电压跟随范围电压跟随范围,是指跟随器输出电压随输入电压作线性变化的区域,但在输入电压超过一定范围时,输出电压便不能跟随输入电压作线性变化,失真急剧增加。
因为射极跟随器的10==&iV V V A 由此说明,当输入信号V i 升高时,输出信号V 0也升高,反之,若输入信号降低,输出信号也降低,因此射极输出器的输出信号与输入信号是同相变化的,这就是射极输出器的跟随作用。
射极跟随器实验报告完整版

射极跟随器实验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】肇庆学院实验二射极跟随器实验报告班别:学号:姓名:指导老师:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验仪器DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干三、实验原理射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
图1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻Ri图1电路Ri =rbe+(1+β)RE如考虑偏置电阻RB 和负载RL的影响,则Ri =RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输入电阻Ri 比共射极单管放大器的输入电阻Ri=RB∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
图2 射极跟随器实验电路(其中,RL 的测量值为ΩK,取ΩK;R的测量值为ΩK)即只要测得A、B两点的对地电位即可计算出Ri。
2、输出电阻RO图1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O3、电压放大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验步骤1. 测量电压放大倍数和跟随特性
• 测量电压放大倍数 在信号发生器上获得 uipp=1V、f=1kHz的正 弦信号,输入放大器; 在放大器输出端连接 示波器,测量输出电 压uopp,记录于右表。 • 测量跟随特性 改变输入电压的幅度, 记录输出电压峰峰值。
表格1 次数 1 2 3 uipp (mV) 1000 uopp (mV) Au
表格3 Uspp (mV) uipp (mV)
Ri=Ui/(Us-Ui)R
2K R
实验步骤2:观察饱和失真和截至失真
• RP调到0时易出现饱和失真。将RP调到0, 增加输入信号幅度,可以观察到饱和失真 现象,记录输出的失真波形。 • RP调到最大值时易出现截止失真。更换 Rp=1M调整最大,然后增加输入信号幅度, 可以观察到截至失真现象,记录输出的失 真波形。
实验步骤3. 测量输出电阻Ro
• 测量空载输出电压(无负 载电阻) 输入uipp=1V、f=1kHz的 正弦信号;放大器输出端 连接示波器,不失真时记 录空载输出电压uopp,记 录于右表。
表格2
Uopp (mV) Uopp (mV)
(同表1 第一次 数据)
Ro=(Uo/Uo-1)RL
实验步骤4. 测量输入电阻Ri
• 输入端接入2K电阻R A点输入uspp=1V、 f=1kHz的正弦信号;B点 接入示波器,记录uipp, 记录于右表。
实验:共集电极放大器(射极跟随器)
一、实验目的
• 1、掌握射极跟随器的特性及测试方法。 • 2、观察饱和失真和截至失真。
二、实验仪器(1)示波Βιβλιοθήκη (2)函数信号发生器实验电路
信号发射器从50Ω输出
示波器: measure 和 autoset
实验原理
• 输入电阻
Ri=Ui/(Us-Ui)RS
• 输出电阻