射极跟随器实验报告

合集下载

射极跟随器实验报告

射极跟随器实验报告

实验二射极跟随器实验报告姓名:班级:学号:指导老师:实验日期:实验成绩:一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验原理射极跟随器的原理图如图5-1所示。

它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。

图5-1 射极跟随器射极跟随器的输出取自发射极,故称其为射极输出器。

1、输入电阻Ri图5-1电路R i=r be+(1+β)R E如考虑偏置电阻RB 和负载RL的影响,则R i=R B∥[r be+(1+β)(R E∥R L)]由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R B∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。

输入电阻的测试方法同单管放大器,实验线路如图5-2所示。

Ri=图5-2 射极跟随器实验电路即只要测得A 、B 两点的对地电位即可计算出R i 。

2、输出电阻R O图5-1电路如考虑信号源内阻R S ,则由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。

三极管的β愈高,输出电阻愈小。

输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据即可求出 R O3、电压放大倍数图5-1电路上式说明射极跟随器的电压放大倍数小于近于1,且为正值。

这是深度电压负反馈的结果。

但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。

4、电压跟随范围电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。

当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。

为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围U 0P -P =2U O三、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、频率计1)//)(1()//)(1(≤+++=L E be L E V R R r R R A ββ7、3DG12×1 (β=50~100)或9013 电阻器、电容器若干。

射极跟随器实验报告

射极跟随器实验报告

肇庆教院之阳早格格创做真验二射极跟随器真验报告班别:教号:姓名:指挥教授:一、真验脚段1、掌握射极跟随器的个性及尝试要领2、进一步教习搁大器各项参数尝试要领二、真验仪器DZX-1型电子教概括真验拆置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若搞三、真验本理射极跟随器的本理图如图1所示. 它是一个电压串联背反馈搁大电路,它具备输进电阻下,输出电阻矮,电压搁大倍数靠近于1,输出电压不妨正在较大范畴内跟随输进电压做线性变更以及输进、输出旗号共相等个性.图1 射极跟随器射极跟随器的输出与自收射极,故称其为射极输出器.1、输进电阻Ri图1电路Ri=rbe+(1+β)RE如思量偏偏置电阻RB战背载RL的效率,则Ri=RB∥[rbe+(1+β)(RE∥RL)]由上式可知射极跟随器的输进电阻Ri 比共射极单管搁大器的输进电阻Ri =RB ∥rbe 要下得多,但是由于偏偏置电阻RB 的分流效率,输进电阻易以进一步普及.输进电阻的尝试要领共单管搁大器,真验线路如图2所示.图2 射极跟随器真验电路ΩK ΩK ΩK )即只消测得A 、B 二面的对于天电位即可估计出Ri.2、输出电阻RO 图1电路如思量旗号源内阻RS ,则由上式可知射极跟随器的输出电阻R0比共射极单管搁大器的输出电阻RO≈RC 矮得多.三极管的β愈下,输出电阻愈小.输出电阻RO 的尝试要领亦共单管搁大器,即先测出空载输出电压UO ,再测接进背载RL 后的输出电压UL ,根据 即可供出 RO3、电压搁大倍数图1电路)R ∥β)(R (1r )R ∥β)(R (1A L E be L E u +++=≤ 1上式证明射极跟随器的电压搁大倍数小于近于1,且为正值. 那是深度电压背反馈的截止.但是它的射极电流仍比基流大(1+β)倍,所以它具备一定的电流战功率搁大效率.4、电压跟随范畴电压跟随范畴是指射极跟随器输出电压uO跟随输进电压ui做线性变更的天区.当ui超出一定范畴时,uO便没有克没有及跟随ui做线性变更,即uO波形爆收了得真.为了使输出电压uO正、背半周对于称,并充分利用电压跟随范畴,固态处事面应选正在接流背载线中面,丈量时可间接用示波器读与uO的峰峰值,即电压跟随范畴;或者用接流毫伏表读与uO的灵验值,则电压跟随范畴U0P-P=22UO四、真验真质1、听课.动脚搞真验前,听指挥教授道课,了解真验历程的注意事项,掌握各丈量器材的使用要领.2、按图2组接电路;固态处事面的安排接通+12V曲流电源,正在B面加进f=1KHz正弦旗号ui,输出端用示波器监视输出波形,反复安排RW及旗号源的输出幅度,使正在示波器的屏幕上得到一个最大没有得真输出波形,而后置ui=0,用万用表曲流电压档丈量晶体管各电极对于天电位,将测得的本初数据记进表1.表1 晶体管各电极对于天电位UE、UE战UC以及流过RE电流IE(正在底下所有尝试历程中脆持RW值没有变(即脆持静处事面IE没有变))2、丈量电压搁大倍数Au接进背载,正在B面加f=1KHz正弦旗号ui,安排输进旗号幅度,用示波器瞅察输出波形uo,正在输出最大没有得真情况下,用示波器测Ui、UL值.将本初值记进表2.表2 Ui、UL的值战电压搁大倍数Au图3 示波器波形图截图3、丈量输出电阻R0接上背载RL=1K,正在B面加f=1KHz正弦旗号ui,用示波器监视输出波形,测空载输出电压UO,有背载时输出电压UL,将本初值记进表3.表3 空载输出电压UO、有背载时输出电压UL战输出电阻R04、丈量输进电阻Ri正在A面加f=1KHz的正弦旗号uS,用示波器监视输出波形,分别测出A、B面对于天的电位US、Ui,将本初值记进表4.表4 A、B面对于天的电位US战Ui以及输进电阻Ri5、尝试跟随个性接进背载RL=1KΩ,正在B面加进f=1KHz正弦旗号ui,渐渐删大旗号ui幅度,用示波器监视输出波形曲至输出波形达最大没有得真,并丈量对于应的UL值,将本初值记进表5.表5 输出波形达最大没有得真时的Ui战UL值五、数据处理与分解1、数据处理将表1至表5的丈量本初数据按三位灵验数字对于应挖进表6至10.表6 晶体管各电极对于天电位UE、UE战UC以及流过RE电流IE表7 Ui、UL的值战电压搁大倍数Au表8 空载输出电压UO、有背载时输出电压UL战输出电阻R0表9 A 、B 面对于天的电位US 战Ui 以及输进电阻Ri表10 输出波形达最大没有得真时的Ui 战UL 值表8中, L LO O 1)R U U (R -=表9中, R U U U I U R is ii i i -==ΩK2、数据分解⑴ 由=O R 24.2KΩ, =i R ΩK 可知,射极跟随器输进电阻下,输出电阻矮.⑵ 由Au=0.97可知,射极跟随器的电压搁大倍数小于近于1,且为正值. 那是深度电压背反馈的截止.但是它的射极电流仍比基流大(1+β)倍, 所以它具备一定的电流战功率搁大效率.六、真验论断1、射极跟随器输进电阻下,输出电阻矮;2、射极跟随器的电压搁大倍数小于近于1.七、真验感受1.万能表没有克没有及测下频接流电.2.丈量面要尽管短.3.间接丈量电流没有成止,可估计其二端电压,丈量其二端电压.。

射极跟随器实验报告

射极跟随器实验报告

射极跟随器实验报告射极跟随器实验报告一、实验目的本实验旨在通过模拟电路实现射极跟随器的功能,加深对射极跟随器工作原理的理解,掌握其电路组成、工作过程及性能特点。

二、实验原理射极跟随器是一种共射极放大电路,其输出信号从发射极取出,经缓冲器和负载电阻反馈到输入端,形成射极跟随器。

射极跟随器具有高输入阻抗、低输出阻抗、电压放大倍数接近1的特点,常用于多级放大电路的输入级或输出级,起缓冲、隔离和放大的作用。

三、实验步骤1.准备实验材料:电源、信号发生器、电阻、电容、电感、三极管等。

2.搭建射极跟随器电路:将电源、信号发生器、电阻、电容、电感、三极管等按照射极跟随器的电路组成连接起来。

3.调节输入信号:打开电源,调节信号发生器,使输入信号频率和幅度变化。

4.测量输出信号:使用示波器等测量仪器,测量射极跟随器输出信号的幅度和相位等参数。

5.记录实验数据:将输入信号和输出信号的幅度、相位等参数记录在实验数据表中。

6.分析实验结果:根据实验数据,分析射极跟随器的性能特点,加深对射极跟随器工作原理的理解。

7.整理实验报告:整理实验步骤、实验数据和分析结果,撰写实验报告。

四、实验数据及分析1.实验数据表:记录输入信号和输出信号的幅度、相位等参数。

幅度的增大而增大,但增大幅度较小;输出信号相位与输入信号相位基本一致,说明射极跟随器具有较好的线性放大特性。

同时,由于射极跟随器具有高输入阻抗和低输出阻抗的特点,使得电路具有较好的隔离效果,可以有效地避免前后级电路之间的相互影响。

五、结论总结通过本次实验,我们验证了射极跟随器的电路组成、工作过程及性能特点。

实验结果表明,射极跟随器具有高输入阻抗、低输出阻抗和较好的线性放大特性,能够有效提高电路的阻抗匹配和信号传输效率。

在多级放大电路中应用射极跟随器可以实现良好的缓冲、隔离和放大效果。

本实验加深了我们对射极跟随器工作原理的理解,为今后在电子系统中应用射极跟随器提供了有益的参考。

射极跟随器的实验报告

射极跟随器的实验报告

射极跟随器的实验报告
《射极跟随器的实验报告》
射极跟随器是一种重要的电子元件,它在电子设备中起着非常重要的作用。

在本次实验中,我们对射极跟随器进行了深入的研究和实验,以期能够更加深入地了解其工作原理和特性。

首先,我们对射极跟随器的基本原理进行了深入的研究。

射极跟随器是一种用于放大电流的电子元件,它能够在输入信号的作用下,输出一个放大后的电流信号。

这种特性使得射极跟随器在电子设备中应用非常广泛,例如在放大器、滤波器和功率放大器中都有着重要的作用。

接着,我们设计了一套完整的实验方案,对射极跟随器进行了实际的测试。

通过实验,我们验证了射极跟随器的放大特性和稳定性,并对其在不同工作条件下的性能进行了详细的分析和评估。

实验结果表明,射极跟随器在不同频率和电压条件下都能够稳定地工作,并且具有较好的线性放大特性。

最后,我们总结了本次实验的结果,并对射极跟随器的应用前景进行了展望。

射极跟随器作为一种重要的电子元件,具有广阔的应用前景,特别是在通信、电子设备和自动化控制系统中有着重要的作用。

我们相信,通过对射极跟随器的深入研究和实验,将能够为其在实际应用中发挥更大的作用提供重要的理论和实验基础。

总之,本次实验对射极跟随器进行了深入的研究和实验,取得了一系列重要的实验结果和结论。

这些结果不仅对于深入理解射极跟随器的工作原理和特性具有重要的意义,同时也为其在实际应用中发挥更大作用提供了重要的理论和实验基础。

希望我们的研究成果能够为射极跟随器的进一步发展和应用提供重要
的参考和指导。

射极跟随器性能

射极跟随器性能
表6-3
5、测输入电阻
在A点加 的正弦信号 ,用示波器观察输出波形,用交流毫伏表分别测出A、B点对地的电位 、 ,记入表6-4。
表6-4
6、测试跟随特性
接入负载 ,在B点加入 正弦信号 ,并保持不变,逐渐增大信号 幅度,用示波器观察输出波形直至输出波形达最大不失真,测量对应的 值,记入表6-5
表6-5
2、分析射极跟随器的性能和特点。
如考虑信号源内阻 则
由上式可知射极跟随器的输出电阻R。比共射极单管放大器的输出电阻 低得多。三极管的 愈高,输出电阻愈小。
输出电阻 的测试方法亦同单管放大器,即先测出空载输出电压 ,
再测接入负载 后的输出电压 ,根据 ,即可求出R。
3、电压放大倍数近似等于1:如(图1)电路
上式说明射极跟随器的电压放大倍数小于近于1,且为正值。这是深度电压负反馈的结果。但它的射极电流仍比基极电流大 倍,所以它具有一定的电流和功率放大作用。
实验六 射极跟随器性能
一、实验目的
1、掌握射极跟随器的特性及测试方法
2、进一步学习放大器各项参数测试方法
二、实验原理
射极跟随器的原理图如(图1)所示。它是一个电压串联负反馈放大电路,它具有输入阻抗高,输出阻抗低,输出电压能够在较大范围内跟随输入电压作线性变化以及输入输出信号同相等特点。
图1射极跟随器原理图图2射极跟随器实验电路
7、测试频率响应特性
保持输入信号 幅度不变,改变信号源频率,用示波器观察输出波形,用交流毫伏表测量不同频率下的输出电压 值,记入表6-6。
表6-6
(KHz)
五、预习要求
1、复习射极跟பைடு நூலகம்器的工作原理及其特点。
2、根据图2的元件参数值估算静态工作点,并画出交、直流负载线。

射极跟随器实验报告

射极跟随器实验报告

射极跟随器实验报告射极跟随器实验报告引言射极跟随器是一种常见的电子设备,广泛应用于放大器、滤波器和信号处理等电路中。

本实验旨在通过搭建射极跟随器电路并进行实际测试,探究其工作原理和性能特点。

一、实验目的1. 理解射极跟随器的基本原理;2. 掌握射极跟随器电路的搭建方法;3. 分析射极跟随器的频率响应和增益特性。

二、实验器材与方法1. 实验器材:电压源、电容、电阻、晶体管、示波器等;2. 实验方法:按照实验原理搭建射极跟随器电路,并通过示波器观察电路的输出波形。

三、实验步骤1. 按照电路图搭建射极跟随器电路,注意连接的正确性;2. 调节电压源的输出电压,使其适合晶体管的工作条件;3. 连接示波器,观察电路的输出波形;4. 调节输入信号的频率,观察电路的频率响应;5. 记录实验数据,如输入信号的幅值和频率,输出信号的幅值和频率等。

四、实验结果与分析通过实验观察和数据记录,我们得到了射极跟随器的实际工作情况。

根据实验结果,我们可以得出以下结论:1. 射极跟随器能够实现输入信号的放大,输出信号的幅值较输入信号大;2. 射极跟随器具有较高的输入阻抗和较低的输出阻抗,能够有效地驱动后级电路;3. 随着输入信号频率的增加,射极跟随器的增益逐渐下降,且相位差逐渐增大;4. 射极跟随器对输入信号的幅值有一定的限制,过大或过小的输入信号都会导致输出失真。

五、实验总结通过本次实验,我们深入了解了射极跟随器的原理和性能特点。

射极跟随器作为一种常见的电子设备,在电子电路中有着广泛的应用。

它具有放大输入信号、驱动后级电路、提高系统的稳定性等优点,但也存在一定的局限性。

在实际应用中,我们需要根据具体需求选择合适的射极跟随器电路,并注意输入信号的幅值和频率范围,以保证系统的正常工作。

六、参考文献[1] 电子技术基础教程. 北京:高等教育出版社,2010.[2] 张三, 李四. 射极跟随器的设计与应用. 电子科技导刊, 2018, 36(2): 45-50.结语通过本次实验,我们对射极跟随器有了更深入的了解。

模电实验三 三极管射极跟随器

模电实验三 三极管射极跟随器

实验三三极管射极跟随器一、实验目的1.掌握三极管射极跟随器的特性及测试方法。

2.进一步学习放大器各项参数的测试方法。

二、实验设备与器件1.TX0833 19电源板(±5V)2.TX0533 25双路直流稳压电源3.TX0531 29多功能信号发生器4.双踪示波器5.交流毫伏表6.TX0533 26频率计7.TX0531 18直流电压表8.TX0833 02电子学综合实验板Ⅱ三、实验内容1.按图5-1连接好一个三极管射随器电路。

[先检查元器件导线, 在连线, 先直流后交流]2.三极管射随器直流工作点的调整接通+5V[旧+15V]直流电源, 用信号源在B点加入f=1kHz正弦波信号ui, 用示波器观测三极管发射极的电压波形, 反复调整RW[1M]及信号源的输出幅度, 在调整过程中, 在示波器上获得一个最大而又不失真的波形, 然后置ui=0。

用直流电压表测量三极管9013各电极对地电位(即uE、uB.uC), 将其数值记入表5-1。

注:在后面的各项测试及实验过程中, 应始终保持RW不变, 即IB不变, 也即保证该三极管射随器的直流工作点不变。

表5-1u E(V)u B(V)u C(V)I C≈ue/Re(mA)3.测量电压放大倍数A u将开关K合上, 加上该放大器负载RL=2.7k, 用信号源在B点加入f=1kHz的正弦波信号ui, 不断调节输入信号ui的电压幅度, 用示波器观测uO, 在uO最大且不失真情况下, 用交流毫伏表测ui, uL值, 并将其记入表5-2。

表5-24.测量输出电阻R O将开关K合上或打开, 使该放大器分别处于有载和空载两个状态。

(负载RL=1kΩ), 用信号源在B点加入f=1kHz, ui=(0.1~0.5)V的正弦波信号, 用示波器监测输出波形, 用交流毫伏表分别测出有载和空载两个状态下的uL与uO值。

并将其代入输出电阻计算公式, 算出RO值, 一并记入表5-3。

射极跟随器实验报告

射极跟随器实验报告

射极跟随器实验报告1. 引言射极跟随器是一种广泛应用于电子设备中的电路,其作用是使输出端的电压或电流跟随输入端的变化。

本实验旨在探究射极跟随器的基本原理、性能特点以及应用实例。

2. 实验目的- 理解射极跟随器的工作原理- 学习如何设计和搭建射极跟随器电路- 掌握射极跟随器的性能测试方法和结果分析3. 实验材料和仪器- NPN型晶体管(例如2N3904)- 电压源- 电阻、电容等常见元器件- 示波器- 万用表4. 实验步骤4.1 搭建射极跟随器电路根据给定的电路图,选择合适的元器件进行搭建。

确保电路连接正确,无误后进行下一步。

4.2 测试射极跟随器的静态工作点使用万用表测量晶体管的射极电流和集电极电压,并记录下来。

通过计算可以得到静态工作点,进一步分析电路性能。

4.3 测试射极跟随器的动态响应特性通过改变输入端的信号频率和幅度,观察电路输出(集电极)的响应。

使用示波器进行波形显示和观察,并记录实验结果。

4.4 对实验结果进行分析根据实验数据,分析射极跟随器的增益、频率响应特性等性能。

比较不同元器件参数对电路性能的影响。

5. 实验结果和讨论记录并整理实验数据结果,分析电路的性能特点。

讨论射极跟随器在电子设备中的应用及其优缺点。

6. 结论总结实验结果,针对射极跟随器的特点和应用进行归纳总结。

7. 实验注意事项- 实验过程中需要注意安全操作,避免触电风险。

- 确保电路连接正确,避免短路或开路等问题。

- 对于高频信号的测试,需要选择合适的示波器和电路布线,以避免信号失真和干扰。

8. 参考文献提供相关射极跟随器的原理资料、电路设计参考资料以及其他相关论文、教材等。

9. 结束语通过本实验,我们对射极跟随器的工作原理、性能特点和应用有了更加深入的了解。

射极跟随器作为一种常用的电路,具有重要的应用价值,值得进一步研究和探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 射极跟随器
一、实验目的
l 、掌握射极跟随器的特性及测量方法。

2、进一步学习放大器各项参数的测量方法。

二、实验原理
下图为射极跟随器实验电路。

跟随器输出电压能够在较大的范围内跟随输入电压作线性变化,而具有优良的跟随特性。

1、输入电阻R i
实际测量时,在输入端串接一个已知电阻R 1,在A 端输入的信号是V i ,在B 端的输入信号是i V ',显然射极输出器的输入电流为:1
R V V I i
i
i
'-=
' i I '是流过R 的电流,于是射极输出器之输入电阻为:
1
1-'='-'=''=i
i i i i
i i
i V V R R V V V I V R 所以只要测得图中A 、B 两点信号电压的大小就可按上式计算出输入电阻R i 。

2、输出电阻R 0
在放大器的输出端的D 、F 两点,带上负载R L ,则放大器的输出信号电压V L 将比不带负载时的V 0有所下降,因此放大器的输出端D 、F 看进去整个放大器相当于一个等效电源,该等到效电源的电动势为V S ,内阻即为放大器的输出电阻R 0,按图中等效电路先使放大器开路,测出其输出电压为V 0,显然V 0=V S ,再使放大器带上负载R L ,由于R 0的影响,输出电压将降为:
L
S
L R R V R V +'=
S V V =0Θ 则L S R V V R ⎪⎭

⎝⎛-=100
所以在已知负载R L 的条件下,只要测出V 0和V L ,就可按上式算出射极输出器的输出电阻R 0。

3、电压跟随范围
电压跟随范围,是指跟随器输出电压随输入电压作线性变化的区域,但在输入电压超过一定范围时,输出电压便不能跟随输入电压作线性变化,失真急剧增加。

因为射极跟随器的
10
==
&i
V V V A 由此说明,当输入信号V i 升高时,输出信号V 0也升高,反之,若输入信号降低,输出信号也降低,因此射极输出器的输出信号与输入信号是同相变化的,这就是射极输出器的跟随作用。

所谓跟随范围就是输出电压能够跟随输入电压摆动到的最大幅度还不至于失真,换句话说,跟随范围就是射极的输出动态范围。

三、实验仪器
l 、示波器 2、信号发生器 3、数字万用表
4、分立元件放大电路模块
四、实验内容与步骤 l 、按图中电路接线。

2、直流工作点的调整:
将电源+l2V 接上,在B 点加入f=lKHz 正弦波信号,输出端用示波器监视,反复调整R P 及信号源输出幅度,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用万用表测量晶体管各极对地的电位,即为该放大器静态工作点,将所测数据填入表中
3、测量电压放大倍数A V
接入负载R L =lK Ω,在B 点f=lKHz 信号,调输入信号幅度(此时偏置电位器
R P 不能再旋动),用示波器观察,在输出最大不失真情况下测V i ,V L 值,将所测数据填入表中。

4、测量输出电阻R 0
在B 点加入f=lKHz 正弦波信号,V i =100mV 左右,接上负载R L =2K2Ω时,用示波器观察输出波形,测空载输出电压V O (R L =∝),有负载输出电压V L (R L =2K2Ω)的值。

则L L R V V R ⎪⎭

⎝⎛-
=100。

将所测数据填入表中。

5、测量放大器输入电阻R i
在输入端串入5Kl Ω电阻,A 点加入f=lKHz 的正弦信号,用示波器观察输出波形,用毫伏表分别测A ,B 点对地电位V S 、V i 。

则 1-=•-=i
s
i s i i V V R R V V V R
将测量数据填入表中。

6、测量射极跟随器的跟随特性并测量输出电压值V OPP 。

接入负载R L =2K2Ω,在B 点加入f=lKHz 的正弦信号,逐点增大输入信号幅度V i ,用示波器监视输出端,在波形不失真时,测量所对应的V L 值。

计算出A V ,并用示波器测量输出电压的峰值V OPP 与电压表读测的对应输出电压有效值比较。

将所测数据填入表中。

五、实验总结及感想
1、射极跟随器理论上放大倍数是1,实际上是非常接近1而非完全等于1。

2、三极管存在非线性,当电流变化时,三极管的放大倍数贝塔也会有微小变化。

3、各个电阻都有误差,造成静态工作点、输入输出电阻等与预期有偏差。

4、电源存在波动,并不是绝对稳定。

5、三极管存在输入电容,引脚也有结电容,因而会对放大器的频率响应造成影响。

相关文档
最新文档