信息论与编码实验二

合集下载

信息论实验2

信息论实验2

《信息论与编码》实验2 香农编码规则及其软件实现一、实验目的1、通过上机实践,实现常用的信源编码方案,以加深对编码理论的理解,促进对本课程所学知识的理解和把握。

2、通过信源编译码,理解香农第一定理3、通过信源编译码,掌握信源编码的方法和手段二、实验原理信源编码主要可分为无失真信源编码和限失真信源编码。

无失真信源编码主要适用于离散信源或数字信号,如文本、表格及工程图纸等信源,它们要求进行无失真地数据压缩,要求完全能够无失真地可逆恢复。

凡是能载荷一定的信息量,且码字的平均长度最短,可分离的变长码的码字集合都可称为最佳码。

为此必须将概率大的信息符号编以短的码字,概率小的符号编以长的码字,使得平均码字长度最短。

其中香农编码是能获得最佳码的编码方法之一。

香农第一定理指出,选择每个码字的长度i K 满足下式I(i x )≤i K <I(i x )+1 ,i ∀就可以得到这种码。

这种编码方法称为香农编码。

香农编码步骤:设离散无记忆信源二进制香农码的编码步骤如下:(1)将信源符号按概率从大到小的顺序排列,为方便起见,令p (x 1)≥ p (x 2)≥…≥ p (xn )(2)令p (x 0)=0,用)(j a x P ,j =i +1表示第i 个码字的累加概率,则:n j x P x P j i i j a ,...,2,1,)()(10==∑-=12112,,,,,,()1(),(),,(),,()()n i n ii i n x x x x X p x p x p x p x p x P X =⎧⎫⎡⎤==⎨⎬⎢⎥⎣⎦⎩⎭∑(3)确定满足下列不等式的整数i K ,并令i K 为第i 个码字的长度-log2 p (xn )≤i K <- log2 p (xn )+1(4)将)(j a x P 用二进制表示,并取小数点后i K 位作为符号xi 的编码。

三、实验内容1)充分掌握信源编码方案之一的香农编码算法设计;2)以教材例题为算例,将该编码方法用代码实现。

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告

信息论与编码实验2-实验报告信息论与编码实验 2 实验报告一、实验目的本次信息论与编码实验 2 的主要目的是深入理解和应用信息论与编码的相关知识,通过实际操作和数据分析,进一步掌握信源编码和信道编码的原理及方法,提高对信息传输效率和可靠性的认识。

二、实验原理(一)信源编码信源编码的目的是减少信源输出符号序列中的冗余度,提高符号的平均信息量。

常见的信源编码方法有香农编码、哈夫曼编码等。

香农编码的基本思想是根据符号出现的概率来分配码字长度,概率越大,码字越短。

哈夫曼编码则通过构建一棵最优二叉树,为出现概率较高的符号分配较短的编码,从而实现平均码长的最小化。

(二)信道编码信道编码用于增加信息传输的可靠性,通过在发送的信息中添加冗余信息,使得在接收端能够检测和纠正传输过程中产生的错误。

常见的信道编码有线性分组码,如汉明码等。

三、实验内容与步骤(一)信源编码实验1、选取一组具有不同概率分布的信源符号,例如:A(02)、B (03)、C(01)、D(04)。

2、分别使用香农编码和哈夫曼编码对信源符号进行编码。

3、计算两种编码方法的平均码长,并与信源熵进行比较。

(二)信道编码实验1、选择一种线性分组码,如(7,4)汉明码。

2、生成一组随机的信息位。

3、对信息位进行编码,得到编码后的码字。

4、在码字中引入随机错误。

5、进行错误检测和纠正,并计算错误纠正的成功率。

四、实验结果与分析(一)信源编码结果1、香农编码的码字为:A(010)、B(001)、C(100)、D (000)。

平均码长为 22 比特,信源熵约为 184 比特,平均码长略大于信源熵。

2、哈夫曼编码的码字为:A(10)、B(01)、C(111)、D (00)。

平均码长为 19 比特,更接近信源熵,编码效率更高。

(二)信道编码结果在引入一定数量的错误后,(7,4)汉明码能够成功检测并纠正大部分错误,错误纠正成功率较高,表明其在提高信息传输可靠性方面具有较好的性能。

信息论与编码技术实验报告

信息论与编码技术实验报告

《信息论与编码技术》实验报告实验一:请根据公式-plogp ,说明小概率事件和大概率事件对熵的贡献。

解:先做图,然后分析。

将公式写为)(log )(2p p p f -=对它编写计算和画图程序如下:p=0:0.01:1;x=-p.*log2(p);plot(p,x);从图中曲线看出,小概率事件和大概率事件的情况下,熵值都很低,贡献很小,在概率为0.5附近时熵值最大,故此时对熵的贡献最大。

实验二:请对a 、b 、c 霍夫曼编码,它们的概率是0.6、0.3、0.1。

并以此对符号串ababaacbaa 编码和译码。

解:编码步骤分为:事件排序,符号编码,信源编码,信道编码。

MATLAB 程序:clc;a=0.3;b=0.3;c=0.4; %%%霍夫曼编码A=[a,b,c];A=fliplr(sort(A)); %%%降序排序if (a==b)&(a>c), %%实现了当a,b,c 其中两概率相同时的编码,及3值均不同时的编码 u='a';x=a;v='b';y=b;w='c';z=c;elseif (a==b)&(a<c),u='c';x=c;v='a';y=a;w='b';z=b;elseif (c==b)&(c>a),u='b';x=b;v='c';y=c;w='a';z=a;elseif (c==b)&(c<a),u='a';x=a;v='b';y=b;w='c';z=c;elseif(a==c)&(a>b),u='a',x=a;v='c',y=c;w='b',z=b;elseif(a==c)&(a<b),u='b';x=b;v='a';y=a;w='c';z=c;elseif A(1,1)==a,u='a';x=a;elseif A(1,1)==b,u='b';x=b;elseif A(1,1)==c,u='c';x=c;endif A(1,2)==a,v='a';y=a;elseif A(1,2)==b,v='b';y=b;elseif A(1,2)==c,v='c';y=c;endif A(1,3)==a,w='a';z=a;elseif A(1,3)==b,w='b';z=b;elseif A(1,3)==c,w='c';z=c;endend %%%x,y,z按从大到小顺序存放a,b,c的值,u,v,w存对应字母if x>=(y+z),U='0';V(1)='0';V(2)='1';W(1)='1';W(2)='1';else U='1';V(1)='0';V(2)='0';W(1)='1';W(2)='0';enddisp('霍夫曼编码结果:')if u=='a',a=fliplr(U),elseif u=='b',b=fliplr(U),else c=fliplr(U),end if v=='a',a=fliplr(V),elseif v=='b',b=fliplr(V),else c=fliplr(V),end if w=='a',a=fliplr(W),elseif w=='b',b=fliplr(W),else c=fliplr(W),end %%%编码步骤为:信源编码,信道编码disp('信源符号序列:')s='ababaacbaa' %%%信源编码q=[];for i=s;if i=='a',d=a;elseif i=='b';d=b;else d=c;end;q=[q,d];endm=[]; %%%符号变数字for i=q;m=[m,str2num(i)];endP=[1,1,1,0;0,1,1,1;1,1,0,1];G=[eye(3),P];%%%信道编码%%%接下来的for循环在程序中多次使用,此处作用是将已编码组m每3个1组放入mk中进行运算之后存入Ck数组中,每次mk中运算结束之后清空,再进行下一组运算,而信道编码结果数组C则由C=[C,Ck]存入每组7个码。

信息论与编码实验报告

信息论与编码实验报告

NANCHANG UNIVERSITY信息论与编码实验报告(2018年11月27日)学院:信息工程学院系电子信息工程系专业班级:学生姓名:学号:指导教师:目录实验一自信息量和熵源.............................................................................................. 实验二准对称信道容量.............................................................................................. 实验三费诺不等式...................................................................................................... 实验四香农编码.......................................................................................................... 实验五费诺编码.......................................................................................................... 实验六霍夫曼编码......................................................................................................实验一自信息量和熵源一、实验要求1、画出I=-的函数图;2、画出H(p)=-p-(1-p)函数图。

二、实验原理及理论分析自信息量:一个事件的自信息量就是对其不确定性的度量。

信息论上机实验报告

信息论上机实验报告

信息论与编码实验报告实验一:计算离散信源的熵一、实验设备: 1、计算机2、软件:Matlab 二、实验目的:1、熟悉离散信源的特点;2、学习仿真离散信源的方法3、学习离散信源平均信息量的计算方法4、熟悉 Matlab 编程; 三、习题:1. 甲地天气预报构成的信源空间为:1111(),,,8482X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦ 小雨云 大雨晴 乙地信源空间为:17(),88Y p y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦小雨晴 求此两个信源的熵。

求各种天气的自信息量。

代码:x=[1/2,1/4,1/8,1/8]; y=[7/8,1/8];HX=sum(-x.*log2(x)) HY=sum(-y.*log2(y)) IX=-log2(x) IY=-log2(y) 答案:() 1.75;()0.5436H X H Y ==2、 某信息源的符号集由A 、B 、C 、D 、E 组成,设每一符号独立出现,其出现的概率分别为,1/4,1/8,1/8,3/16,5/16,试求该信源符号的平均信息量。

代码:x=[1/4,1/8,1/8,3/16,5/16]; HX=sum(-x.*log2(x))答案:H(X) = 2.2272bit/符号3、设有四个消息分别以概率1/4,1/8,1/8,1/2传送,每一消息的出现是相互独立的。

试计算其平均信息量。

代码:x=[1/4,1/8,1/8,1/2]; HX=sum(-x.*log2(x)) 答案:H(X) =1.75bit/符号4. 设一个二元信源(只有0和1两种符号)其概率空间为:(),1X p x p p ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦0 1编程画出H 与p 的关系,并说明当P 呈什么分布时,平均信息量达到最大值。

(说明:H=-p.*log2(p)-(1-p).log2(1-p);) 代码:p= 1/1000000:1/1000:1;H=-p.*log2(p)-(1-p).*log2(1-p); plot(p,H) grid on xlabel('p'); ylabel('HP'); 图:实验二:验证熵的可加性与强可加性1. 【例2.6】有一离散无记忆信源123111(),,244a a a X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦验证二次扩展信源2X 的熵等于离散信源X 的熵的2倍,即2()2()H X H X =代码:x=[1/2,1/4,1/4];hx=sum(x.*log2(1./x))x2=[1/4,1/16,1/16,1/8,1/8,1/8,1/16,1/8,1/16] hx2=sum(x2.*log2(1./x2)) 答案:2() 1.5;() 3.0H X H X ==2. 验证两个统计独立的信源,X Y ,验证:()()()H XY H X H Y =+其中:123111(),,244a a a X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦123111(),,333b b b Y p y ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦代码:x=[1/2,1/4,1/4]; y=[1/3,1/3,1/3];xy=[1/6,1/6,1/6,1/12,1/12,1/12,1/12,1/12,1/12] hx=sum(x.*log2(1./x)) hy=sum(y.*log2(1./y)) Hxy=sum(xy.*log2(1./xy)) 答案:() 1.5,() 1.585() 3.085H X H Y H XY ===3、条件熵的计算与熵的强可加性 验证离散二维平稳信源,满足:12121()()(|)H X X H X H X X =+某一离散二维平稳信源0121141(),,3694X p x ⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦12X X 其联合概率分布12()p X X 为:编程计算:1) 联合熵12()H X X 2) 条件熵21(|)H X X3) 验证:12121()()(|)H X X H X H X X =+代码:x1=[11/36,4/9,1/4]; x2=[11/36,4/9,1/4];b=[1/4,1/18,0;1/18,1/3,1/18;0,1/18,7/36]; HXY=0;for i=1:size(b,1) for j=1:size(b,2) if b(i,j)>0HXY=HXY-b(i,j).*log2(b(i,j)); end end end HXYHx1=sum(x1.*log2(1./x1)) Hx2=sum(x2.*log2(1./x2))b0=b(1,:); b1=b(2,:); b2=b(3,:);x1x2=[b0./x2;b1./x2;b2./x2]; Hx1x2=0;for i=1:size(x1x2,1) for j=1:size(x1x2,2) if x1x2(i,j)>0Hx1x2=Hx1x2-b(i,j).*log2(x1x2(i,j)); end end end Hx1x2 答案:12112121() 1.5426;(|)0.8717() 2.4144()(|) 2.4144H X H X X H X X H X H X X ===+=实验三:离散信道的平均互信息的计算1. 【习题3.1】 设信源12()0.6,0.4X x x p x ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦通过一干扰信道,接收到符号为12[,]Y y y =,其信道矩阵为:516631,44P ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦1) 求信源X 中事件1x 和2x 分别含有的自信息;2) 收到消息(1,2)j y j =后,获得的关于(1,2)i x i =的信息量;3) 求信源X 和输出变量Y 的信息熵; 4) 信道疑义度(|)H X Y 和噪声熵(|)H Y X ; 5) 接收到消息Y 后获得的平均互信息;代码:x=[0.6,0.4];p=[5/6,1/6;3/4,1/4]; Ix1=log2(1./(x(1,1))) Ix2=log2(1./(x(1,2)))pxy=[x(1,1)*p(1,:);x(1,2)*p(2,:)]; py=[x*p(:,1),x*p(:,2)];px_y=[pxy(:,1)/py(1,1),pxy(:,2)/py(1,2)]; I=log2(p./[py;py]) Hx=sum(x.*log2(1./x)) Hy=sum(py.*log2(1./py))Hx_y=sum(sum(pxy.*log2(1./px_y))) Hy_x=sum(sum(pxy.*log2(1./p)))Ixy=sum(sum(pxy.*log2(p./[py;py])))答案:12111221221.()0.737() 1.32192.(;)0.0589,(;)0.263,(;)0.0931,(;)0.32193.()0.971,()0.72194.(|)0.9635(|)0.71455.(;)0.0074I x I x I x y I x y I x y I x y H X H Y H X Y H Y X I X Y ====-=-======2. 二元信道的互信息与信源分布的关系 有二元信源:01()1X p x ωω⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦有二元信道,其传递矩阵为:11p p P p p -⎡⎤=⎢⎥-⎣⎦, 其中0.2p =,即传递矩阵0.80.20.20.8P ⎡⎤=⎢⎥⎣⎦编程实现下面题目:1) 画出平均互信息(;)I X Y 随信源分布ω的关系曲线,并求出最大平均互信息。

信息论与编码2

信息论与编码2

根据概率互换公式
p(xi yj) = p(yj︱xi)q(xi)=φ(xi︱yj)ω (yj)
互信息量I(xi ;yj )有多种表达形式:
I ( xi ; y j ) log
p( xi y j ) q( xi ) ( y j )
I ( xi ) I ( y j ) I ( xi y j )
第2章 信息的度量
第2章 信息的度量
内容提要:
根据香农对于信息的定义,信息是一个系 统不确定性的度量,尤其在通信系统中, 研究的是信息的处理、传输和存储,所以 对于信息的定量计算是非常重要的。本章 主要从通信系统模型入手,研究离散情况 下各种信息的描述方法及定量计算,讨论 它们的性质和相互关系。
2.1 自信息量和互信息量
(2-13)
【例2.8】信源包含8个消息x0,x1,x2,x3,x4,x5,x6,x7 ,信源编码器将 其对应编成8个三位二进制数000,001,…,111。各消息的先验概率 已知,在接收过程中,每收到一个数字,各消息的后验概率都相应 地发生变化。考虑在接受100三个数字的过程中,各后验概率的变 化,计算信息量I(x4;100)。
1/8
1/8 1/4 1/4
1/6
1/6 1/3 1/3
1/2
1/2 0 0
1
0 0 0
根据给定的先验概率,可算出:
1 12 1 23 1 p ( x4 ) p( x4 1) p( x4 10) P (x4︱100) = 1 8 1 2 1 8 1 8 6 2 3 1 6 2
可以看出, 1比特信息量就是两个互不相容 的等可能事件之一发生时所提供的信息量。
二维联合集X Y上元素xi yj的联合自信息量I(xi yj)定义为:

《信息论与编码技术》实验教案

《信息论与编码技术》实验教案

技术选型
根据实际需求选择合适的差错控制编码技术, 包括线性分组码、卷积码等。
实现与测试
通过编程实现所选差错控制编码技术的编码和解码过程,并进行测试和性能分 析。
04
现代编码技术实验
Turbo码编译码原理及性能评估
Turbo码基本原理
介绍Turbo码的结构、编码原理、迭代译码原理等基本概念。
编译码算法实现
《信息论与编码技术》实验教案
目录
• 课程介绍与实验目标 • 信息论基础实验 • 编码技术基础实验 • 现代编码技术实验 • 信息论与编码技术应用案例分析 • 课程总结与展望
01
课程介绍与实验目标
信息论与编码技术课程概述
课程背景
信息论与编码技术是通信工程、 电子工程等专业的核心课程,主 要研究信息的传输、存储和处理 过程中的基本理论和方法。
2. 根据概率分布生成模拟信源序列;
03
离散信源及其数学模型
3. 计算信源熵、平均符号长度等参数;
4. 分析实验结果,理解信源熵的物理 意义。
信道容量与编码定理验证
实验目的
理解信道容量的概念、计算方法和物理意义,验证香农编码定理的正确性。
实验内容
设计并实现一个信道模拟器,通过输入不同的信道参数和编码方案,计算并输出信道容量、误码率等关键参数。
数据存储系统中纠删码技术应用
纠删码基本原理
阐述纠删码的基本概念、原理及其在数据存储系统中的应用价值。
常用纠删码技术
介绍常用的纠删码技术,如Reed-Solomon码、LDPC码等,并分 析其性能特点。
纠删码技术应用实践
通过实验,将纠删码技术应用于数据存储系统中,评估其对系统可 靠性、数据恢复能力等方面的提升效果。

信息论实验二报告

信息论实验二报告

新课改下中学体育教学的问题与对策分析摘要:在当前的教育发展中,中学阶段的体育教学是不容忽视的重要内容,同时也是整个教育体系中的重要组成部分。

中学生的身体发展速度较快,在这一过程中对学生的身体素质进行培养是非常重要的。

从当前的中学体育教学情况来看,开展体育教学之后,能够有效的实现学生身体素质的培养和身体技能的提升。

关键词:新课改;中学体育;问题及对策引言:在当前新课改发展的背景下,老师需要正确的看待高中体育教学问题的开展,要结合学校相关领导人针对当前教学中存在的问题进行分析,要建立完善的科学评价体系和评价模式。

正凸显教学改革和发展的真实性与创新性。

一、中学体育教学的重要性国家相关体育教育部门在发展过程中多次强调中学生的身体训练问题,从国家体育教育部门的发展角度来看,开展中学生的体育教学工作之后,能够真正提高整体的教学质量和教学效果,而且能够为学生身体素质的提升起到一定的推动作用。

在当前的新课改发展背景下,老师的教育观念和具体的教学内容是非常重要的,体育老师在开展体育教学的过程中,能够真正遵循以德育人的教学原则了解学生的实际诉求,能够为后续的教育起到一定的推动力[1]。

了解学生素质发展和全面发展的基本内容,从根本上提高整体的教学效果。

开展高质量的体育教学工作之后,能够为学生综合能力的发展提供一定的技术保障。

从当前高中学生的情况来看,部分学生的身体素质相对较差,如果不及时对学生的身体机能进行培养,就会影响学生的身心健康发展。

学校通过开展高质量的体育教学活动之后,能够让学生在参与活动训练的过程中养成良好的习惯,这对学生的整体发展来说是非常有帮助的。

二、中学体育教学过程中存在的问题2.1.中学体育教学工作的重视度不足从当前高中学阶段的体育教学情况来看,部分学校在办学期间更加关注学生的应试发展,只关心学生的学科成绩,忽视了学生身体素质和体育课堂工作的开展。

但是由于部分学校对于体育教学缺乏一定的重视度,导致很多地区的体育教学工作开展非常困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 离散信道及其容量
一、实验目的
1、
理解离散信道容量的内涵; 2、
掌握求二元对称信道(BSC )互信息量和容量的设计方法; 3、 掌握二元扩展信道的设计方法并会求其平均互信息量。

二、实验原理
若某信道输入的是N 维序列x ,其概率分布为q(x),输出是N 维序列y,则平均互信息量记为I(X;Y),该信道的信道容量C 定义为()
max (X;Y)q x C I =。

三、实验内容
1、给定BSC 信道,信源概率空间为
信道矩阵 0.990.010.010.99P ⎡⎤=⎢⎥⎣⎦
求该信道的I(X;Y)和容量,画出I(X;Y)和ω、C 和p 的关系曲线。

2 、编写一M 脚本文件t03.m ,实现如下功能:
在任意输入一信道矩阵P 后,能够判断是否离散对称信道,若是,求出信道容量C 。

3、已知X=(0,1,2);Y=(0,1,2,3),信源概率空间和信道矩阵分别为
X
P 0 1 0.6 0.4
= X
Px 0 1 2 0.3 0.5 0.2
=
求: 平均互信息量;
4、 对题(1)求其二次扩展信道的平均互信息I(X;Y)。

四、程序设计与算法描述
1)设计思路
1、信道容量()
max (X;Y)q x C I 因此要求给定信道的信道容量,只要知道该信道的最大互信息量,即求信道容量就是求信道互信息量的过程。

程序代码:
clear all,clc;
w=0.6;
w1=1-w;
p=0.01;
X=[0 1];
P =[0.6 0.4];
p1=1-p;
save data1 p p1;
I_XY=(w*p1+w1*p)*log2(1/(w*p1+w1*p))+(w*p+w1*p1)*log2(1/(w*p+w1*p1))-(p*log2(1/p)+p 1*log2(1/p1));
C=1-(p*log2(1/p)+p1*log2(1/p1));
fprintf('互信息量:%6.3f\n 信道容量:%6.3f',I_XY,C);
p=eps:0.001:1-eps;
p1=1-p;
C=1-(p.*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,1),plot(p,C),xlabel('p'),ylabel('C');
load data1;
w=eps:0.001:1-eps;
w1=1-w;
I_XY=(w.*p1+w1.*p).*log2(1./(w.*p1+w1.*p))+(w.*p+w1.*p1).*log2(1./(w.*p+w1.*p1))-(p .*log2(1./p)+p1.*log2(1./p1));
subplot(1,2,2),plot(w,I_XY)
xlabel('w'),ylabel('I_XY');
0.1 0.3 0 0.6 0.3 0.5 0.2 0 0.1 0.7 0.1 0.1
P=
实验结果:
2、离散对称信道:当离散准对称信道划分的子集只有一个时,信道关于输入和输出对称。

离散准对称信道:若一个离散无记忆信道的信道矩阵中,按照信道的输出集Y可以将信道划分成n个子集,每个子矩阵中的每一行都是其他行同一组元素的不同排列。

实验代码:
clc;clear;
P=input('输入信道转移概率矩阵:');
[r,c]=size(P);
if sum(P,2)-1~=zeros(1,r)';
error('输入的信道矩阵不合法!');%矩阵行和一定要为1
end
l=1;
Sum=0;
for j=2:c
for i=1:r%i是行变量
for k=1:r
if P(k,j)==P(i,1)
Sum=Sum+1;
break;
end
end
end
end%判断是否离散输出对称信道
if Sum==r*(c-1)
fprintf('是离散输出对称信道!\n',j);
else fprintf('不是对称信道!');
end
实验结果:
ans =
0.0100 0.9900
0.9900 0.0100
是离散输出对称信道!
ans =
0.4000 0.6000
0.3000 0.7000
不是对称信道!
3、二次扩展信道的互信息量I(X;Y)=H(Y)-H(Y|X). 实验代码:
clc,clear;
p=0.01;
P_X1=[0.6,0.4];
p1=1-p;
X2=[0,0;0,1;1,0;1,1];%二次扩展输入符号阵
Y2=X2;%二次扩展输出符号
P_X2=[P_X1(1)^2,P_X1(1)*P_X1(2),P_X1(2)*P_X1(1),P_X1(2)^2];
%求二次扩展后信道矩阵N
N=zeros(4);
for i=1:4
for j=1:4
l=length(find(xor(X2(i,:),Y2(j,:))==0));%比较得正确传递元素个数N(i,j)=p1^l*p^(2-l);
end
end
%下面求I
P_Y2=P_X2*N;
P_XY2=[P_X2(1)*N(1,:);P_X2(2)*N(2,:);P_X2(3)*N(3,:);P_X2(4)*N(4,:)];%联合分布
H_Y2=sum(-P_Y2.*log2(P_Y2));
H_Y_X2=sum(sum(-P_XY2.*log2(N)));
I_XY2=H_Y2-H_Y_X2;
fprintf('2次扩展信道的平均互信息为:%5.3f',I_XY2);
实验结果:
2次扩展信道的平均互信息为:1.783
2)实验中出现的问题及解决方法;
1、信道容量与互信息量有关,而互信息量又与信源熵相关,所以要求得信道容量就必须知道信道传递概率,然后根据公式一步一步计算。

2、对于判断离散对称信道,不需要弄清楚的是它的概念,根据定义来判断。

3、对于扩展信道,分有记忆的和无记忆的,在不确定的情况下计算扩展信源的熵,我们要根据定义来计算。

五、实验心得
通过本次实验,我对于信道的分类,各种信道的特点有了一定的认识和了解。

实验中涉及的主要是二元对称信道,而它的最佳分布是输入和输出均对称。

实验中最主要的部分还是关于信道容量的计算,此次实验,让我们验证了课本上的定理,也让我们更好地理解和掌握了课堂上所学的知识。

相关文档
最新文档