高中数学竞赛讲义_数列

合集下载

高中数学竞赛专题讲座竞赛中的数论问题

高中数学竞赛专题讲座竞赛中的数论问题

竞赛中的数论问题的思索方法一. 条件的增设对于一道数论命题,我们往往要首先解除字母取零值或字母取相等值等“平凡〞的状况,这样,利用字母的对称性等条件,往往可以就字母间的大小依次、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。

1. 大小依次条件及实数范围不同,假设整数x ,y 有大小依次x <y ,那么必有y ≥1,也可以写成,其中整数t ≥1。

例1. 〔22〕设m ,n 是不大于1981的自然数,1)(222=--m nm n ,试求22n m +的最大值。

解:易知当时,222=+n m 不是最大值。

于是不访设n >m ,而令1,n >u 1≥1,得-2(m -1mu 1)(22112=--u mu m 。

同理,又可令 u 1+ u 2,m >u 2≥1。

如此接着下去将得1= 1,而11+-+=i i i u u u ,i ≤k 。

故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故987,1597。

例 2. 〔匈牙利—1965〕怎样的整数a ,b ,c 满意不等式?233222c b ab c b a ++<+++解:假设干脆移项配方,得01)1()12(3)2(222<--+-+-c b b a 。

因为所求的都是整数,所以原不等式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12(3)2(222≤-+-+-c b b a ,从而只有1,2,1。

2. 整除性条件对于整数x ,y 而言,我们可以讨论其整除关系:假设,那么可令;假设x ∤y ,那么可令,0<r ≤1。

这里字母t ,r 都是整数。

进一步,假设a q |,b q |且a b >,那么q a b +≥。

结合高斯函数,设n 除以k ,余数为r ,那么有r k k n n +⎥⎦⎤⎢⎣⎡=。

还可以运用抽屉原理,为同余增设一些条件。

高中数学竞赛数列专题

高中数学竞赛数列专题

高中数学竞赛数列专题摘要:一、高中数学竞赛数列专题简介1.高中数学竞赛背景2.数列专题在竞赛中的重要性3.数列专题的主要内容二、等差数列与等比数列1.等差数列的概念与性质2.等差数列的通项公式与求和公式3.等比数列的概念与性质4.等比数列的通项公式与求和公式三、常见的数列类型1.质数数列2.斐波那契数列3.几何数列4.调和数列四、数列的性质与应用1.数列的递推关系2.数列的极限与无穷数列3.数列在实际问题中的应用五、高中数学竞赛数列专题的备考策略1.掌握基础知识2.熟练运用公式与性质3.分析与解决问题的方法与技巧4.模拟试题与真题训练正文:高中数学竞赛数列专题涵盖了丰富的知识点,旨在培养学生的逻辑思维能力和解决问题的能力。

为了更好地应对数列专题的挑战,我们需要对这一专题有全面的了解,包括基本概念、公式、性质以及实际应用等方面。

首先,高中数学竞赛的背景为选拔优秀的学生参加各类数学竞赛,如全国青少年数学竞赛、国际奥林匹克数学竞赛等。

在这些竞赛中,数列专题具有很高的出现频率和重要性,因此,对这一专题的掌握程度对竞赛成绩有着直接影响。

数列专题的主要内容包括等差数列与等比数列、常见的数列类型、数列的性质与应用等方面。

等差数列与等比数列是数列的基本类型,它们在数学竞赛中占据重要地位。

等差数列具有以下性质:任意两项之差相等;等差数列的通项公式为an=a1+(n-1)d,求和公式为Sn=n/2(2a1+(n-1)d)。

等比数列具有以下性质:任意两项之比相等;等比数列的通项公式为an=a1*q^(n-1),求和公式为Sn=a1*(1-q^n)/(1-q)。

在高中数学竞赛中,还常遇到一些常见的数列类型,如质数数列、斐波那契数列、几何数列和调和数列等。

这些数列具有独特的性质和规律,需要我们熟练掌握其定义、公式和性质。

数列的性质与应用方面,我们需要了解数列的递推关系、极限与无穷数列,以及数列在实际问题中的应用。

递推关系是指数列的通项公式可以通过已知的前几项求得。

高中数学必修5《数列的递推公式》竞赛课PPT

高中数学必修5《数列的递推公式》竞赛课PPT

数列的递推公式
让我们从一个古老的传说开始…… ?
梵天塔婆罗门法则:
• “每次只能移动1个赤金盘,小圆盘只能 放在大圆盘上面”的要求,把圆盘从现在 所在的柱子上移动到另一根柱子上。首先 要问的是:移动n个圆盘,至少需要移动 几次?
n
a1 1,an 2an1 1n 2
那么
a2 2a1 1 1,
2an ,0 an
2an
1,
1 2
an
1
2 ,若a1 1
4 5
,则a2015
_____ .
例3.已知数列{an }满足a1
1,an
an1
1
nn 1
n
2,
则an ____
谈谈你的收获吧!
根 据 数 字 之 间 的 规 律 填 空 :1 ,1 ,2 ,3 ,5 ,8 ,

21,34,…。你 能 用 数学 语 言 归 纳 出 它 的规 律 吗 ?
a3 2a2 1 7,
...
像这样给出数列的方法叫做递推法,其中
an 2an1 1n 2
称为递推公式。递推公式也是数列的一种表示方法。
递推公式与数列的通项公式的区一数每个图形中所有三角形的总个数依次为多少? 你能写出它的递推公式吗?
例2.数列an 满足a n1

高中数学竞赛专题讲座之二:数列

高中数学竞赛专题讲座之二:数列

高中数学竞赛专题讲座之二:数列一、选择题部分1.(2006年江苏)已知数列{}n a 的通项公式2245n a n n =-+,则{}n a 的最大项是(B )A .1aB .2aC .3aD .4a2.(2006安徽初赛)正数列满足()231221,10,103n n n t a a a a a n --===≥,则100lg ()a =( )A .98B .99C .100D .101 3.(2006吉林预赛)对于一个有n 项的数列P=(p 1,p 2,…,p n ),P 的“蔡查罗和”定义为s 1、s 2、…s n 、的算术平均值,其中s k =p 1+p 2+…p k (1≤k≤n ),若数列(p 1,p 2,…,p 2006)的“蔡查罗和”为2007,那么数列(1,p 1,p 2,…,p 2006)的“蔡查罗和”为 (A ) A .2007 B .2008 C .2006 D .10044.(集训试题)已知数列{a n }满足3a n+1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。

则满足不等 式|S n -n-6|<1251的最小整数n 是 ( )A .5B .6C .7D .8解:由递推式得:3(a n+1-1)=-(a n -1),则{a n -1}是以8为首项,公比为-31的等比数列, ∴S n -n=(a 1-1)+(a 2-1)+…+(a n -1)=311])31(1[8+--n =6-6×(-31)n ,∴|S n -n-6|=6×(31)n <1251,得:3n-1>250,∴满足条件的最小整数n=7,故选C 。

5.(集训试题)给定数列{x n },x 1=1,且x n+1=nn x x -+313,则∑=20051n nx= ( )A .1B .-1C .2+3D .-2+3解:x n+1=n n x x 33133-+,令x n =tan αn ,∴x n+1=tan(αn +6π), ∴x n+6=x n , x 1=1,x 2=2+3, x 3=-2-3, x 4=-1, x 5=-2+3,x 6=2-3, x 7=1,……,∴有∑===2005111n nx x。

高中数学竞赛讲义(全套)

高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。

高中数学 第十四章《极限与极值》数学竞赛讲义 苏教版

高中数学 第十四章《极限与极值》数学竞赛讲义 苏教版

第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A,称右极限。

类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。

2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。

4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。

5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即00)()(lim)('0x x x f x f x f x x --=→。

由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。

若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。

高中数学竞赛_数列【讲义】

高中数学竞赛_数列【讲义】

第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

高中数学竞赛试题汇编六《数列》讲义1

高中数学竞赛试题汇编六《数列》讲义1

高中数学竞赛试题汇编六《数列一》1. 数列{}n a 的前n 项和22n S n n =-,则317a a +=A. 36B. 35C. 34D. 332. 等比数列{}n a 满足13a =且第1项至第8项的几何平均数为9,则3a =A. B. C.D. 3. 数列{}n a {}n b 分别为等差数列和等比数列,且11444,1a b a b ====,则 A. 22a b > B. 33a b < C. 55a b > D. 66a b > 4. 设n S 是等差数列{}n a 的前n 项和,若59S S =,则35:a a = A.9:5 B. 5:9 C. 3:5 D. 5:35. 从满足12211,(1)n n n a a a a a n ++===+≥的数列{}n a 中,依次抽出能被3整除的项组成数列{}n b ,则100b =A.100aB.200aC.300aD.400a6. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中13a =,11b =,22a b =, 533a b =,则n a = ;n b = ;7. 数列{}n a 的前n 项和n S 满足1n n S a =-,则n a = ;8. 数列{}n a 满足2111,n n a a a n +=+=-,则15a = ;9. 数列{}n a ,{}n b 满足1,1,2,3,k k a b k ⋅==L ,已知数列{}n a 前n 项和为1n nA n =+,则数列1n b ⎧⎫⎨⎬⎩⎭前n 项和为n B = ;10. 数列{}n a 满足12211,3,n n n a a a a a ++===-,前n 项和为n S ,100S = ;11. 数列{}n a ,{}n b 满足235212312,log ()n n n n a b a a a a n+==L ,则n b = ;12. 正实数1239,,,a a a a L 构成等比数列,且1234a a +=,345615a a a a +++=, 则789a a a ++=13. 已知,n n S T 分别是等差数列{}n a ,{}n b 的前n 项和,且2142n n S n T n +=-, 则1011318615a ab b b b +=++14. 设正数数列{}n a 的前n 项之和为n b ,数列{}n b 的前n 项之积为n C ,且满足1n n b c +=,则1na =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。

其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。

定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。

若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。

定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。

定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞→定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为qa -11(由极限的定义可得)。

定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

竞赛常用定理定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。

定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。

二、方法与例题 1.不完全归纳法。

这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。

通常解题方式为:特殊→猜想→数学归纳法证明。

例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。

【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1=21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n . 【解】 因为a 1=21,又a 1+a 2=22·a 2,所以a 2=231⨯,a 3=4311322⨯=-+1a a ,猜想)1(1+=n n a n (n ≥1). 证明;1)当n =1时,a 1=121⨯,猜想正确。

2)假设当n ≤k 时猜想成立。

当n =k +1时,由归纳假设及题设,a 1+ a 1+…+a 1=[(k +1)2-1] a k +1,, 所以)1(1231121+⨯++⨯+⨯k k =k (k +2)a k +1, 即1113121211+-++-+-k k =k (k +2)a k +1,所以1+k k =k (k +2)a k +1,所以a k +1=.)2)(1(1++k k由数学归纳法可得猜想成立,所以.)1(1+=n n a n 例3 设0<a <1,数列{a n }满足a n =1+a , a n -1=a +na 1,求证:对任意n ∈N +,有a n >1.【证明】 证明更强的结论:1<a n ≤1+a . 1)当n =1时,1<a 1=1+a ,①式成立;2)假设n =k 时,①式成立,即1<a n ≤1+a ,则当n =k +1时,有.11111111121=++>+++=++≥+=>++a a a a a a a a a a a kk由数学归纳法可得①式成立,所以原命题得证。

2.迭代法。

数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或n -1等,这种办法通常称迭代或递推。

例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得121+++n n pa a ·a n +.02=+n n cq qa【证明】121+++n n pa a ·a n+1+221++=n n a qa (pa n +1+a n +2)+21+n qa =a n +2·(-qa n )+21+n qa = 21221[)(+++=-n n n n a q a a a q +a n (pq n +1+qa n )]=q (2121n n n n qa a pa a ++++).若211222qa a pa a ++=0,则对任意n , n n n a pa a 121++++2n qa =0,取c =0即可.若211222qa a pa a ++≠0,则{n n n a pa a 121++++2n qa }是首项为211222qa a pa a ++,公式为q 的等比数列。

所以n n n a pa a 121++++2nqa =)(211222qa a pa a ++·q n . 取)(212122qa a pa a c ++-=·q1即可. 综上,结论成立。

例5 已知a 1=0, a n +1=5a n +1242+n a ,求证:a n 都是整数,n ∈N +. 【证明】 因为a 1=0, a 2=1,所以由题设知当n ≥1时a n +1>a n . 又由a n +1=5a n +1242+n a 移项、平方得.01102121=-+-++n n n n a a a a ①当n ≥2时,把①式中的n 换成n -1得01102112=-+---n n n n a a a a ,即.01102121=-+-++n n n n a a a a ②因为a n -1<a n +1,所以①式和②式说明a n -1, a n +1是方程x 2-10a n x +2n a -1=0的两个不等根。

由韦达定理得a n +1+ a n -1=10a n (n ≥2).再由a 1=0, a 2=1及③式可知,当n ∈N +时,a n 都是整数。

3.数列求和法。

数列求和法主要有倒写相加、裂项求和法、错项相消法等。

例6 已知a n =100241+n (n =1, 2, …),求S 99=a 1+a 2+…+a 99. 【解】 因为a n +a 100-n =100241+n +100100241+-n =10010010010010010021)44(2244422=++⨯++⨯--n n n n , 所以S 99=.29929921)(21101100991100=⨯=+∑=-n n n a a例7 求和:43213211⨯⨯+⨯⨯=n S +…+.)2)(1(1++n n n【解】 一般地,)2)(1(22)2)(1(1++-+=++k k k kk k k k ⎪⎪⎭⎫ ⎝⎛++-+=)2)(1(1)1(121k k k k , 所以S n =∑=++nk k k k 1)2)(1(1⎥⎦⎤⎢⎣⎡++-+++⨯-⨯+⨯-⨯=)2)(1(1)1(143132132121121n n n n⎥⎦⎤⎢⎣⎡++-=)2)(1(12121n n .)2)(1(2141++-=n n 例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和,求证:S n <2。

【证明】 由递推公式可知,数列{a n }前几项为1,1,2,3,5,8,13。

因为nn n a S 228252322212165432+++++++= , ① 所以1543222523222121++++++=n n n a S 。

② 由①-②得12222222121212121+---⎪⎪⎭⎫ ⎝⎛++++=n nn n n a a S , 所以122412121+--+=n n n n a S S 。

又因为S n -2<S n 且12+n n a>0,所以412121+<n S S n , 所以2141<n S ,所以S n <2,得证。

4.特征方程法。

例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n . 【解】 由特征方程x 2=4x -4得x 1=x 2=2. 故设a n =(α+βn )·2n -1,其中⎩⎨⎧⨯+=+=2)2(63βαβα,所以α=3,β=0,所以a n =3·2n -1.例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n . 【解】 由特征方程x 2=2x +3得x 1=3, x 2=-1,所以a n =α·3n+β·(-1)n,其中⎩⎨⎧+=-=βαβα9633,解得α=43,β43-=,所以11)1(3[41++-+=n n n a ·3]。

相关文档
最新文档