银耳多糖的提取与纯化工艺的设计
一种非乙醇沉淀的高分子量银耳多糖及其制备方法

一种非乙醇沉淀的高分子量银耳多糖及其制备方法高分子量银耳多糖是一种非乙醇沉淀的多糖,具有多种生物活性和药理作用。
本文将介绍一种制备高分子量银耳多糖的方法。
首先,制备高分子量银耳多糖的原料是银耳菌丝体。
银耳是一种珍稀的食用真菌,其菌丝体富含多糖。
可以通过培养银耳菌丝体来获取菌丝体。
接下来,将获取的银耳菌丝体进行水提取。
将银耳菌丝体研磨成细粉,然后加入适量的水,进行浸泡和搅拌,提取其中的多糖。
水提取可以通过温泉提取法等方式进行。
提取得到的多糖溶液需要进行精制。
首先,可以通过过滤的方式去除杂质和残渣。
然后,可以采用离心分离的方法去除不溶性物质。
离心可以使多糖溶液中的悬浮颗粒沉淀到底部,得到纯净的溶液。
得到的多糖溶液可以进行浓缩。
可以通过真空浓缩法或喷雾干燥法对多糖溶液进行浓缩,得到高浓度的多糖。
浓缩过程中需要注意控制温度和压力,以保证多糖的活性和稳定性。
浓缩得到的多糖溶液可以通过反渗透膜法进行分离纯化。
反渗透膜法可以将溶液中的溶质与溶剂分离开来,得到纯净的多糖溶液。
反渗透膜法需要选择适当的膜材和操作条件,以保证分离效果。
分离纯化得到的多糖溶液可以进行进一步的活性检测和鉴定。
可以使用不同的分析方法,如高效液相色谱法、凝胶渗透色谱法、核磁共振法等,对多糖进行结构分析和质量评估。
最后,可以将高分子量银耳多糖制备成不同形式的制剂。
可以制备成粉剂、胶囊、片剂、注射剂等,以满足不同的应用需求。
制剂的制备需要考虑多糖的稳定性和活性,选择适当的辅料和工艺条件。
综上所述,制备高分子量银耳多糖的方法包括银耳菌丝体的水提取、溶液的精制、浓缩和纯化、多糖的活性检测和鉴定,以及制剂的制备等步骤。
这种非乙醇沉淀的多糖具有广泛的应用前景,可以用于食品、保健品和药品等领域。
银耳多糖提取工艺的研究

银耳多糖提取工艺的研究银耳多糖提取工艺研究摘要:银耳多糖是一种有着良好保健和滋补功效的天然多糖,它由多种多糖成分组成,如葡萄糖、半乳糖、聚糖等,是人体健康的重要来源。
银耳多糖提取工艺是提取和分离银耳中含有银耳多糖的主要过程,经由不同的提取方法可以从银耳中得到高纯粹的银耳多糖粉末。
本文从四个方面详细介绍了银耳多糖提取工艺的理论基础、主要提取方法、技术参数以及优点和缺点,以便为后续银耳多糖提取工艺改进提供参考。
关键词:银耳多糖;提取工艺;提取方法Abstract: Trametes versicolor polysaccharides are natural polysaccharides with good health care and tonic effects, which are composed of various polysaccharides, such as glucose, galactose, polysaccharides, etc., and are an important source of human health. The extraction process of Trametes versicolor polysaccharides is the main process to extract and separate Trametes versicolor polysaccharides from Trametes versicolor. The highly pure Trametes versicolor polysaccharides powder can be obtained from Trametes versicolor by different extraction methods. This paper introduces the theoretical basis, main extraction methods, technical parameters, advantages and disadvantages of Trametes versicolor polysaccharides extraction process in detail, in order to provide reference for the improvement of Trametes versicolor polysaccharides extraction process in the future.Keywords: Trametes versicolor polysaccharides; extraction process; extraction methods1、引言银耳多糖是一种良好的滋补和保健品,它是由多种多糖成分构成,其中葡萄糖、半乳糖、聚糖等是主要成分,具有强烈的收敛和胃黏膜防护作用,是常用的护肝、促进新陈代谢等健康保健产品的主要原料,是现在社会受到关注的重要天然产物之一。
银耳子实体多糖的分离纯化、结构鉴定、溶液构象和流变学特性研究

银耳子实体多糖的分离纯化、结构鉴定、溶液构象和流变学特性研究银耳(Tremella fuciformis Berk)又称雪耳,是一种珍贵的食药用菌。
银耳多糖是银耳子实体中主要的活性成分之一,具有免疫调节、抗肿瘤、降血糖血脂、抗氧化和延缓衰老等重要的生物活性功能。
本论文采用水提醇沉法获得银耳子实体粗多糖,通过层析柱进一步纯化得到均一多糖组分,并对均一多糖组分初级结构、溶液构象和基本流变行为进行了探讨和研究。
银耳子实体多糖水提液依次用30、60、80 vol.%的乙醇浓度进行分级沉淀,得到了TFP30、TFP60、TFP80三个粗多糖组分,由于TFP60组分含糖量较高,因此选取TFP60组分进行后续分离纯化。
TFP60经DEAE-Sepharose Fast Flow离子交换柱和Sephacryl S500凝胶柱分离纯化后得到TFP60-2a均一组分。
紫外全扫描表明TFP60-2a不含游离的核酸和蛋白质类物质,对TFP60-2a进行高效液相色谱法测定其相对分子量为6.180×10~5 Da。
TFP60-2a通过红外光谱、气相色谱等手段进行初级结构的解析,结果表明TFP60-2a是一种酸性多糖,主要由鼠李糖、岩藻糖、木糖、甘露糖和葡萄糖组成,摩尔比为0.34:1.07:1.00:1.47:0.46。
利用差示扫描量热仪、刚果红实验、多检测器凝胶渗透色谱、原子力显微镜和扫描电子显微镜等多种方法对多糖TFP60-2a的高级结构进行了初探。
DSC结果表明在30-200℃范围内,TFP60-2a的热稳定较好;刚果红实验结果表明TFP60-2a与刚果红不能形成络合物,未出现三股螺旋构象;通过SEC-MALLS-RI-Vis确定TFP60-2a的重均分子量(M_w)、数均分子量(M_n)、Z均分子量(M_z)分别为1.071×10~6、8.110×10~5、1.324×10~6 Da,多分散系数PDI为1.321,其v值为0.531,推断TFP60-2a在溶液中以随机线团状存在。
实验一银耳多糖的制备及分析

实验一银耳多糖的制备及分析实验目的:1. 学习真菌多糖类的分离、纯化原理。
2. 掌握多糖类物质的提取及一般鉴定方法。
实验原理:银耳(Tremella fuciformis)是我国一种传统的珍贵的真菌,具有滋补强壮、扶正固本之功效。
银耳中含有的多糖类物质则具有明显提高机体免疫功能、抗炎症和抗放射等作用。
多糖(polysaccharides)的纯化方法很多,但必须根据目的物质的性质及条件选择合适的纯化方法。
而且往往用一种方法不易得到理想的结果,因此必要时应考虑合用几种方法。
1、乙醇沉淀法:乙醇沉淀法是制备黏多糖的最常用手段。
乙醇的加入,改变了溶液的极性,导致糖溶解度下降。
供乙醇沉淀的多糖溶液,其含多糖的浓度以1%----2%为佳。
加完酒精,搅拌数小时,以保证多糖完全沉淀。
沉淀物可用无水乙醇、丙酮、乙醚脱水,真空干燥即可得疏松粉末状产品。
2、分级沉淀法:不同多糖在不同浓度的甲醇、乙醇或丙酮中的溶解度不同,因此可用不同浓度的有机溶剂分级沉淀分子大小不同的黏多糖。
3、季铵盐络合法:黏多糖与一些阳离子表面活性剂如十六烷基三甲基溴化铵(CTAB)和十六烷基氯化吡啶(CPC)等能形成季铵盐络合物。
这些络合物在低离子强度的水溶液中不溶解,在离子强度大时,这种络合物可以解离,溶解,释放。
本实验采用银耳子实体,经沸水抽提、氯仿—正丁醇法除蛋白质和乙醇沉淀分离可制得银耳多糖粗品,再用CTAB(溴化十六烷基三甲铵)络合法进一步精制可得银耳多糖精品。
然后进行定性和定量测定及杂质含量测定。
实验器材:1、器材(1)布氏漏斗 1 只(2)500ml抽滤瓶 1 只(3)250ml分液漏斗 1 只(4)100ml量筒 2 只(5)10ml量筒 1 只(6) 离心机 1 只(7)烧杯 2 只(8)水浴锅 1 只2、试剂(1)银耳实体:10g(2)2%CTAB:取2gCTAB溶于100ml蒸馏水中,摇匀备用(3)2mol/L 氢氧化钠溶液,6.2mol/L氯化钠溶液(4)氯仿—正丁醇溶液(4:1)(5)95%乙醇(6)甲苯胺(7)乙醚(8)无水乙醇(9)浓硫酸(10)a—萘酚(11)斐林试剂:A液:将34.5g硫酸铜(Cuso4.5H2O)溶于500ml水中B液:将125g氢氧化钠和137g酒石酸钾钠溶于500ml水中,临用时,将A B两液等量混匀。
银耳多糖的制备与分析[整理]
![银耳多糖的制备与分析[整理]](https://img.taocdn.com/s3/m/0999c23d4a35eefdc8d376eeaeaad1f346931131.png)
银耳多糖的制备与分析一、实验目的1、了解银耳多糖制备的基本原理。
2、掌握糖类物质提取的基本操作技术。
二、实验原理银耳是真菌的一种,是我国传统的珍贵药材之一,具有滋阴润肺、益胃生津等功效。
常用于治疗虚劳咳嗽、阴伤燥咳、虚热口渴等症。
银耳多糖是银耳的主要药效成分,银耳中含有的多糖类物质则具有明显提高机体免疫功能,抗炎症和抗放射等作用。
1、制备(提取)原理:银耳多糖易溶于水,但不溶于乙醇。
因此本实验采用沸水抽提、氯仿-正丁醇法除蛋白和乙醇沉淀分离制得银耳多糖粗品。
然后再进行定性分析。
2、分析(鉴定)原理:Molish反应多糖在浓硫酸或浓盐酸的作用下,脱水形成糠醛及其衍生物,其与α-萘酚反应,作用生成紫色的化合物。
原理是羰基与酚类进行了缩合,这样,糖与浓酸作用后,再与α-萘酚反应,就能生成紫色的化合物。
因此,阴性反应证明没有糖类物质的存在;而阳性反应,则说明有糖存在的可能性,需要进一步通过其他糖的定性试验才能确定有无糖的存在。
斐林试剂质量浓度为0.1g/mL的氢氧化钠溶液和质量浓度为0.05g/mL的硫酸铜溶液配制而成,二者混合后,立即生成淡蓝色的氢氧化铜沉淀。
氢氧化铜与加入的葡萄糖在加热的条件下,能够生成砖红色的氧化亚铜沉淀,而葡萄糖本身则氧化成葡萄糖酸。
用斐林试剂鉴定还原糖时,溶液的颜色变化为:浅蓝色棕色砖红色(沉淀)。
三、实验试剂和器材1、银耳子实体2、乙醇3、乙醚4、丙酮5、Ssvag试剂:氯仿:正丁醇=6、Molish试剂:取5g α-萘酚用95%乙醇溶解至100mL,临用前配置,棕色瓶保存。
7、斐林试剂:甲液质量浓度为0.1g/mL的氢氧化钠溶液乙液质量浓度为0.05g/mL的硫酸铜溶液临用时临时配置,将4~5滴乙液滴入2mL甲液中,配完后立即使用。
仪器和器材烧杯试管分液漏斗容量瓶电炉石棉网纱布离心机真空干燥箱电子天平四、实验步骤(一)制备步骤1、取银耳子实体10g加水300mL,直火提取1h,提取过程中不断用玻棒搅拌。
银耳多糖提取实验报告

一、实验目的1. 学习银耳多糖的提取方法;2. 掌握银耳多糖的纯化技术;3. 分析银耳多糖的溶液性质。
二、实验原理银耳多糖是一种具有多种生物活性的大分子物质,具有免疫调节、抗肿瘤、抗氧化衰老、降血糖血脂、抗凝血血栓、抗溃疡、促进蛋白质合成、抗病毒、促进神经细胞生长及改善记忆力等多方面的活性。
银耳多糖的提取主要是利用银耳中的多糖类物质,通过物理或化学方法将其从银耳中分离出来。
三、实验材料与仪器1. 材料:椴木银耳、2%的氢氧化钠、1%活性碳、5%的苯酚溶液、标准葡萄糖溶液、硫酸、乙醇、丙酮、乙醚、DEAE-C52、Sevage试剂、0.5mol·L-1盐酸、2mol·L-1 NaCl溶液。
2. 仪器:双重蒸馏水蒸馏器、超级恒温水浴、旋转蒸发仪RE52型、紫外可见分光光度计752N、低速大容量多管离心机LXJ-B型、透析袋、铝锅、搅拌器、天平、精密电子天平、电炉等。
四、实验方法1. 银耳多糖的提取(1)将椴木银耳洗净,浸泡于水中,使其充分吸水膨胀;(2)将膨胀后的银耳煮沸30分钟,以破坏细胞结构,释放出银耳多糖;(3)将煮沸后的银耳过滤,收集滤液;(4)向滤液中加入2%的氢氧化钠,调节pH值至7.0;(5)加入1%活性碳,搅拌30分钟,以去除杂质;(6)过滤,收集滤液;(7)向滤液中加入5%的苯酚溶液,以沉淀银耳多糖;(8)将沉淀物离心,收集沉淀物;(9)将沉淀物用乙醇、丙酮、乙醚等有机溶剂洗涤,去除杂质;(10)将洗涤后的沉淀物在60℃下烘干,得到银耳多糖。
2. 银耳多糖的纯化(1)将银耳多糖溶解于水中,配成一定浓度的溶液;(2)将溶液通过DEAE-C52层析柱,以去除杂质;(3)收集层析柱流出液,加入Sevage试剂,以去除杂质;(4)将流出液离心,收集沉淀物;(5)将沉淀物用乙醇、丙酮、乙醚等有机溶剂洗涤,去除杂质;(6)将洗涤后的沉淀物在60℃下烘干,得到纯化的银耳多糖。
银耳多糖制备实验报告(3篇)

第1篇一、实验目的1. 掌握银耳多糖的提取和分离纯化方法。
2. 了解银耳多糖的理化性质和生物活性。
3. 培养实验操作技能和数据分析能力。
二、实验原理银耳多糖(Tremella fuciformis polysaccharide,TFP)是一种具有多种生物活性的天然高分子化合物,主要存在于银耳子实体中。
银耳多糖具有提高免疫力、降血糖、降血脂、抗衰老、抗肿瘤等生理活性,在食品、医药、化妆品等领域具有广泛的应用前景。
本实验采用水提醇沉法提取银耳多糖,该方法操作简便、成本低、提取效率较高。
首先,将银耳子实体粉碎,用热水提取其中的多糖成分;然后,通过加入乙醇使多糖沉淀,再进行离心分离和洗涤,最后得到银耳多糖粗品。
三、实验材料与仪器1. 实验材料- 银耳子实体:市售优质银耳- 试剂:95%乙醇、蒸馏水、氢氧化钠、氯化钠、苯酚、硫酸、活性炭等- 仪器:粉碎机、恒温水浴锅、旋转蒸发仪、离心机、分析天平、紫外可见分光光度计等2. 实验步骤(1)银耳子实体粉碎:将银耳子实体洗净、干燥、粉碎,过60目筛,备用。
(2)提取:取粉碎后的银耳子实体10g,加入100mL蒸馏水,于80℃恒温水浴锅中提取2小时。
(3)醇沉:将提取液冷却至室温,加入95%乙醇,使溶液中乙醇浓度达到70%,静置过夜。
(4)离心分离:将醇沉后的溶液以3000r/min离心15分钟,取沉淀。
(5)洗涤:用95%乙醇和蒸馏水分别洗涤沉淀3次,每次30分钟。
(6)干燥:将洗涤后的沉淀置于50℃真空干燥箱中干燥,得到银耳多糖粗品。
(7)银耳多糖含量测定:采用苯酚-硫酸法测定银耳多糖含量。
四、实验结果与分析1. 银耳多糖提取率根据苯酚-硫酸法测定,银耳多糖提取率为4.5%。
2. 银耳多糖的理化性质(1)外观:银耳多糖粗品为白色粉末,无异味。
(2)溶解性:银耳多糖在水中溶解度较好,在乙醇、丙酮等有机溶剂中不溶。
(3)分子量:通过凝胶渗透色谱(GPC)测定,银耳多糖分子量约为10万。
一种银耳多糖及其制备方法和应用

一种银耳多糖及其制备方法和应用一种银耳多糖及其制备方法和应用简介银耳多糖是一种天然的多糖类化合物,具有多种生物活性与保健功效。
本文将针对一种银耳多糖的制备方法和应用进行详细介绍。
制备方法1.采集新鲜银耳并进行清洗。
2.银耳进行研磨处理,使其成为粉末状。
3.将银耳粉末与适量的水进行混合,形成稀浆状。
4.对稀浆进行高温酶解处理,使银耳中的多糖得以释放与提取。
5.经过离心和过滤等步骤,得到银耳多糖的提取液。
6.对提取液进行浓缩、干燥等处理,最终得到粉末状的银耳多糖。
应用医药领域•免疫调节:银耳多糖具有增强机体免疫功能的作用,可以调节免疫系统的功能,提高机体抵抗疾病的能力。
•抗肿瘤:研究发现,银耳多糖可以抑制肿瘤细胞的生长与扩散,具有一定的抗肿瘤活性。
•降血脂:银耳多糖可降低血液中的胆固醇含量,起到降血脂的作用,对于预防心血管疾病具有一定的益处。
食品工业•增稠剂:银耳多糖具有较好的增稠性能,可以作为食品工业中的天然增稠剂,用于制备各种果酱、果冻、糕点等食品,提高食品的质感和口感。
•保湿剂:银耳多糖具有良好的保湿性能,可以作为食品中的保湿剂,增加食品的保鲜期,延长食品的货架寿命。
化妆品•保湿修复:银耳多糖对于皮肤有一定的保湿与修复作用,可以作为化妆品中的保湿修复成分,有效改善干燥、粗糙的皮肤状况。
•抗氧化:研究表明,银耳多糖具有抗氧化性能,可以抑制自由基的产生,减缓皮肤的衰老过程。
养生保健•护肝:银耳多糖对肝脏具有保护作用,可以帮助修复受损的肝细胞,促进肝功能的恢复与代谢废物的排出。
•降糖:研究发现,银耳多糖可以降低血液中的糖分含量,调节血糖水平,对于糖尿病的预防与辅助治疗具有一定的效果。
总结银耳多糖是一种具有广泛应用价值的天然多糖,它在医药、食品、化妆品以及养生保健等领域都发挥着重要作用。
通过简单的制备方法,人们可以充分利用银耳多糖的生物活性与保健功效,为人们的健康和品质生活做出贡献。
医药领域•抗炎作用:银耳多糖具有一定的抗炎作用,可以减轻炎症反应,缓解炎症引起的疼痛和不适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学课程设计说明书银耳多糖的提取与纯化工艺的设计学院(系):里仁学院建环系年级专业:10级生物制药学号:**************姓名:*****教师:***教师职称:副教授燕山大学课程设计(论文)任务书院(系):里仁学院基层教学单位:建环系说明:学生、指导教师、基层教学单位各一份。
燕山大学课程设计成绩评定表设计者姓名: 韩雨薇学号: 101610051006设计题目: 银耳多糖的提取与纯化工艺的设计说明书评分:设计思路:20分字数要求:20分文档排版:20分格式细节:20分分析讨论:20分成绩:答辩小组评语:口语表达:满分20分幻灯质量:满分20分设计分析:满分40分回答问题:满分20分成绩:课程设计总成绩:(说明书成绩×0.5+答辩成绩×0.5)答辩小组成员签字:年月日2013-2014 秋季学期生物工程专业课程设计结题论文银耳多糖的提取与纯化工艺的设计学院(系):里仁学院建环系年级专业:10级生物制药学号:101610051006学生姓名:韩雨薇指导教师:崔洪霞教师职称:副教授银耳多糖是银耳中的主要活性物质,来源于银耳子实体和银耳细胞深层发酵孢子中分离、纯化得到的杂多糖。
现代医学和药理学的很多研究将银耳多糖的药用功效概括为提高免疫力、抗肿瘤、抗衰老、降血糖和降血脂等多种生理功能。
本设计通过采用微波辅助提取法来提取银耳多糖。
在微波提取系统中,影响多糖提取率的主要因素有三个:微波功率、加热时间、加热温度。
针对这三个因素分别设计单因素实验,根据单因素实验得出最佳范围,然后再根据所得出的范围做三因素三水平的正交实验,从而得出最佳的提取条件组合。
本文系统地综述了银耳多糖的化学组成、制备和提取纯化、生物活性、实际应用等方面的研究概况,并展望了其今后研究方向及开发应用前景。
关键词:银耳多糖;提取;纯化第一部分文献综述1、银耳多糖简介 (1)1.1银耳多糖的组成 (1)1.1.1酸性杂多糖 (1)1.1.2中性杂多糖 (1)1.1.3胞壁多糖 (2)1.1.4胞外多糖 (2)1.1.5酸性低聚糖 (2)2、银耳多糖的提取及制备 (2)2.1银耳多糖的提取方法 (2)2.1.1浸提法 (2)2.1.2超声波辅助提取法 (3)2.1.3微波辅助提取法 (4)2.1.4超临界流体萃取法 (4)2.2银耳多糖的干燥方法 (4)2.3银耳多糖生理活性试验 (5)2.3.1银耳多糖清除羟自由基活性 (5)2.3.2银耳多糖清除超氧阴离子自由基活性 (5)2.3.3银耳多糖的抗氧化作用 (5)3、银耳多糖的功能特性 (5)3.1在食品生产中的加工特性 (5)3.2在化妆品生产中的加工特性 (5)3.3银耳多糖的药理学特性 (6)3.3.1免疫调节作用 (6)3.3.2抗肿瘤作用 (6)3.3.3降血糖、降血脂作用 (6)3.3.4抗溃疡作用 (6)第二部分课程设计部分1. 材料 (8)3.1银耳多糖的微波提取 (8)3.2银耳多糖的纯化 (8)3.2.1 DEAE-Sepharose Fast Flow柱层析分离 (8)3.2.2 SephadexG-200凝胶过滤柱层析分离 (9)3.3紫外吸收测定 (9)3.4银耳多糖含量测定 (9)4. 设计 (9)4.1银耳多糖提取条件的单因素实验 (9)4.1.1微波功率对银耳多糖提取率的影响 (9)4.1.2加热时间对银耳多糖提取率的影响 (9)4.1.3加热温度对银耳多糖提取率的影响 (10)4.2银耳多糖提取条件的正交实验 (10)5.分析与总结 (10)参考文献 (12)第一部分文献综述1、银耳多糖简介银耳多糖( Tremella polysaccharides,TP) 是银耳的重要活性成分( 约占银耳干重的60%-70% ) ,是从银耳子实体或液体深层发酵的银耳孢子中提取出来的一种活性多糖。
银耳是木头上的腐生真菌,不能利用阳光进行光合作用,只能在腐生条件下依靠吸收腐朽树木中的养分而生长发育[1]。
然而银耳在腐木上吸收养料只依靠自身是不行的,纯菌丝必须和一种生活力旺盛的香灰菌丝伴生,借助于香灰菌丝分解木材,提供营养物质。
大量研究表明,从银耳中提取分离得到的银耳多糖具有提高机体免疫力、降血糖、降血脂、抗衰老、抗溃疡、抗血栓形成、抗突变等作用,能增强机体耐缺氧能力,清除自由基[2]。
我国银耳资源丰富,为开发应用银耳提供有利条件。
随着银耳栽培业迅速发展及应用范围拓宽,对银耳营养成分及在医疗保健作用方面研究也逐步深入。
银耳多糖的功能特性也越来越受到关注[1]。
1.1银耳多糖的组成银耳多糖的主链是由α-(1-3)-糖苷键组成的甘露聚糖,主链的2,4,6位上连接有葡萄糖、木糖、岩藻糖及普通糖醛酸等残基组成的侧链,其活性中心是α -(1-3)-甘露聚糖这一共同结构部分。
银耳多糖种类包括酸性杂多糖、中性杂多糖、胞壁多糖、胞外多糖和酸性低聚糖五种,不含核酸、蛋白质类物质[3]。
1.1.1酸性杂多糖约占银耳总多糖的70%~75%,为木糖、甘露糖和葡萄糖醛酸为主的多聚体,中有少量岩藻糖。
Ukai 等( 1972 )从银耳子实体中分离出3种酸性杂多糖A、B、C。
这3种多糖主要是由木糖、葡萄糖醛酸和甘露糖组成,也含有少量葡萄糖及微量岩藻糖[3]。
1.1.2中性杂多糖约占银耳总多糖的20% 左右,为木糖、甘露糖、半乳糖和葡萄糖的多聚体。
Ukai 等( 1978 ) 从银耳子实体中分离出一种中性杂多糖,无色粉末。
不含N、P、S,主要由木糖、甘露糖、半乳糖和葡萄糖组成。
1.1.3胞壁多糖sone 等[3] ( 1978 ) 从银耳细胞壁中分离到2 种胞壁多糖,其一是从胞壁外层产生的酸性多糖,由D-葡萄糖醛酸、D-甘露糖和D-木糖组成;另一种为碱性多糖,由D-葡萄糖、D-葡萄糖醛酸、D-甘露糖和D-木糖组成。
1.1.4胞外多糖Kakuta 等[3] ( 1979 ) 从银耳菌株T-19和T-7细胞培养液中分离到2种多糖。
这2种多糖都含有D-葡萄糖醛酸,D-木糖和D-甘露糖及少量L-岩藻糖和0-乙酰基。
结构以a-(1-3)连接的甘露糖为主链。
1.1.5酸性低聚糖徐继英等( 2006 ) 在进一步证明子实体中酸性杂多糖AC 和BC 结构的过程中,用酸性水解的方法从中分离出3 种均质的酸性低聚糖( H-1、H-2 和H-3 ) 。
2、银耳多糖的提取及制备银耳中含有丰富的银耳多糖,其组分主要存在于小纤维网状结构交织的基质中,利用多糖溶于水而难溶于高浓度醇、醚、氯仿等有机溶剂的特点,采用热水浸提、碱浸提法、酶法提取、辅以超声波或微波处理,对多糖进行提取;然后经Sevag 法除蛋白、双氧水或活性炭脱色、乙醇沉析分离,再经透析法、超滤法或层析法纯化,最后经干燥、粉碎,得多糖成品[4]。
产品的产量、品质和复水性能与银耳的来源、溶剂、提取方法及纯化技术有关。
而其中提取方法和浓缩干燥技术是其中最活跃的因素。
2.1银耳多糖的提取方法2.1.1浸提法银耳多糖的浸提方法有水浸提、乙醇浸提、酶解、酸水解、碱法水解等[8]。
2.1.1.1热水浸提法用水作溶剂来提取银耳多糖是最常用的方法之一,水提取的银耳多糖多数是中性多糖。
热水提取法的步骤是[5]:优质选朵银耳→去离子水浸泡→去根→剪碎→加料→调节pH→加热提取→冷却静置→取上清液抽滤。
但水的极性大,容易把蛋白质、苷类等溶于水的成分浸提出来,为后续的分离带来困难,且提取效率低和费时;同时热水浸提主要是提取胞外多糖,因而多糖得率较低。
2.1.1.2碱浸提法银耳中的多糖主要有中性多糖和酸性多糖。
银耳中的一部分酸性多糖在中性条件下不能继续溶出,因此在一定碱性条件下提取银耳多糖,会提高提取得率。
虽然碱处理使多糖含量增加,但碱浸提法容易使部分多糖发生水解,破坏多糖的活性结构。
2.1.1.3酶解提取法采用复合酶提取的方法提取银耳多糖,具有条件温和、杂质易除和得率高的优点。
复合酶多采用一定比例的果胶酶、纤维素酶及中性蛋白酶。
仅采用热水浸提,主要是提取胞外多糖,因而得率较低。
采用酶法浸提[6],可以提取胞外多糖和胞壁多糖,因而得率较高。
酶解提取法分两个阶段[7]:第一阶段主要作用是酶解细胞表面结构及胞间连接物,并伴有少量多糖溶出;第二阶段通过提高温度后,既具有灭酶作用,同时使可溶于热水的胞内多糖溶出率增加。
2.1.2超声波辅助提取法超声波在液体内传播时,液体介质不断受到压缩和拉伸,在拉力作用下,液体断裂形成暂时的近似真空的空洞,压缩时,这些空洞就会发生崩溃,出现局部高温以及放电现象,产生空化作用。
超声波空化可以从稳态空化转化成瞬态空化,空化泡瞬间长大破裂,吸收的能量在极短的时间和极小的空间内释放出来,形成高温高压的环境,同时伴随有一定强度的冲击波和微声流,从而破坏细胞壁结构,使其在瞬间破裂,释放细胞内的有效成分,大大提高了提取率。
与传统萃取相比,超声萃取可以从不溶于乙醇的植物残基中获得更多的水溶性多糖[8]。
超声可能会导致可溶性多糖发生降解,并溶解在乙醇溶液中,这些是超声的不足之处。
然而,超声并不影响水溶性多糖的生物性能。
因此,超声辅助提取法是一种高效实用的多糖提取方法。
靳胜英[7]等( 1995 ) 在研究超声波辅助提取银耳多糖实验中,先采用湿法机械粉碎,再结合超声波破壁,最后热水温浸的方法来提取银耳中的多糖物质,结果表明,复水完全的银耳子实体经机械粉碎、超声波处理后热水浸提的提取方法,能显著提高银耳多糖的浸提率,缩短浸提时间,浸提率比酶法浸提得率的16.3%高出4.693%。
2.1.3微波辅助提取法微波提取过程中,微波辐射导致植物细胞内的极性物质尤其是水分子,产生大量热量,使得细胞内的温度迅速上升,液态水汽化产生的压力将细胞膜和细胞壁冲破,形成微小的孔洞,进一步加热,导致细胞内部和细胞壁水分减小,细胞收缩,表面出现裂纹。
由于孔洞和裂纹的存在,胞外溶剂容易进入细胞内,溶解并释放胞内多糖[9]。
微波的频率很高,能深入渗透物体,对细胞的结构有较大作用。
微波加热的热效率高,温度升高快速而均匀,因此,应用微波加热提取手段,能够显著缩短萃取时间,较大程度地提高多糖的萃取效率。
吴琼等[12]的研究结果证明微波提取较传统提取法提取率高,并且缩短了提取时间。
微波提取银耳多糖的最佳条件是微波功率644.5W、温度99.1℃、保持时间24.0min。
2.1.4超临界流体萃取法在超临界状态下,超临界流体与目标物接触,使其依次把极性、沸点和分子量大小不同的成分萃取出来,当恢复到常压和常温时,溶解在流体中的成分立即以溶于吸收液的液体状态与气态流体分开,从而达到萃取目的。
另外,超临界流体的密度和介电常数随着密闭体系的压力增加而增加,极性增大,利用程序升压,可以将不同极性的成分进行分步提取。