热工过程自动化
《热工自动化》课件

2
PID控制技术
学习PID控制技术的原理和应用,掌握如何稳定和优化热工过程的控制。
3
控制阀的基本原理
了解控制阀的基本工作原理和类型,并学习如何正确选择和调节控制阀,实现热 工过程的精确控制。
热工自动化的应用案例
电站锅炉自动化控制
通过热工自动化控制,电站锅炉 在运行中可以实现精确的温度和 压力控制,提高燃烧效率和安全 性。
物联网技术在热工自 动化中的应用
通过物联网技术的应用,实现 设备之间的互联互通,提高热 工自动化系统的整体效能。
热工自动化系统的集 成化
热工自动化系统逐渐向集成化 发展,不仅要考虑单个设备的 控制,还要考虑系统之间的数 据交互和协同工作。
总结
1 热工自动化的未来发展方向
随着技术的发展,热工自动化将朝着更高的 智能化、集成化和自主化方向发展。
钢铁冶炼热工流程控制
热工自动化控制可以优化钢铁冶 炼过程中的热工流程,提高炉温 控制和冶炼效率。
石油化工自动化生产线控制
通过热工自动化控制系统,可以 实现石油化工生产线的自动化控 制,提高生产效率和安全性。
热工自动化的发展趋势
人工智能在热工自动 化中的应用
人工智能技术的发展使得热工 自动化具备了更高的智能化和 自主决策能力。
2 热工自动化的重要性及应用范围
热工自动化在工业生产中具有重要的应用价 值,涉及到电力、冶金、石油化工等众多领 域。
《热工自动化》PPT课件
热工自动化是一门关于利用先进技术实现工业过程的自动化控制的学科。本 课程将介绍热工自动化的基础知识、应用案例和发展趋势。
什么是热工自动化
热工自动化是利用先进的控制技术和设备,对热工过程进行自动化调控和监测的领域。它涉及到温度、压力、 流量和控制阀等关键参数的测量和控制。
热工自动化

热工自动化第一篇:热工自动化1生产过程实现自动化,称为自动调节.2自动调节的重要依据是检测部件的检测准确性先决条件是稳定性要求,核心是调节部件 3 用方框表示系统中的各个元部件(硬件);• 用箭头表示系统中有关的物理量(信号);• 用进入方框的箭头表示各元部件的输入量;• 用离开方框的箭头表示各元部件的输出量。
4 被调对象即被调节的生产设备或者生产过程被调量即通过调节需要维持的物理量给定值即根据生产要求,被调量的固定数值扰动引起被调量变化的各种原因调节作用量即在调节作用下,控制被调量变化的物理量调节机关即在调节作用下,用来改变调节作用量的装置一.按给定值信号的特点分类ν 1.恒值调节系统ν 2.程序调节系统ν 3.随机(动)调节系统二.按调节系统的结构分类1.闭环(反馈)调节系统2.前馈调节系统3.复合调节系统三.按调节系统闭环回路的数目分类1.单回路调节系统2.双回路调节系统3.多回路调节系统四.按被调量数目分类1.单输入单输出(SISO)调节系统2.多输入多输出(MIMO)调节系统五.按调节作用的形式分类1.连续调节系统2.离散调节系统六.按系统的特性分类1.线性调节系统2.非线性调节系统6自动调节系统动态试验依据何原则选取典型输入信号? 1稳定性2准确性3快速性评价自动调节系统性能,常用哪些时域指标,是述其含义与实际生产要求?(1)系统的稳定性不稳定的系统是不能工作的,所以必须对控制系统的稳定性进行判断并且研究影响稳定性的因素。
指标: 衰减率ν、衰减比n、衰减指数m等。
(2)系统的动态特性系统的动态特性是指系统从一个稳定状态变化到另一个稳定状态的过渡过程中输出与输入间的关系。
系统的动态特性,可以通过系统的暂态响应来评价。
指标: 动态偏差ym、调节(过渡)时间 ts等。
(3)系统的稳态特性系统的稳态性能就是系统进入稳定状态后所表现出的特性,主要靠系统的稳态响应来评价。
指标: 稳态误差ess等。
热工过程自动控制的基本概念

• 热工过程自动控制概述 • 热工过程自动控制的基本原理 • 热工过程自动控制的应用 • 热工过程自动控制的未来发展
01
热工过程自动控制概述
定义与特点
定义
热工过程自动控制是指通过自动 化装置对热工过程中温度、压力 、流量等工艺参数进行自动调节 ,以达到预设目标的过程。
3
物联网技术还可以用于热工过程的能耗监测和管 理,提高能源利用效率和环保水平。
云计算与热工过程自动控制
01
云计算技术为热工过程自动控制提供了强大的计算和存储能力, 使得对热工过程的控制更加高效和灵活。
02
云计算技术可以实现热工数据的集中存储和处理,便于数据的
分析和挖掘。
通过云计算技术,可以实现热工过程的远程监控和管理,提高
快速性
系统对设定值变化的响应速度。
抗干扰性
系统对外部干扰的抵抗能力。
03
热工过程自动控制的应用
工业过程控制
总结词
工业过程控制是热工过程自动控制的重要应用领域,主要用 于提高生产效率和产品质量,降低能耗和减少环境污染。
详细描述
在工业生产过程中,许多物理量需要保持恒定或按照预定规 律变化,如温度、压力、流量、液位等。通过热工过程自动 控制,可以实现对这些参数的实时监测、控制和调节,确保 生产过程的稳定性和可靠性。
02
热工过程自动控制的基本原理
控制系统的基本组成
01
02
03
04
控制器
接收输入信号,根据设定的算 法计算输出信号,控制执行机
构。
执行机构
接收控制器输出的控制信号, 驱动被控对象进行动作。
测量元件
检测被控对象的实际状态,输 出测量信号。
探讨火电厂热工自动化及控制

探讨火电厂热工自动化及控制一.热工自动化的内容热工过程自动化主要包含自动检测、自动调节、顺序控制、自动保护4个主要方面。
自動地检查和测量反映生产过程运行情况的各种物理量、化学量以及生产设备的工作状态,以监视生产过程的进行情况和趋势,称为自动检测。
锅炉汽轮机装有大量的热工检测仪表,包括测量仪表、变送器、显示仪表和记录仪表等,它们随时显示、记录、积算和变送机组运行的各种参数,如温度、压力、流量、水位、转速等,以便进行必要的操作和控制,保障机组安全、经济地运行。
目前,大型汽轮机的自动检测项目包括:蒸汽压力和温度、真空度、监视段抽汽压力、润滑油压、调速油压、转速、转子轴向位移、转子与汽缸的相对热膨胀、汽轮机振动、主轴挠度、轴承温度与润滑油温度、推力瓦温度等许多项目。
在建新机组均设置汽机本体安全监视系统,配备完整的汽轮机监视仪表。
汽机监视仪表能连续测量汽轮发电机组轴承及汽轮机本体的运行机械参数,显示机组运行状态;当参数超出定值时,输出信号作为记录和报警;重要参数超限时输出停机信号至汽轮机紧急跳闸系统装置,立即关闭汽机自动主汽门实现紧急停机。
自动维持生产过程在规定的工况下进行,称为自动调节。
电力用户要求汽轮机发电设备提供足够数量的电力和保证供电质量。
电的频率是供电质量的主要指标之一。
为了使电频率维持在一定的精度范围内,就要求汽轮机具备高性能的转速自动调节系统。
锅炉运行中,必须使一些能够反映锅炉工作状况的重要参数维持在规定范围内或按一定的规律变化,如维持汽包水位给定值和保证锅炉的出力满足外界的要求。
根据预先拟定的步骤和条件,自动地对设备进行一系列的操作,称为顺序控制。
顺序控制主要用于机组启停、运行和事故处理。
每项顺序控制的内容和步骤是根据生产设备的具体情况和运行要求决定的,而顺序控制的流程则是根据操作次序和条件编制出来,并用自动装置来实现,这种装置称为顺序控制装置。
顺序控制装置必须具备逻辑判断能力和联锁保护功能;在进行每一项操作后,必须判明这一步操作已实现,并为下一步操作创造好条件,方可自动进入下一步操作,否则,应中断顺序,同时进行报警。
火电厂热工过程自动化的主要内容

热工过程自动化的主要内容1、热工参数自动检测利用各种监测系统及仪表对表征热工过程状况的各种参数进行连续的检测和显示。
主要热工参数:温度、压力、流量、夜位等。
2、热工自动调节系统当某一参数在外界干扰的影响下,偏离正常工艺条件时,借助自动调节装置自动使参数回到规定的数值范围内。
如:汽包水位自动调节系统。
图DHWH0a主汽压力变化调节给煤量(练习)b炉膛负压调节引风量c燃烧调节送风量d过热气温调喷水量调节器显示仪表3、自动信号联锁保护及程序控制当热工参数超出允许的变化范围时,保护系统自动发出声光信号或联锁系统采取紧急措施打开或切断某些通路。
如锅炉水为保护,当水位高或低于极限值时,保护系统动作停止锅炉运行。
程序控制是按某一程序或时间对系统进行有序操作。
如锅炉定期吹灰、排污、辅机起停等。
第一章测量概述Measure Introduction第一节测量的基本概念测量技术是研究测量原理,测量方法和测量工具的一门学科。
通过测量可以了解生产过程是否符合工艺规程规定,是否达到预定的质量安全指标、经济指标,以便根据测量结果,通过控制系统对生产过程予以正确的调整。
测量是监视生产过程的耳目,也是实现生产过程自动化的基础。
一、测量的定义measurement definitionx=aUxa,国际单位制 International Unit米(m),千克(kg), 秒(s), 开尔文 (k),摩尔 (mol),坎德拉, 安培(A)例如:1牛顿=1公斤×1米/秒平方 b,等精度测量 c,测量值和真值约定真值nx x x X n+++=......21___相对真值--------用标准表指示值代替 二、测量方法a 直接测量与间接测量b 接触测量与非接触测量c 静态测量与动态测量过程检测仪表多数采用动态接触间接测量 三、测量仪表或系统的组成1传感元件2 传输变送元件3 显示部件第二节 测量误差 Measurement error研究的目的 正确估计测量的可信程度,探讨消除或减小误差的方法手段 a 分析误差来源 b 减小其影响c 估计误差大小一、测量误差的定义Measurement error definition在测量中,始终中存在着各种各样的影响因素,这些影响因素的变化, 使得测量结果与被侧量真值之间存在着一定差别,即测量误差。
热工自动化概述

1热工自动化概述North China Electric Power University 第一章热工自动化概述第一章热工自动化概述§1.1 热工自动化概况§1.2 常见的热工自动化系统§1.3 热工控制系统的组成§1.4 常规PID调节器常规PID调节器§1.5 热工控制系统的运行评价§1.6 SAMA图SAMA图1 North China Electric Power University 第一章热工自动化概述§1-1 热工自动化概况2 North China Electric Power University 第一章热工自动化概述一、自动化领域发生了革命性的变化? 芯片技术:促进了自动化技术由“模拟”向“数字” 芯片技术:促进了自动化技术由“模拟” 数字” 时代的飞跃;?网络信息技术:分布式工业自动控制系统(DCS: 网络信息技术:分布式工业自动控制系统(DCS: Distributed Control System)为实现先System)进的工业自动化系统提供了强有力的硬件、软件平台。
软件平台。
3 North China Electric Power University 第一章热工自动化概述?自动控制理论:自动化技术由基于微分方程、传递函自动控制理论:数的古典理论阶段进入基于状态空间法和最优化方法的现代理论阶段,进而,逐步发展到基于专家系统、模糊控制和人工神经网络的智能时代。
? 信息处理技术:数据高速传输、数据压缩存储、数据信息处理技术:融合、数据挖掘等技术的发展,为实现基于信息集成的生产过程的控制与管理现代化奠定了基础。
4 North China Electric Power University 第一章热工自动化概述二、电力的发展趋势1. 国民经济的飞速增长,增加了对能源的需求量,国民经济的飞速增长,增加了对能源的需求量,电力工业逐渐发展为大电网、大机组、高参数、电力工业逐渐发展为大电网、大机组、高参数、高度自动化。
火电厂热工自动化

测量值
过程量
控制算法
被控 对象
控制过程
检测装置
执行装置 控制指令
运算 处理 装置
人
机 界
人
面
设定值
控制设备
完整的控制系统组成部分
(二)火电厂机组自动化主要功能
火电厂主要的温度参数有主汽温度、烟 气温度、给水温度、各种金属壁温、主要 辅机轴承温度、主要辅机电机线圈温度、 汽轮机轴承回油温度等。
双金属温度计
热电偶
热电阻
(五)火电厂主要的压力参数及测压仪表
火电厂主要的压力参数有主汽压力、炉 膛压力、给水压力、汽包压力、一次风压、 二次风压、汽轮机润滑油压力、EH油压、 凝汽器真空等。
调量的变化。称为调节量。 7.扰动
引起被调量偏离平衡状态的各种原因称为扰动。
给定值
控制器
广义被控对象
被调量
8.控制过程(调节过程) 原来处于平衡状态的生产过程,一旦受到扰动作用,被调量偏离原来平衡状态,
通过施加调节作用使被调量重新恢复到新的平衡状态的过程,称为控制(调节)过程。
原平衡状态
控制过程 (调节过程)
DCS机柜
过程控制站
将各种现场产生的过程量(温度、压力、 流量等)进行数字化,并将数字化后的量存 储在存储器中;
将本站采集到的实时数据通过网络送到操 作员站(OS)、工程师站(EW)和其它现 场I/O控制站,以便实现全系统范围内的监 督和控制;
在本站实现局部自动控制、回路的计算及 闭环控制、顺序控制等。
火电厂热工自动化
热工自动化中的智能控制研究

热工自动化中的智能控制研究
热工自动化是一种将计算机和仪器设备应用于热工过程的控制系统。
智能控制是一种结合了人工智能和控制理论的控制方法,它可以根据环境的变化自主地调整控制策略,以实现系统的最优控制效果。
在热工自动化中,智能控制的研究可以应用于许多领域,如能源系统、制冷空调系统和工业炉窑等。
智能控制可以通过自适应、优化和预测等技术来提高系统的能效、运行稳定性和安全性。
智能控制可以通过自适应技术来提高系统的鲁棒性。
自适应控制可以根据系统的性能指标,动态地调整控制策略,以适应环境变化和系统参数的变动。
在能源系统中,智能控制可以根据能源需求和供给的变化,实时调整能源的生产和消费。
这样可以提高系统的能源利用率,减少能源浪费。
智能控制可以通过优化技术来提高系统的效率。
优化控制可以在系统的运行过程中,通过数学规划等方法,寻找系统的最优控制策略。
在制冷空调系统中,智能控制可以通过优化控制器的参数,使系统达到最佳的制冷效果。
这样可以减少系统的能耗,提高制冷效率。
智能控制可以通过预测技术来提高系统的安全性。
预测控制可以根据系统的历史数据和环境的变化,预测系统的未来状态,并根据预测结果调整控制策略。
在工业炉窑中,智能控制可以通过预测燃料的燃烧效果和炉温的变化,及时调整燃料和空气的供给,以保证炉窑的安全运行。
智能控制是热工自动化中的一项重要研究内容。
通过智能控制的应用,可以提高系统的性能和效率,实现能源的节约和环境的保护。
随着人工智能和控制技术的不断发展,智能控制在热工自动化中的应用前景将会更加广阔。