悬索桥迈达斯操作经验

合集下载

MIDAS悬索桥建模常见问题(论坛讨论)

MIDAS悬索桥建模常见问题(论坛讨论)

最近正在做论文,是一个自锚式悬索桥的实例,用MIDAS6.7.1来建模。

遇到的问题是:1.现在已知成桥时吊杆的索力和主缆的坐标,想要模拟出成桥时的状态,在进行分析。

可是我按照建模助手建出来的模型在进行精确分析时,会出现错误提示,说某个主缆或者吊杆出现不正常拉力,很是郁闷,不知道为什么?2.所以我直接就把成桥时候的线型手动输入了进去,然后就看吊杆拉力是否和图纸上的一致。

可是怎么也是差一些,大约在100KN左右,不知道是为什么。

我没定义节点更新和垂点,因为线性不需要修改了,只要索力能够复合就行。

我在一次成桥施工阶段看了位移,很小,符合要求,就是吊杆索力不对,不知道为什么?希望做过这方面例子的高手不要吝惜,花几分钟的时间告诉小弟如何解决问题,小弟将不胜感激,因为时间比较紧了,所以比较着急还没有解决呢,问题还是吊杆的拉力不对,而且中间的两根特别的大,不知道怎么调整了,郁闷中我也碰到这种情况,后来检查时约束修改后,没有加刚性约束造成的,修改后就可以计算了本人用MIDAS做了一个悬索桥成桥线形分析(选了分析里面的悬索桥分析控制),计算出来的结构出现[错误] 单元数据(号:55)内有错误。

(项目:索的Lu/L(0.5 ~ 1.5))请高手帮忙指教,不知道错在什么地方?谢谢我以前也做过一个悬索桥的计算,过程中好象出过这样的问题,后来修改了边界条件以后就可以了,你出的这个问题我想是定义的索单元出现的承受压力的情况我把截面改后这个问题就过了,具体怎么回事,我也不知道,还请高手指点!Lu/L好像是索的直线长度比上不张拉(unstrainded lenghth)的长度,在建立单元的时候选择索单元,图中就有解释了!此精确分析是为了找到结构的最佳初始平衡状态而反复计算的过程,且结构内力也是反复被更新。

在此过程不能使用弹性支承(Spring Support)。

如果必须要使用弹性支承(Spring Support),则建议使用弹性连接单元。

迈达斯教程及使用操作手册

迈达斯教程及使用操作手册

迈达斯教程及使⽤操作⼿册01-材料的定义通过演⽰介绍在程序中材料定义的三种⽅法。

1、通过调⽤数据库中已有材料数据定义——⽰范预应⼒钢筋材料定义。

2、通过⾃定义⽅式来定义——⽰范混凝⼟材料定义。

3、通过导⼊其他模型已经定义好的材料——⽰范钢材定义。

⽆论采⽤何种⽅式来定义材料,操作顺序都可以按下列步骤来执⾏:选择设计材料类型(钢材、混凝⼟、组合材料、⾃定义)→选择的规范→选择相应规范数据库中材料。

对于⾃定义材料,需要输⼊各种控制参数的数据,包括弹性模量、泊松⽐、线膨胀系数、容重等。

钢材规范混凝⼟规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝⼟的收缩徐变特性、混凝⼟强度随时间变化特性在程序⾥统称为时间依存材料特性。

定义混凝⼟时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表⾯积⽐)(图4);图1 收缩徐变函数图2 强度发展函数定义混凝⼟时间依存材料特性时注意事项: 1)、定义时间依存特性函数时,混凝⼟的强度要输⼊混凝⼟的标号强度; 2)、在定义收缩徐变函数时构件理论厚度可以仅输⼊⼀个⾮负数,在建⽴模型后通过程序⾃动计算来计算构件的真实理论厚度;3)、混凝⼟开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝⼟材龄在施⼯阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝⼟构件修改其构件理论厚度计算值。

计算公式中的a 代表在空⼼截⾯在构件理论厚度计算时,空⼼部分截⾯周长对构件与⼤⽓接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过⾃定义收缩徐变函数来定义混凝⼟的收缩徐变特性;6)、如果在施⼯阶段荷载中定义了施⼯阶段徐变系数,那么在施⼯阶段分析中将按施⼯阶段荷载中定义的徐变系数来计算。

悬索桥分析一

悬索桥分析一

-悬索桥分析(一)————————————————————————————————作者: ————————————————————————————————日期:MIDAS做悬索桥分析(一)一悬索桥初始平衡状态分析悬索桥主缆在加劲梁的自重作用下产生变形后达到平衡状态,在满足设计要求的垂度和跨径条件下,计算主缆的坐标和张力的分析一般称为初始平衡状态分析。

这是对运营阶段进行线性、非线性分析的前提条件,所以应尽量使初始平衡状态分析结果与设计条件一致。

使用midas Civil中“悬索桥建模助手”功能,可以很方便的完成悬索桥的初始平衡状态分析。

1建模助手图1 悬索桥建模助手图1是悬索桥建模助手设置对话框,参考帮助说明文档,掌握各参数含义及使用注意事项。

在使用该建模助手时,经常碰到如下疑问:1)对于小跨径的人行索桥,没有边跨如何建模?2)桥面系荷载如何正确定义?3)横向内力如何计算?解决了上述疑问,才能正确的使用悬索桥的建模助手。

对于问题1,即要实现如图2的结构布置:图2 无边跨悬索桥布置在建模助手对话框中,通过设置主梁端点A1的坐标和边跨吊杆间距完成无边跨及吊杆的布置。

图3 无边跨悬索桥设置有边跨无吊杆:A1的x坐标为a,左跨吊杆间距为a的绝对值;无边跨:A1的x坐标为a,但a输入非常小的数值,例如-0.01,左跨吊杆间距为a的绝对值;对于问题2,定义桥面荷载有2种方法,如下图所示:图4 单位重量法图5详细设置方法1,定义单位重量荷载值,荷载类型为等效均布荷载,大小等于除主缆和吊杆自重外成桥恒荷载,主缆和吊杆自重程序会自动考虑。

方法2,勾选详细设置,荷载类型有点荷载和均布荷载,可以分别定义桥面左、中、右跨的成桥恒荷载(不含主缆和吊杆自重)。

当使用点荷载时,程序将桥面恒荷载集中到吊杆上,每根吊杆承担的荷载值为相邻吊杆间距范围内的桥面恒载加上吊杆两端锚固处的恒荷载;当使用分布荷载时,分别定义桥面左、中、右跨等效均布荷载,对于不同跨径范围内,桥面恒荷载变化比较大能准确定义。

用MIDAS做悬索桥分析

用MIDAS做悬索桥分析

图 5. 自锚式悬索桥加劲梁两端和主塔顶部的变形
图5为自锚式悬索桥的初始平衡状态。把主缆平衡状态分析计算的主缆反力作为外力施加在杆 系单元上(输入初始内力)。
H
Va H
Vp
Wi
Vp
Wi
Wi 图 6. 初始平衡状态自锚式悬索桥分离图形
H
Va H
2. 地锚式悬索桥初始平衡状态分析例题
2.1 桥梁类型以及基本数据 三跨连续的地锚式悬索桥,全跨116m(183+750+183),详细数据如图7所示。
在此 Ti 为节点i-1和节点i之间的主缆单元的张力, li 是主缆单元的长度, Tx 是主缆张力的
水平分量,主缆张力的水平分量在全跨相同。
在横桥向,即Y-Z平面上的力的平衡如图3所示。
图 3. Y-Z平面上的平衡
在Y-Z平面上的平衡方程如下:
Ti
zi − zi−1 li

Ti+1
zi+1 − li+1
X(m) 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 595
Z(m)(上端) Z(m)(下端)
123.05119 39.065
114.876
39.605
107.17443 40.145
99.946484 40.682
51.697886 44.346
50.153364 44.463
49.082461 44.544
48.428605 44.589
48.35
44.6
吊杆长度 83.98619
75.271 67.02943 59.26448 51.99615 45.23844 38.99035 33.25187 28.02302 23.30378 19.09416 15.39417 12.20379 9.523027 7.351886 5.690364 4.538461 3.839605

迈达斯教程及使用手册讲解

迈达斯教程及使用手册讲解

01-材料的定义通过演示介绍在程序中材料定义的三种方法。

1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。

2、通过自定义方式来定义——示范混凝土材料定义。

3、通过导入其他模型已经定义好的材料——示范钢材定义。

无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)→选择的规范→选择相应规范数据库中材料。

对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。

钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。

定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数图3 时间依存材料特性连接图4 时间依存材料特性值修改定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。

计算公式中的a代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。

MIDAS-自锚式悬索桥成桥阶段分析

MIDAS-自锚式悬索桥成桥阶段分析

自锚式悬索桥成桥阶段分析大桥是跨海大桥,目前除铁路部分还没有运行外,其他公路部分已经在使用。

把握桥梁的成桥阶段特性可对事故做出迅速反应,制定相应的应对措施,对桥梁的维护管理也是相当重要的。

本文将对大桥的成桥阶段模型建模方法和分析结果进行简要说明。

一.分析简要为了了解桥梁的特性以及维护管理的需要,首先要建立桥梁结构分析模型。

建立成桥阶段模型较为重要的是如何模拟成桥阶段的结构刚度、边界条件以及质量分布。

悬索桥在施工阶段表现出非常明显的非线性特征,但在主缆和吊杆产生了较大张力的成桥阶段,对追加荷载(车辆荷载、风荷载等)的反应则表现出线性特征。

因此可以将成桥状态的坐标和构件内力作为初始平衡状态,对追加荷载的反应假定为线性反应,利用初始平衡状态的内力计算几何刚度,并与结构刚度进行叠加生成成桥状态的刚度。

因为大桥是自锚式悬索桥,在初始平衡状态主缆和加劲梁作用有初始轴力,且轴力对弯曲刚度的影响是不能被忽略的。

本文利用MIDAS软件中的几何刚度初始荷载命令反应轴力对刚度的影响。

本工程成桥阶段分析将参考设计图纸建立几何形状,然后赋予截面特性值和边界条件。

模型建成后利用几何刚度初始荷载命令赋予主缆和加劲梁以初始轴力,用于计算结构的几何刚度。

在运行特征值分析后,通过对主要振型与激振实验结果值的比较,判定建立的分析模型正确与否,然后加载静力和动力荷载,分析结构的各种特性。

本文进行的分析内容如下:成桥阶段特征值分析对比主要振型的频率的分析结果和实验结果。

激振实验通过激振实验结果判断特征值分析的准确性。

静力分析在分析模型中加载静力荷载。

动力分析在分析模型中加载动力荷载,做时程分析。

二.MIDAS中用于成桥阶段分析的功能MIDAS中用于大桥成桥阶段分析所需的单元和功能参见表一。

表一 MIDAS中用于悬索桥分析的功能类 别 内 容 适 用使用单元 索单元梁单元变截面梁单元主缆、吊杆加劲梁索塔荷载功能 几何刚度初始荷载时程分析数据初始轴力(计算几何刚度)将激振力换算为动力荷载边界条件 点弹性支承弹性连接刚性连接梁端刚域(偏心)弹性支座(桥梁端部外侧)弹性支座(索塔外侧)主缆与鞍座的刚臂连接下弦、腹杆、竖向构件偏心距离分析功能 静力分析特征值分析时程分析静力荷载作用下的反应检查刚性质量模型的正确性预测动力加载时的反应查看结果 (后处理) 特征值分析图形和文本时程图形和文本与实测值的比较动力分析三.分析模型几何形状如<图1>所示大桥为主缆锚固在加劲梁上的自锚式悬索桥,其加劲梁在初始平衡状态有初始轴力作用。

MIDAS索单元应用悬索桥斜拉桥分析ppt课件

MIDAS索单元应用悬索桥斜拉桥分析ppt课件
1
目录
1. 悬索桥分析
① 基本操作步骤 ② 索单元简介 ③ 索单元初始刚度 ④ 初始平衡状态 ⑤ 悬索桥分析控制
2. 斜拉桥分析
① 基本操作步骤 ② 未知荷载系数法 ③ 体外力与体内力 ④ 未必和配合力
2
悬索桥分析:基本操作步骤
① 定义主缆、边缆、主塔、加劲梁、吊杆等构件的材料和截面 特性;
② 打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数 (各参数意义可参考在线帮助);
7
悬索桥分析:索单元初始刚度
几何刚度初始荷载
荷载>初始荷载>大位移>几何刚度 初始荷载
静力线性分析:不起作用。 静力非线性分析:根据输入的内力, 赋予索单元相应的初始刚度,对于定 义的荷载工况,进行几何非线性分析。 仅提供初始刚度之用,所输入内力 值不起作用,即没有荷载效应。
8
悬索桥分析:索单元初始刚度
9
悬索桥分析:索单元初始刚度
初始单元内力
荷载>初始荷载>小位移>初始单元内力
根据输入的初始单元内力,提供初始刚度,与几何刚度荷载类似。但 仅适用于小位移分析,其初始刚度不随新荷载的输入而进行修正。 是为了对于非线性结构进行线性分析而提供的功能,例如对于悬索桥 进行特征值分析、移动荷载分析等。
10
平衡单元节点内力:仅适用于施工阶段几何非线性分析。不仅提供几 何初始刚度且有荷载效应。还可考虑索单元以外单元的初始刚度以及 内力效应。与上述两个同时定义时,平衡单元节点内力优先起作用。
初始单元内力:仅适用于成桥荷载的小位移分析,如移动荷载、特征 值分析等。仅提供刚度。与上述三项无优先级。
11
第二步骤:根据第一步骤平衡状态分析得出的主缆线形(坐标)以及 吊杆的长度自动计算索单元的自重。然后,重新考虑索构件自重及 “桥面系”栏输入的荷载进行第二次平衡状态分析。

MIDAS索单元应用(悬索桥、斜拉桥分析)

MIDAS索单元应用(悬索桥、斜拉桥分析)
❖第二步骤:根据第一步骤平衡状态分析得出的主缆线形(坐标)以 及吊杆的长度自动计算索单元的自重。然后,重新考虑索构件自重及 “桥面系”栏输入的荷载进行第二次平衡状态分析。
悬索桥分析:悬索桥分析控制
定义“悬索桥分析控制”,再运行分析的目的:
❖通过建模助手得到的模型大部分与实际结构有所不同,如主塔与加 劲梁的关系、主塔横梁位置,且也有可能是自锚式悬索桥。(建模助 手只能得出地锚时的状态)
② 打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数 (各参数意义可参考在线帮助);
③ 将建模助手的数据另存为“*.wzd”文件,以便以后修改或 确认;
④ 运行建模助手后,程序将自动生成悬索桥模型,且提供所有 索单元的几何刚度初始荷载和初始单元内力;
⑤ 将模型根据实际桥梁进行修改。如边界条件、横梁、加劲梁 等,或改为自锚式悬索桥。
可) ; ⑥ 定义自重、二期等荷载 ⑦ 定义斜拉索的单位初力(例如输入1tonf)
斜拉桥分析:基本操作步骤
⑧ 运行静力分析后,利用 “未知荷载系数法” ,计算符合 设计要求的成桥平衡状态的拉索张拉力。
⑨ 利用成桥状态模型,通过倒拆施工阶段分析,计算各施工 阶段,每根斜拉索张拉控制应力。
⑩ 再利用求得的拉索张拉控制应力,进行正装施工阶段分析 。查看最终施工阶段的变形、内力等结果是否符合设计要 求。(因跨中合拢时,合拢段构件存在未必和配合力,最 终阶段的成桥状态可能与初始成桥分析结果不同)
两端构件的刚度,发生新的变形以及内力重分配,索力发生变化。 只有在拉索两端为固接状态下,张拉后的内力与输入初拉力相同。
体外力(类似于后张法预应力)
将索的初拉力视为外力。 首先将拉索连接在两端构件,再将拉索张拉至初拉力值。因随着张
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在学**阶段的各种设计练**及实际工作中,可能会经常遇到悬索桥的设计计算。

本文结合笔者自身体验,叙述Midas/Civil计算悬索桥的基本步骤及使用中的心得技巧和注意事项。

注:本文以Midas/Civil 2012为参照版本。

Midas/Civil计算悬索桥中的关键问题在于初始成桥线性的确定,这是由于悬索桥为大变形二阶柔性结构决定的。

其分析过程及每步中的要点如下:
1.建立新文件,为了便于区分和查找,建议命名时加入文件创建日期及文件主要特征等信息;
2.按照初步设计,定义主缆、桥塔、横梁、加劲梁、横隔板等部件的材料及截面特性值;
3.在结构-悬索桥按钮点出“悬索桥建模助手”,在其中输入相关信息,利用建模助手功能生
成初步模型以便后续修改。

在此需指出,利用悬索桥建模助手可以确定索单元大致的初始内力,利于后面的精细分析。

实际上也完全可以自行建立悬索桥的全部梁、索单元,再进行非线性分析控制和迭代,但该步骤比较繁琐,因此一般推荐采用悬索桥建模助手生成初步模型;
在建模助手中有几个要点和技巧:
1)建模助手采用的默认对象是双塔三跨悬索桥。

当建立的模型为双塔单跨悬索桥时,可以在边跨长度框内输入一个很小的数值(如1e-6),一般在Midas/Civil中,距离小于1e-5的节点将被合并,从而达到实际只建立了中跨的效果;
2)桥面系宽度,在桥塔竖直、索面竖直时指的是桥塔间距,也即主缆间距、吊杆吊点间距,在索面倾斜或桥塔倾斜时,一般理解为吊杆在加劲梁上的吊点间距更加方便;
3)桥面系单位重量,此处输入的单位重量必须等于加劲梁的自重加上二期恒载等以梁单元均布荷载形式施加给加劲梁单元的梁单元荷载的和,否则后面难以计算收敛。

另外,当建立的模型为双塔单跨悬索桥时,应勾选此处“详细”对话框,并在对话框中分别设置边、中跨桥面系荷载集度,为了便于收敛,可以将实际不存在的边跨设置一个非常小的集度,如1e-6;
4)其余各项按照对话框要求及初步设计填写即可,点击“实际形状”,会给出初步计算的主缆横向内力,该值应该记下,以便在后面悬索桥分析控制中使用;
5)填写完成后建议命名并保存该wzd文件,以便后面再修改或重复利用。

4.建模助手填写完毕后,点击“确定”,即开始进行第一轮悬索桥生成时的初步非线性分析
计算,根据悬索桥复杂程度不等,通常该过程会持续数秒到数十秒,此时宜耐心等待。

该过程运行结束后,程序会自动生成几何刚度初始荷载,并自动生成“自重”荷载工况;
5.悬索桥建模助手生成的是程序默认形式的地锚式竖直索面悬索桥,此时我们需根据实际桥
梁情况进行修改:比如自锚式悬索桥、空间主缆悬索桥、单塔悬索桥等,修改的内容包括节
点位置、边界条件、构件连接情况及荷载等。

为了后文操作方便,建议给主缆、桥塔、横梁、加劲梁、横隔板等部件分别建立结构组,并通过选择和拖放功能赋予相应节点单元,然后再建立三个结构组:更新节点组、垂点组合所有结构。

更新节点组选中主缆上除了主缆锚固端以外的所有节点,包括塔顶节点;垂点组选择塔顶节点和跨中主缆最低点。

注意垂点组中的节点实际在计算中坐标是不允许变化的,但根据程序编制要求,也要包含在更新节点组中;(选择和拖放是midas非常具有细节操作技巧的功能,欢迎交流)
6.点击分析-悬索桥,对控制参数进行修改。

控制参数中有两个参数:迭代次数和收敛误差,这两个参数的含义是:在迭代次数范围内,达到收敛误差或尚未到达收敛误差但迭代次数已到设定值,均会停止迭代。

因此若计算时觉得精度不够,可以提高迭代次数(如50次甚至更大)并减小收敛误差(如1e-6甚至更小),这要根据经验和试算加以确定;
7.进行分析。

分析过程中注意观察信息窗口中的信息,确认收敛。

收敛完成后将提供平衡单元节点内力数据;
8.为了确定悬索桥精确分析是否有效,应该定义一个“一次成桥”施工阶段。

该阶段激活所有的结构组、荷载组、边界组(还可能有钢束组)。

删除“悬索桥分析数据”,定义“施工阶段分析数据”,勾选“考虑非线性分析/独立模型”,并勾选“使用平衡单元节点内力”。

注意此处必须先删除“悬索桥分析数据”,否则施工阶段分析不予进行;
9.运行施工阶段分析,运行后查看结果判定悬索桥精细分析是否成功。

一般比较常用的简单的判断方法是:查看该“一次成桥”施工阶段的位移,在迭代次数和收敛误差控制得较好时,通常该“一次成桥”施工阶段的位移可以达到1e-4甚至更小,设计院中有时会精细到
1e-6~1e-7。

当该条件满足,表面悬索桥成桥状态的精细分析已经满足要求;
10.此时在成桥以后的分析中,悬索桥的索单元实际已转化为桁架单元进行线性分析,与常规结构的线性分析一样,资不赘述。

相关文档
最新文档