2006年普通高等学校招生全国统一考试(全国1卷)理科数学试题及解答(WORD版)

合集下载

2006高考理科数学试卷及答案全国1

2006高考理科数学试卷及答案全国1

年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷至页。

第Ⅱ卷到页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

.本卷共小题,每小题分,共分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件、互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件、相互独立,那么 其中表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件在一次试验中发生的概率是,那么334R V π=次独立重复试验中恰好发生次的概率 其中表示球的半径k n k kn n P P C k P --=)1()(一.选择题()设集合{<}{<},则()φ=N()M N =()M N M =()R N M =()已知函数的图象与函数()的图象关于直线对称,则()()()R ∈()()(>)()()()R ∈()() (>)()双曲线的虚轴长是实轴长的倍,则()41 () () ()41 ()如果()()是实数,则实数()()()2()2()函数()(4π)的单调递增区间为()(π2π, π2π)Z ∈ ()(π, ()π)Z ∈() (π43π, π4π)Z ∈()(π4π, π43π)Z ∈()∆的内角、、的对边分别为、、,若、、,且,则()41()43()42()32 ()已知各顶点都在一个球面上的正四棱锥高为,体积为,则这个球的表面积是()π ()π ()π ()π ()抛物线上的点到直线的距离的最小值是()34 ()57 ()58 ()()设平面向量、、的和,如果平面向量、、满足,且顺时针旋转︒后与同向,其中、、,则 () ()() ()()设{}是公差为正数的等差数列,若,,则() () () () ()用长度分别为、、、、(单位)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为()5 ()10()55()()设集合{,,,,},选择的两个非空子和,要使中的最小的数大于中最大的数,则不同的选择方法共有()种 ()种 ()种 ()种第Ⅱ卷注意事项:.用钢笔或圆珠笔直接答在试题卷上。

2006年普通高等学校招生全国统一考试(湖北卷)理科数学试题及解答(WORD版)

2006年普通高等学校招生全国统一考试(湖北卷)理科数学试题及解答(WORD版)

2006年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页,共150分,考试用时120分钟。

第Ⅰ卷(选择题 共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷上无效。

3.考试结束后,监考人员将本试题卷和答题卡一并收回。

一、选择题:本大题10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=1),b 是不平行于x 轴的单位向量,且a b 则b=A.(122) B.(1,22) C.(1,44) D.(1,0) 2.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且a+3b+c=10,则a= A.4 B.2 C.-2 D.-4 3.若ΔABC 的内角A 满足sin2A=23,则sinA+cosA=C. 53D.-534.设2()lg2x f x x +=-,则2()()2x f f x+的定义域为 A.(-4,0)⋃(0,4) B.(-4,-1)⋃(1,4) C.(-2,-1)⋃(1,2) D.(-4,-2)⋃(2,4)5.在24的展开式中,x 的幂的指数是整数的项共有A .3项B .4项C .5项D .6项6.关于直线m 、n 与平面α、β,有下列四个命题: ○1若//m α,//n β且//αβ,则//m n ; ○2若m α⊥,n β⊥且αβ⊥,则m n ⊥; ○3若m α⊥,//n β且//αβ,则m n ⊥;○4若//m α,n β⊥且αβ⊥,则//m n 。

其中真命题的序号式A .○1○2B .○3○4C .○1○4D .○2○37. 设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =,且OQ AB =1,则P 点的轨迹方程是A. 3x 2+32y 2=1 (x>0,y>0) B.3x 2-32y 2=1(x>0, y>0) C.32x 2-3y 2=1(x>0,y>0) D. 32x 2+3y 2=1(x>0,y>0) 8.有限集合S 中元素的个数记作card (S )。

2006年普通高等学校招生全国统一考试(山东卷)理科数学试题及解答(WORD版)-推荐下载

2006年普通高等学校招生全国统一考试(山东卷)理科数学试题及解答(WORD版)-推荐下载

4
x

2
)

1

cos(
2

0, 0
x 2) .
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2006高考理科数学试卷及答案全国1

2006高考理科数学试卷及答案全国1

2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(2)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(3)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (4)如果(m 2+i)(1+mi)是实数,则实数m=(A )1(B )-1(C )2(D )-2(5)函数f(x)=tan(x+4π)的单调递增区间为(A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈ (C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈ (6)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43(C )42 (D )32(7)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (8)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(9)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0,如果平面向量b 1、b 2、b 3满足|b i |=2|a i |,且a i 顺时针旋转30︒后与同向,其中i=1、2、3,则(A )-b 1+b 2+b 3=0 (B )b 1-b 2+b 3=0(C )b 1+b 2-b 3=0 (D )b 1+b 2+b 3=0(10)设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=(A )120 (B )105 (C )90 (D )75(11)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2(C )355cm 2(D )20cm 2(12)设集合I={1,2,3,4,5},选择I 的两个非空子和B ,要使B 中的最小的数大于A 中最大的数,则不同的选择方法共有(A )50种 (B )49种 (C )48种 (D )47种第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2006年全国统一高考数学试卷(理科)(全国卷一)及答案

2006年全国统一高考数学试卷(理科)(全国卷一)及答案

2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R2.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)3.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.4.(5分)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.5.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.6.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.7.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π8.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.39.(5分)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=010.(5分)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.7511.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm212.(5分)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B 中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.14.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.15.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).16.(4分)设函数.若f(x)+f′(x)是奇函数,则φ=.三、解答题(共6小题,满分74分)17.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.18.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.19.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.20.(12分)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.21.(14分)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.22.(12分)设数列{a n}的前n项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.2006年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.2.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=e x 的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.3.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.4.(5分)(2006•全国卷Ⅰ)如果复数(m2+i)(1+mi)是实数,则实数m=()A.1 B.﹣1 C.D.【分析】注意到复数a+bi(a∈R,b∈R)为实数的充要条件是b=0【解答】解:复数(m2+i)(1+mi)=(m2﹣m)+(1+m3)i是实数,∴1+m3=0,m=﹣1,选B.5.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x 的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C6.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.7.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.8.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.9.(5分)(2006•全国卷Ⅰ)设平面向量1、2、3的和1+2+3=0.如果向量1、2、3,满足|i|=2|i|,且i顺时针旋转30°后与i同向,其中i=1,2,3,则()A.﹣1+2+3=0 B.1﹣2+3=0 C.1+2﹣3=0 D.1+2+3=0【分析】三个向量的和为零向量,在这三个向量前都乘以相同的系数,我们可以把系数提出公因式,括号中各项的和仍是题目已知中和为零向量的三个向量,当三个向量都按相同的方向和角度旋转时,相对关系不变.【解答】解:向量1、2、3的和1+2+3=0,向量1、2、3顺时针旋转30°后与1、2、3同向,且|i|=2|i|,∴1+2+3=0,故选D.10.(5分)(2006•全国卷Ⅰ)设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=()A.120 B.105 C.90 D.75【分析】先由等差数列的性质求得a2,再由a1a2a3=80求得d即可.【解答】解:{a n}是公差为正数的等差数列,∵a1+a2+a3=15,a1a2a3=80,∴a2=5,∴a1a3=(5﹣d)(5+d)=16,∴d=3,a12=a2+10d=35∴a11+a12+a13=105故选B.11.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.12.(5分)(2006•全国卷Ⅰ)设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有()A.50种B.49种C.48种D.47种【分析】解法一,根据题意,按A、B的元素数目不同,分9种情况讨论,分别计算其选法种数,进而相加可得答案;解法二,根据题意,B中最小的数大于A中最大的数,则集合A、B中没有相同的元素,且都不是空集,按A、B中元素数目这和的情况,分4种情况讨论,分别计算其选法种数,进而相加可得答案.【解答】解:解法一,若集合A、B中分别有一个元素,则选法种数有C52=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有C53=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有C54=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有C55=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有C53=10种;若集合A中有两个元素,集合B中有两个元素,则选法种数有C54=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有C55=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有C54=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有C55=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有C55=1种;总计有49种,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有C52=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有C53=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有2×10=20种方法;从5个元素中选出4个元素,有C54=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;从5个元素中选出5个元素,有C55=1种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°14.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.15.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:240016.(4分)(2006•全国卷Ⅰ)设函数.若f(x)+f′(x)是奇函数,则φ=.【分析】对函数求导结合两角差的正弦公式,代入整理可得,,根据奇函数的性质可得x=0时函数值为0,代入可求φ的值【解答】解:,则f(x)+f′(x)=,为奇函数,令g(x)=f(x)+f′(x),即函数g(x)为奇函数,g(0)=0⇒2sin(φ)=0,∵0<φ<π,∴φ=.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为18.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B 有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:ξ0123P∴数学期望Eξ=3×=.19.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH 为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.20.(12分)(2006•全国卷Ⅰ)在平面直角坐标系xOy中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x、y轴的交点分别为A、B,且向量.求:(Ⅰ)点M的轨迹方程;(Ⅱ)的最小值.【分析】(1)利用相关点法求轨迹方程,设P(x0,y0),M(x,y),利用点M 的坐标来表示点P的坐标,最后根据x0,y0满足C的方程即可求得;(2)先将用含点M的坐标的函数来表示,再利用基本不等式求此函数的最小值即可.【解答】解:(I)椭圆方程可写为:+=1式中a>b>0,且得a2=4,b2=1,所以曲线C的方程为:x2+=1(x>0,y>0).y=2(0<x<1)y'=﹣设P(x0,y0),因P在C上,有0<x0<1,y0=2,y'|x=x0=﹣,得切线AB的方程为:y=﹣(x﹣x0)+y0.设A(x,0)和B(0,y),由切线方程得x=,y=.由=+得M的坐标为(x,y),由x0,y0满足C的方程,得点M的轨迹方程为:+=1(x>1,y>2)(Ⅱ)||2=x2+y2,y2==4+,∴||2=x2﹣1++5≥4+5=9.且当x2﹣1=,即x=>1时,上式取等号.故||的最小值为3.21.(14分)(2006•全国卷Ⅰ)已知函数.(Ⅰ)设a>0,讨论y=f(x)的单调性;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1,求a的取值范围.【分析】(Ⅰ)根据分母不为0得到f(x)的定义域,求出f'(x),利用a的范围得到导函数的正负讨论函数的增减性即可得到f(x)的单调区间;(Ⅱ)若对任意x∈(0,1)恒有f(x)>1即要讨论当0<a≤2时,当a>2时,当a≤0时三种情况讨论得到a的取值范围.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,1)∪(1,+∞).对f(x)求导数得f'(x)=e﹣ax.(ⅰ)当a=2时,f'(x)=e﹣2x,f'(x)在(﹣∞,0),(0,1)和(1,+∞)均大于0,所以f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅱ)当0<a<2时,f'(x)>0,f(x)在(﹣∞,1),(1,+∞)为增函数.(ⅲ)当a>2时,0<<1,令f'(x)=0,解得x1=,x2=.当x变化时,f′(x)和f(x)的变化情况如下表:x (1,+∞)f′+﹣++(x)↑↓↑↑f(x)f(x)在(﹣∞,),(,1),(1,+∞)为增函数,f(x)在(,)为减函数.(Ⅱ)(ⅰ)当0<a≤2时,由(Ⅰ)知:对任意x∈(0,1)恒有f(x)>f(0)=1.(ⅱ)当a>2时,取x0=∈(0,1),则由(Ⅰ)知f(x0)<f(0)=1(ⅲ)当a≤0时,对任意x∈(0,1),恒有>1且e﹣ax≥1,得f(x)=e ﹣ax ≥>1.综上当且仅当a∈(﹣∞,2]时,对任意x∈(0,1)恒有f(x)>1.22.(12分)(2006•全国卷Ⅰ)设数列{a n}的前n 项的和,n=1,2,3,…(Ⅰ)求首项a1与通项a n;(Ⅱ)设,n=1,2,3,…,证明:.【分析】对于(Ⅰ)首先由数列{a n}的前n项的和求首项a1与通项a n,可先求出S n,然后有a n=S n﹣S n﹣1,公比为4的等比数列,从而求解;﹣1对于(Ⅱ)已知,n=1,2,3,…,将a n=4n﹣2n代入S n=a n﹣×2n+1+,n=1,2,3,得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)然后再利用求和公式进行求解.【解答】解:(Ⅰ)由S n=a n﹣×2n+1+,n=1,2,3,①得a1=S1=a1﹣×4+所以a1=2.=a n﹣1﹣×2n+,n=2,3,4,再由①有S n﹣1将①和②相减得:a n=S n﹣S n﹣1=(a n﹣a n﹣1)﹣×(2n+1﹣2n),n=2,3,整理得:a n+2n=4(a n﹣1+2n﹣1),n=2,3,因而数列{a n+2n}是首项为a1+2=4,公比为4的等比数列,即:a n+2n=4×4n﹣1=4n,n=1,2,3,因而a n=4n﹣2n,n=1,2,3,(Ⅱ)将a n=4n﹣2n代入①得S n=×(4n﹣2n)﹣×2n+1+=×(2n+1﹣1)(2n+1﹣2)=×(2n+1﹣1)(2n﹣1)T n==×=×(﹣)所以,=﹣)=×(﹣)<(1﹣)。

2006年普通高等学校招生全国统一考试(全国1卷)理科数学试题及解答(WORD版)

2006年普通高等学校招生全国统一考试(全国1卷)理科数学试题及解答(WORD版)

2006年普通高等学校招生全国统一考试(全国Ⅰ卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ²B )=P (A )²P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k一、选择题:(1)设集合则},2|{},0|{2<=<-=x x N x x x M (A )φ=N M(B )M N M = (C )M N M = (D )R N M =(2)已知函数x e y =的图像与函数)(x f y =的图像关于直线x y =对称,则(A ))()2(2R x e x f x∈= (B ))0(ln 2ln )2(>⋅=x x x f (C ))(2)2(R x e x f x∈= (D ))0(2ln ln )2(>+=x x x f(3)双曲线122=+y mx 的虚轴长是实轴长的2倍,则=m (A )41-(B )4- (C )4 (D )41(4)如果复数2()(1)m i mi ++是实数,则实数m =()球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式 V=334R π, 其中R 表示球的半径A .1B .-1CD .(5)函数()tan()4f x x π=+的单调增区间为()A .(,),22k k k Z ππππ-+∈ B .(,(1)),k k k Z ππ+∈ C .3(,),44k k k Z ππππ-+∈ D .3(,),44k k k Z ππππ-+∈ (6)ABC 的内角,,A B C 的对边分别为,,.a b c 若,,a b c 成等比数列,且2c a =,则cos B =()A .14 B .34 C .4 D .3(7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是() A .16π B .20π C .24π D .32π(8)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是()A .43 B .75 C .85D .3 (9)设平面向量123,,a a a 的和1230a a a ++= ,如果平面向量123,,b b b 满足||2||i i b a = ,且ia顺时针旋转30︒后与i b同向,其中1,2,3i =,则()A .1230b b b -++=B .1230b b b -+=C .1230b b b +-=D .1230b b b ++=(10)设{}n a 是公差为正数的等差数列,若12315,a a a ++=12380a a a =,则111213a a a ++=()A .120B .105C .90D .75(11)用长度分别为2,3,4,5,6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A .2B .2C .2D .220cm(12)设集合{1,2,3,4,5}I =,选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有()A .50种B .49种C .48种D .47种第Ⅱ卷二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.已知正四棱椎的体积为12,地面的对角线为,则侧面与底面所成的二面角为____________14设2z y x =-,式中x,y 满足下列条件2132231x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则z 的最大值为___________15.安排7位工作人员5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有____________16.设函数())(0)f x ϕϕπ=+<<,若()`()f x f x +是奇函数,则ϕ=__________三、解答题(本大题共6小题,共74分。

2006年高考数学试卷(北京卷.理)含详解

2006年高考数学试卷(北京卷.理)含详解

2006 年普通高等学校招生全国统一考试数 学(理工类) (北京卷)本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1 至2 页,第 II 卷 3 至 9 页,共 150 分。

考试时间 120 分钟。

考试结束。

将本试卷和答题卡一并交回。

第 I 卷(选择题共 40 分) 注意事项:1. 答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮 擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、本大题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求 的一项。

(1)在复平面内,复数1ii+ 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)若 a 与 b -c 都是非零向量,则“a ·b=a ·c ”是“a ⊥(b -c )”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(3)在 1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为 (A )36 个 (B )24 个 (C )18 个 (D )6 个(4)平面α的斜线 AB 交α于点 B ,过定点 A 的动直线l 与 AB 垂直,且交α 于点 C ,则动 点 C 的轨迹是 (A )一条直线 (B )一个圆(C )一个椭圆 (D )双曲线的一支(5)已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的增函数,那么 a 的取值范围是(A )(0,1) (B )(0,13) (C )17⎡⎢⎣,13⎤⎥⎦ (D )]1,17⎡⎢⎣(6)在下列四个函数中,满足性质:“对于区间(1,2)上的任意1x ,2x (12x x ≠ ).2121()()f x f x x x -<-恒成立”的只有(A )1()f x x= (B )()f x x =(C )()2f x = (D )2()f x x =(7)设47101()22222()n f n n N +=++++⋅⋅⋅+∈,则()f n 等于(A )2(81)7n - (B )2(81)7n + (C )12(81)7n +- (D )12(81)7n ++(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口 A 、B 、 C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段 AB ⋂,BC ⋂CA ⋂的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则(A ) 123x x x >>(B ) 132x x x >> (C )231x x x >>(D )321x x x >>绝密★启用前2006 年普通高等学校招生全国统一考试数 学(文史类) (北京卷) 第 II 卷(共 110 分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上。

2006年普通高等学校招生全国统一考试数学试卷北京卷理

2006年普通高等学校招生全国统一考试数学试卷北京卷理

2006年普通高等学校招生全国统一考试数学(理工类) (北京卷)第I卷一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1 i(1) 在复平面内,复数i 对应的点位于(A )第一象限(B )第二象限(C)第三象限(D )第四象限(2) 若a与b—c都是非零向量,则a • b=a • c"是a±( b —c)"的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D )既不充分也不必要条件(3) 在1, 2, 3, 4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为(A) 36 个(B) 24 个(C) 18 个(D) 6 个(4) 平面〉的斜线AB交〉于点B,过定点A的动直线1与AB垂直,且交〉于点C,则动点C的轨迹是(A )—条直线(B) 一个圆 (C) 一个椭圆(D)双曲线的一支(5)已知讪二©f g:1[log a X,x 工1是(」:,':)上的增函数,那么a的取值范围是1 丄1(B) (0, 3) (C) -7,3(D)2(8n 1 -1) -(8n1 1)(C )7 ( D )7(8)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口A 、B 、 c cC 的机动车辆数如图所示,图中 X1,X 2,X 3分别表示该时段单位时间通过路段 AB ,BC(6)在下列四个函数中,满足性质: 对于区间(1 , 2)上的任意X i ,X 2(X i 式X 2).g-fg or 恒成立”的只有if(x)二 (A ) X (B ) f (X ) = X(C ) f (x) = 2 ( D ) f (x) = x⑺设 f(n )=2+2°+27+21°+ …+2计(N),则 f (n)等于2(A )?(8n -1) 2 f(8n 1)(B ) 7CA的机动车辆数(假设:单位时间内, 则(A)X1x2x3(B)X1x3x2(C) X2X3X-(D)X3X2X,(n)设:的第四象限的角,且 tan 〉 3,求f C )的值已知函数 1 - 2sin(2x ) f(x) 4-cosx第II 卷、填空题:本大题共 6小题,每小 题5分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年普通高等学校招生全国统一考试(全国Ⅰ卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:(1)设集合则},2|{},0|{2<=<-=x x N x x x M (A )φ=N M(B )M N M = (C )M N M = (D )R N M =(2)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A ))()2(2R x e x f x∈= (B ))0(ln 2ln )2(>⋅=x x x f (C ))(2)2(R x e x f x ∈= (D ))0(2ln ln )2(>+=x x x f(3)双曲线122=+y mx 的虚轴长是实轴长的2倍,则=m(A )41-(B )4- (C )4 (D )41(4)如果复数2()(1)m i mi ++是实数,则实数m =()球的表面积公式S=42R π 其中R 表示球的半径,球的体积公式 V=334R π, 其中R 表示球的半径A .1B .-1CD . (5)函数()tan()4f x x π=+的单调增区间为()A .(,),22k k k Z ππππ-+∈ B .(,(1)),k k k Z ππ+∈ C .3(,),44k k k Z ππππ-+∈ D .3(,),44k k k Z ππππ-+∈(6)ABC 的内角,,A B C 的对边分别为,,.a b c 若,,a b c 成等比数列,且2c a =,则cos B =()A .14 B .34C .4D .3(7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A .16πB .20πC .24πD .32π(8)抛物线2y x =-上的点到直线4380x y +-=距离的最小值是() A .43 B .75 C .85D .3 (9)设平面向量123,,a a a 的和1230a a a ++=,如果平面向量123,,b b b 满足||2||i i b a =,且i a 顺时针旋转30︒后与i b 同向,其中1,2,3i =,则() A .1230b b b -++= B .1230b b b -+= C .1230b b b +-= D .1230b b b ++=(10)设{}n a 是公差为正数的等差数列,若12315,a a a ++=12380a a a =,则111213a a a ++=()A .120B .105C .90D .75(11)用长度分别为2,3,4,5,6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A .2B .2C .2D .220cm(12)设集合{1,2,3,4,5}I =,选择I 的两个非空子集A 和B ,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有()A .50种B .49种C .48种D .47种第Ⅱ卷二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.已知正四棱椎的体积为12,地面的对角线为,则侧面与底面所成的二面角为____________14设2z y x =-,式中x,y 满足下列条件2132231x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则z 的最大值为___________15.安排7位工作人员5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有____________16.设函数())(0)f x ϕϕπ=+<<,若()`()f x f x +是奇函数,则ϕ=__________三、解答题(本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

) (17)三角形ABC 的三个内角A 、B 、C ,求当A 满足何值时cos 2cos2B CA ++取得最大值,并求出这个最大值(18)(本题满分12分)A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验。

每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效。

若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组。

设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21. (Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望。

(19)(本题满分12分)如图,1l 、2l 是互相垂直的异面直线,MN是它们的公垂线段。

点A 、B 在1l 上,C 在2l 上,AM=MB=MN 。

(Ⅰ)证明AC ⊥NB(Ⅱ)若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值.(20)(12分)在平面直角坐标系xoy 中,有一个点1(0,F和2F 为焦点,的椭圆,设椭圆在第一象限的部分曲线为C,动点P 在C 上,C 在P 点处的切线与x 、y 轴的交点分别为A 、B ,且向量OM OA OB =+,求 (Ⅰ)点M 的轨迹方程; (Ⅱ)OM 的最小值(21)(本小题满分14分) 已知函数1().1axx f x e x-+=- (Ⅰ)设0a >,讨论()y f x =的单调性;(Ⅱ)若对任意(0,1)x ∈恒有()1f x >,求a 的取值范围。

(22)(本小题满分12分) 设数列{}n a 的前n 项和14122,1,2,3,.333n n n S a n +=-⨯+=(Ⅰ)求首项1a 与通项n a ;(Ⅱ)设2,1,2,3,,nn nT n S ==证明:13.2ni i T =<∑2006年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学参考答案一.选择题:本题考查基本知识和基本运算,每小题5分,满分60分。

1.C 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D二.填空题:本题考查基本知识和基本运算,每小题4分,满分16分。

13.155 14.70 15.100 16.①③④ 三.解答题(17)本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力。

满分12分。

解:(I )∵x=8π是函数y=f(x)的图像的对称轴, ∴sin(2×8π+ϕ)=±1,∴4π+ϕ=k π+2π,k ∈Z. ∵-π<ϕ<0,∴ϕ=-43π. (II )由(I )知ϕ=-43π,因此 y=sin(2x-43π). 由题意得2k π-2π≤2x-43π≤2k π+2π,k ∈Z. 所以函数y=sin(2x-43π)的单调增区间为 [k π+8π,k π+85π],k ∈Z.(III)由y=sin(2x-3π)知故函数y=f(x)在区间[0,π]上的图像是(18)本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力,满分12分。

方法一:(I )证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥PCD.(II )解:过点B 作BE ∥CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2, 所以四边形ACBE 为正方形.由PA ⊥面ABCD 得∠PEB=90°, 在Rt △PEB 中BE=2,PB=5,cos ∠PBE=,510=PB BE ∴AC 与PB 所成的角为arccos510. (III)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC ,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角。

∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(. ∴AN=5625223=⨯.∵AB=2,∴cos ∠ANB=.322222-=⨯⨯-+BN AN AB BN AN 故所求的二面角为arccos(-32). 方法二:因为PA ⊥AD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点,AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,21). (I)证明:因=(0,0,1),=(0,1,0),故·=0,所以AP ⊥DC. 又由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 。

又DC 在面PCD 上,故面PAD ⊥面PCD. (II )解:因=(1,1,0),=(0,2,-1),故||=2,||=5,·=2,所以cos<·PB .510由此得AC 与PB 所成的角为arccos.510 (III )解:在MC 上取一点N(x,y,z),则存在λ∈R ,使=λ,=(1-x,1-y,-z),=(1,0,-21),∴x=1-λ,y=1,z=21λ. 要使AN ⊥MC 只需·=0,即 x-21z=0,解得λ=54. 可知当λ=54时,N 点坐标为(51,1,52),能使·=0. 此时,AN =(51,1,52),BN =(51,-1,52),有BN ·MC =0. 由·=0,·=0得AN ⊥MC,BN ⊥MC.所以∠ANB 为所求二面角的平面角. ∵||=530,||=530,·=-54. ∴cos<,.32||||-=⋅BN AN故所求的二面角为arccos(-32). (19)本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分。

相关文档
最新文档