杭州市初中数学青年教师教学基本功评比解题能力竞赛题
初中数学青年教师解题大赛题库

初中数学青年教师解题大赛题库一、填空题1.函数中,自变量取值范围是______。
2.圆锥的母线长为5cm,高为3cm,在它的侧面展开图中,扇形的圆心角是______度。
3.△ABC中,D、E分别是AB、AC上的点,DE//BC,BE与CD相交于点O,在这个图中,面积相等的三角形有______对。
4.已知某不等式的正整数解共有______个。
5.在△ABC中,AB=10,AC=5,D是BC上一点,且BD:DC=2:3,则AD的取值范围是______。
二、简答题1.作图题o已知点A和点B,求作一个圆⊙O和一个三角形BCD,使⊙O经过点A,且使所作的图形是对称轴与直线AB相交的轴对称图形。
要求写出作法,不要求证明。
2.数列与数学逻辑o梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽成等差数列,计算与最低一级最接近的一级的宽。
3.几何与代数结合o已知一条曲线在x轴的上方,它上面的每一点到点A(0,2)的距离减去它到x轴的距离的差都是2,求这条曲线的方程。
4.概率与统计o探讨某种概率模型(如古典概型)的特征及应用。
三、证明题1.若关于未知数x的方程(p、q是实数)没有实数根,求证某个结论。
2.证明与抛物线轴平行的直线和抛物线只有一种交点。
四、应用题1.在锐角△ABC中,点P在边上运动,试确定点P的位置,使PA+PB+PC最小,并证明结论。
2.在重心为G的钝角△ABC中,若边BC=1,∠A=30°,且D点平分BC。
当A点变动,B、C不动时,求DG长度的取值范围。
五、综合题这类题目通常涉及多个知识点的综合运用,如几何、代数、概率统计等,需要考生具备扎实的基础知识和灵活的解题能力。
初中数学青年教师基本功大赛笔试试卷(含答案)

A B
5. (本小题 12 分) 从甲地到乙地有 A1、A2 两条路线,从乙地到丙地有 B1、B2、B3 三条路 线,从丙地到丁地有 C1、C2 两条路线.一个人任意先了一条从甲地到丁地的路线.求 他恰好选到 B2 路线的概率是多少?
22ຫໍສະໝຸດ 要 t 最小,即 CT+TQ 最小,而 CT+TQ 是点 C 到直线 C
′B 的折线长,只有当 CT+TQ 成为点 C 到直线 C′B 的
y C
OK
T
x
B
Q H
垂线段时才最小,故作 CH⊥BC′交 OB 于点 K,则点
C′
K 就是使运动时间最短的点。
∵△CBC′为正三角形,∴∠C′CH=30°∴OK=OC·tan30°=2
P138—139) 5. (本小题 12 分)
A1
甲
乙
A2
如图:从甲到丁有 2×3×2=12 种走
9
A
M
B1
C1
B2
丙
C2
丁
B3
N
D
C
B
E
法,而经过线路
B2
共有
2×1×2=4
种走法,故
P=
4 12
1 3
6. (本 小 题 12 分 ) 如 图 : 裁 剪 线 AB 与 CD 长 恰 好 为 三 棱 柱 底 面 周 长 30cm, 故
BM AB 2 AM 2 30 2 182 24
由△CEB∽△AMB 可知: CB BE ,故 CB 60
AB BM
30 24
杭州市初中数学青年教师教学基本功评比解题能力竞赛题

杭州市初中数学青年教师教学基本功评比解题能力竞赛题1.(满分15分)(1)请你用几种不同的分割方法,将正三角形分别分割成四个等腰三角形(要求,徒手画出正三角形、画出分割线,并标出必要的角的度数).(2)如图,是某学生按题(1)要求画出的一种分割图,请简述你将如何讲解?第1题2. (满分15分)已知ABCD 是矩形,以C 为圆心,CA 为半径画一个圆弧分别交AB , AD 延长线于点E ,点F ,连接EB ,FD ,若把直角∠BCD 绕点C 旋转角度θ(0 < θ < 90°),使得该角的两边分别交线段AE ,AF 于点P ,点Q ,则CQ 2+CP 2等于( )A .2QF ⋅PEB .QF 2 + PE 2C .(QF + PE )2D .QF 2 + PE 2 +QF ⋅PE(1)请用你认为最简单的方法求解(注意:是选择题);(2)请用几何方法证明你的选择是正确的;(3)建立一个直角坐标系,用代数方法证明你的选择是正确的.3. (满分15分)如图,已知圆柱底面半径为r , SA 是它的一条母线,长为l . 设从点A 出发绕圆柱n 圈到点S 的最短距离为m (n 为正整数) .(1) 用r 与l 表示m 可得m= (注意:是填空题). (2) 写出你得出题(1)结论的详细过程.(第2题)(第3题)4. (满分15分)如图,七个边长均为1的等边三角形分别用①至⑦表示.给出命题:如果移出其中1个三角形,再把某些三角形整体作一次位置变换,那么一定可以与位置未变的三角形拼成一个正六边形.(1) 设位置变换为平移变换,试通过具体操作说明命题是正确的(分别写出:移出哪个三角形?哪些三角形组成的图形作平移,及平移的方向和平移的距离);(2) 设位置变换为旋转变换,请列举出能使命题成立的所有情况(分别写出:移出哪个三角形?哪些三角形组成的图形作旋转,旋转的方向、角度,并在图中标上字母表示旋转中心;(3) 将移出的三角形作相似变换,使之放置在某个位置时,能盖住正六边形,问:相似比能否等于3.14? 请说明理由.(第4题)5. (满分20分)图形既关于点O中心对称,又关于AC,BD轴对称. 已知AC = 10,BD = 6,点E,M是线段AB上的动点. 称互相对称的一对三角形组成的图形为“蝶形”,称以点O 为圆心,且过蝶形其它顶点的圆为蝶形的外接圆.设点O到EF和MN的距离分别为h1和h2,且h1+ h2 = k(0< k <10).记△OEF与△OGH组成的蝶形O–EFGH的面积为SⅠ,△OMN与△OPQ组成的蝶形O–MNPQ的面积为SⅡ.(1) 不妨设h1 < h2, 试比较SⅠ与SⅡ的大小;(2) 当蝶形O–EFGH和蝶形O–MNPQ的外接圆相同,且图形不重合时,这对蝶形构成“最美蝶形”,试证明最美蝶形的面积S= SⅠ+ SⅡ不存在最值.(第5题)6. (满分15分)如图所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点处的数字的平均数,求证:这八个数相等.7.(满分20分)在等腰Rt△ABC中,∠C =90︒,AC = 1,过点C作直线l∥AB .(1)以点A为圆心,AB长为半径作圆,圆与直线l相交于点F1,F2,分别作F1M,F2N 垂直于直线BC,点M,N是为垂足,连结,F1M,F2N, 并作AH垂直于l于H.①求线段F1M和F2N的长度;②图中哪三个三角形的面积相等?试写出,并给予证明;(2) F是l上的一个动点(不与C重合),点F到直线BC的距离为t.设AF=x(2x≥),试求出t关于x的函数关系式,并求出当2x=时的t的值.第6题(第7题)8.(满分5分)。
初中数学教师解题能力竞赛卷

2D.2014年杭州市初中数学青年教师解题能力竞赛试题卷一、选择题(本题有8个小题,每小题3分,共24分)四个选项中,只有一个是正确的. 1.可以用来证明命题“若a2>0.01,则a>0.1”是假命题的反例()A.可以是a=-0.2,不可以是a=2B.可以是a=2,不可以是a=-0.2C.可以是a=-0.2,也可以是a=2D.既不可以是a=-0.2,也不可以是a=22.已知杭州市2014年1月24日部分整点时气温的统计图,则这天各整点时气温的中位数是()A.10.5B.10.9C.12.9D.13.3(第2题)3.已知m=(–33)⨯(–221),则有()A.5.0<m<5.1B.5.1<m<5.2C.5.2<m<5.3D.5.3<m<5.4 4.已知平行四边形ABCD的面积为16cm2,对角线交于点O;以AB,AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB,AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.2cm2B.1cm2C.1cm214cm25.已知∠BAC=90º,半径为r的圆O与两条直角边AB,AC都相切,设AB=a(a>r),BE与圆O相切于点E.现给出下列命题:①当∠ABE=60º时,BE=3r;②当∠ABE=90º时,BE=r;③当∠ABE=120º时,BE=33r;其中正确的命题是()A.①②③B.①②C.①③D.②③(第6题)6.在直角坐标系中有一个正五边形ABCDE,其中C,D两点的坐标分别为(1,0),(2,0).若在没有滑动的情况下,将此正五边形沿着x轴向右连续滚动,则滚动过程中,能与点(2014,0)重合的是()设关于变量 x 的二次函数.当 x =-2 时,该函数的值为零,请写出两个符合条件的函 1 yA .点 AB .点 BC .点 CD .点 D7. 设 O 是等边三角形 ABC 内一点,已知∠AOB =115°,∠BOC =125°,则在以线段 OA ,OB ,OC 为边构成的三角形中,内角不可能取到的角度是 ()A .65°B .60°C .55°D .50°8.对于点 A(x 1,y 1),B(x 2,y 2),定义一种运算:A ⊕B =(x 1+x 2)+(y 1+y 2).例如,A(-5,4),B(2,-3),A ⊕B =(-5+2)+(4-3)=-2.若互不重合的四点 C ,D ,E ,F ,满足 C ⊕D=D ⊕E =E ⊕F =F ⊕D ,则存在实数 k ,使得 C ,D ,E ,F 四点都在( )A .函数 y =x + k 的图象上B .函数 y =-x + k 的图象上C .函数 y =kx - 的图象上D .函数 y =kx 2 的图象上二. 填空题 (本题有 6 个小题, 每小题 5 分, 共 30 分)9.某次知识竞赛共有 20 道题,每一题答对得 10 分,答错或不答都扣 5 分.设至少要答对n 道题,得分才能超过 90 分,则 n 等于.10.线段 AB 的长为 2,C 为 AB 上一个动点,分别以 AC ,BC 为斜边在 AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么 DE 长的取值范围是.11.抛物线 y =ax 2 + b x + c 与 x 轴交于 A ,B 两点,与 y 轴交于点 C ,若△ABC 是直角三角形,则 ac =.12.平面直角坐标系 xOy 中,抛物线经过点 A(-2,2),点 O(0,0)和点 B(6,6),点 N 在抛物线上且位于直线 OB 下方,则△BON 面积的最大值为,此时点 N 的坐标为.△13.在 ABC 中, ∠ BAC = 60 ︒ , ∠ ABC = 45 ︒ ,AB = 2 2 ,D 是线段 BC 上的一个动点,以 AD 为直径画⊙O 分别交 AB ,AC 于 E ,F ,连结 EF ,则线段 EF 长度的最小值为.14.在平面直角坐标系 xOy 中,有一个边长为 2 的等边三角形 ABC ,AC ∥y 轴. 平移△ABC使它的某两个顶点分别在 x 轴, 轴上,则此时△ABC 的第三个顶点的坐标是.三. 解答题 (本题有 7 个小题, 共 66 分) 解答应写出文字说明, 证明过程或推演步骤.15.(本小题满分 6 分)..数解析式;当x=m时,该函数的值为n(m,n是常数),请用一个函数解析式表示所有符合条件的函数.16.(本小题满分8分)如图,任两个竖直或水平相邻的点都相距1个单位长度.若线段AB交线段CD于点E,试用两种方法求线段AE的长.(第16题)17.(本小题满分8分)掷两个骰子,点数之差记为k(k为整数).(1)用右表表示所有可能出现的情况,请将它写填完整,并写出k可以取的所有值;(2)把点数之差等于k的概率记为Pk.①当k=-2时,求P k;②对所有的k值,求出对应的P k,并用k表示P k.1231-1-221-13214563214-356-2-1018.(本小题满分10分)已知AD∥BC,AB⊥AD,点E,F分别在直线AD,BC上.已知点E与点B关于AC 对称,点E与点F关于BD对称.(1)求∠AEB-∠DEF的值;(2)tan∠ADB的值;(3)关于点G与△BEF,你能发现什么结论?并说明理由.(第18题)19.(本小题满分10分)在平面直角坐标系中,设x轴、y轴分别为直线l1,l2,函数y=x,y=x的图象分别是直线l3,l4,圆P(以点P为圆心,1为半径)与直线l1,l2,l3,l4中的两条相切.(1)当圆心在第一象限或x,y轴正半轴上时,分别写它们的圆心P的坐标;(2)满足条件的圆P的圆心有几个?请尝试将点P进行分(第19题)类,并简要描述你的分类标准;(3)若直角坐标系中有五条直线交于原点O,并将周角十等分,单位圆P与这五条直线中的两条相切,试求满足条件的圆心P的个数?(4)将题(3)中“五”用“n”替换,“十”用“2n”替换,其它不变.形 CMPF 的面积为 S 2,CF = x , y = 1.20.(本小题满分 12 分)如图,已知正方形 ABCD 的边长为 2,对称中心为点 P ,点 F 为射线CB 边上一个动点,作∠EPF =45︒(射线 PE 在 PF 的左侧),射线 PE 交直线 AB 于点 E ,若∠EPF 与正方形的公共部分命名为图形Ⅰ,图形Ⅱ与图形Ⅰ关于直线 AC 成轴对称.设图形Ⅰ,图形Ⅱ的面积和为 S 1,四边S S(第 20 题)2(1)求 y 关于 x 的函数解析式和自变量 x 的取值范围,并求出当点 E ,F 分别在 AB ,BC边上时 y 的最大值;(2)图形Ⅰ、Ⅱ能否关于点 P 成中心对称?若能,求出 y 的值;若不能,则说明理由.抛物线的对称轴上,且 PQ = .21.(本小题满分 12 分)设抛物线 y = 3 2( x + 1)(x - 2) 与 x 轴交于 A ,C 两点,与 y 轴交于 B 点,点 P ,Q 位于3 3(1)求四边形 ABQP 周长的最小值;(2)在(1)成立的条件下,当以点A ,B ,D 为顶点的三角形与△QBP 相似时,求点 D的坐标.yOAP C x QB(第 21 题)2 3 n赛后思考题(竞赛时不作答,供竞赛后玩玩用):两个袋子中分别放有 n 个大小、重量相同的球,球上分别标有自然数 1, , ,…, .从 两个袋子各摸出一个球,球上标有的两数之差记为 k (k 为整数),两数之差等于 k 的概率记为 P k .试写出 P k 关于 k 的表达式.。
初中青年教师基本功比赛试题

1.义务教育阶段数学课程的特点是什么?答:突出体现基础性、普及性和发展性,数学教育面向全体学生,实现人人…2.如何认识数学?答:数学是人类的工具;数学是人类用于交流的语言;数学赋予人创造性;数学是一种文化,等等。
3.如何认识数学学习?答:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
4.如何认识数学教学?答:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
5.如何认识数学的教育评价?答:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
6.如何认识现代信息技术在数学课程中的作用?(1)树立数学课程与现代信息技术融合的观念。
(2)现代信息技术要致力于改变学生的学习方式。
7.《标准》关于三维目标,其中刻画知识技能目标的主要动词有哪些?你是怎么理解的?答:了解(认识)、理解、掌握、灵活运用。
了解(认识) :能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
初中数学青年教师解题能力测试题

初中数学青年教师解题能力测试题分值:120分考试时间:120分钟县区学校姓名成绩一.选择题(请把答案写在下面的表格里,共10小题,满分30分,每小题3分)1.观察下列等式:3=3,3=9,3=27,3=81,3=243,3=729,3=2187…解答下列问题:3+32+33+34+…+32014的末位数字是()A.2B.3C.7D.92.一志愿者在市中心某十字路口,对闯红灯的人次进行了统计,根据当天8:00﹣14:00中各阶段(以1小时为一时间段)闯红灯的人次制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别是()A.30,30 B.30,35C.35,40D.50,35第2题图第3题图第4题图3.如图,直线P A是一次函数y=x+n(n>0)的图象,直线PB是一次函数y==,AB=2,﹣2x+m(m>n)的图象.若P A与y轴交于点Q,且S四边形PQOB 则m,n的值分别是()A.3,2B.2,1C.D.1,4.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为()A.B.C.5D.65.已知x是正实数,则|x﹣1|+|2x﹣1|+|3x﹣1|+|4x﹣1|+|5x﹣1|的最小值是()A.2B.C.D.05.已知线段AB=2,点A,B到直线l的距离分别为方程x2﹣6x+6=0的两根(A到l的距离>B到l的距离),符合条件的直线l有()A.1条B.2条C.3条D.4条7.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D是的中点,连接BD 交AC于点E,连接OE,且∠OEB=45°,若OB=10,则OE的长为()A.6B.C.D.8.使方程2x2﹣5mx+2m2=5的一根为整数的整数m的值共有()A.1个B.2个C.3个D.4个9.如图,“杨辉三角”是我国古代奉献给人类伟大的数学遗产之一,从图中取一列数1,3,6,10,…,记a1=1,a2=3=1+2,a3=6=1+2+3,a4=10,…,那么a9+a11﹣a i=83,则i的值是()A.13B.10C.8D.7第7题图第9题图第10题图10.如图,以Rt△ABC各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图所示依次叠在③上,已知四边形EMNC与四边形MPQN的面积分别为9与7,则斜边BC的长为()A.5B.9C.10 D.16二.填空题(共8小题,满分32分,每小题4分)11.已知a=+1,b=﹣1,则的值为.12.书架上有两套两样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是.13.如图:在对角线互相垂直的四边形ABCD中,∠ACD=60°,∠ABD=45°.A 到CD距离为6,D到AB距离为4,则四边形ABCD面积等于.第13题图第14题图第16题图14.如图,已知⊙O的半径为6,点A、B在⊙O上,∠AOB=60°,动点C在⊙O上(与A、B两点不重合),连接BC,点D是BC中点,连接AD,则线段AD的最大值为.15.一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是元.16.如图,点A是反比例函数y=图象在第一象限上的一点,连结AO并延长交图象的另一分支于点B,延长BA至点C,过点C作CD⊥x轴,垂足为D,交反比例函数图象于点E.若,△BDC的面积为6,则k=.17.某同学在电脑中打出如下排列的若干个圆(圆中●表实心圆,〇表空心圆):●〇●●〇●●●〇●●●●〇●●●●●〇●●●●●●〇,若将上面一组圆依此规律连续复制一系列圆,那么前2005个圆中有个空心圆.18.黑板上写有1,,,…共有100个数字,每次操作,先从黑板上的数选取2个数a,b,然后删去a,b,并在黑板上写上数a+b+ab,则经过99次操作后,黑板上剩下的数是.三.解答题(共6小题,满分58分)19.(8分)因式分解:(a+b﹣2ab)(a+b﹣2)+(1﹣ab)2.20(8分).已知关于x的一元二次方程(n+2)x2﹣4nx+4(n﹣2)=0(n>﹣2).(1)求证:该方程一定有两个不相等的实数根.(2)直接写出该方程的两根.(3)当方程的两根都是整数时,求整数n的值.(4)设方程的两个根分别为x1、x2(x1>x2),若y=•(x1﹣x2),求y的范围.21.(8分)新冠肺炎期间,各地积极抗疫,建起了方舱医院,如图,某方舱医院内一张长200cm,高50cm的病床靠墙摆放,在上方安装空调,高度CE=250cm,下沿EF与墙垂直,出风口F离墙20cm,空调开启后,挡风板FG与E夹角成136°,风沿FG方向吹出,为了病人不受空调风干扰,不能直接吹到病床上,请问空调安装的高度足够吗?为什么?(参考数据:sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)22.(10分)如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连接AB,过点A作AC⊥AB,交x轴于点C,点D是点C关于点A的对称点,连接BD,以AD为直径作⊙Q交BD于点E,连接并延长AE交x轴于点F,连接DF.(1)求线段AE的长;(2)若AB﹣BO=2,求的值;(3)若△DEF与△AEB相似,求的值.23(12分).某水果超市经销一种进价为18元/kg的水果,根据以前的销售经验,该种水果的最佳销售期为20天,销售人员整理出这种水果的销售单价y(元/kg)与第x天(1≤x≤20)的函数图象如图所示,而第x天(1≤x≤20)的销售量m(kg)是x的一次函数,满足下表:x(天)123…m(kg)202428…(1)请分别写出销售单价y(元/kg)与x(天)之间及销售量m(kg)是x (天)的之间的函数关系式(2)求在销售的第几天时,当天的利润最大,最大利润是多少?(3)请求出试销的20天中当天的销售利润不低于1680元的天数.24(12分).如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y 轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①求△BOD面积的最大值,并写出此时点D的坐标;②当△OPC为等腰三角形时,请直接写出点P的坐标.数学青年教师解题能力测试题参考答案一.选择题(请把答案写在下面的表格里,共10小题,满分30分,每小题3分)1.A.【解析】∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2014÷4=503…2,∴3+32+33+34…+32014的末位数字相当于:3+9+7+1+…+3+9=(3+9+7+1)×503+3+9=10072的末尾数为2,故选:A.2.A.【解析】由统计图可知,这组数据的众数是30,中位数是(30+30)÷2=30,故选:A.3.B.【解析】根据题意得:点A的坐标为(﹣n,0),点Q的坐标为(0,n),点B的坐标为(,0),∵点P是P A与PB的交点,∴,解得:,∴点P的坐标为:(,),∵AB=2,∴OA+OB=n+==2,∴m+2n=4,∵S四边形PQOB=,∴S△P AB﹣S△AOQ=×2×﹣n×n=﹣n2=,解得:n=1,∴m=2.故选:B.4.C.【解析】把P A绕点A逆时针旋转60°,得AD,则DA=P A,连CD,DP,CP,如图,∵△ABC为等边三角形ABC,∴∠BAC=60°,AC=AB∴∠DAC=∠BAP,∴△DAC≌△P AB,∴DC=PB,而PB=3,P A=2,∴DC=3,∵PC≤DP+DC,∴PC≤5,所以PC所能达到的最大值为5.故选:C.5.B.【解析】|x﹣1|+|2x﹣1|+|3x﹣1|+|4x﹣1|+|5x﹣1|=|x﹣1|+2|x﹣|+3|x﹣|+4|x﹣|+5|x﹣|当x﹣=0,即x=时取最小值,最小值为:|﹣1|+2|﹣|+3|﹣|+4|﹣|+5|﹣|=+++0+=.故选:B.6.C.【解析】解方程x2﹣6x+6=0得x1=3+,x2=3﹣,∴①如图1,在线段AB的两旁可分别画一条满足条件的直线;②如图2,当线段AB⊥直线l时,可画一条满足条件的直线.故选:C.7.D.【解析】连接AD,过点O作OH⊥BD于H,∵D是的中点,∴,∴∠ABD=∠CBD,∵AB是⊙O的直径,∴∠D=∠C=90°,∴∠EAB=90°﹣2∠ABD,∠CEB=90°﹣∠ABD,∵∠BEO=45°,∴∠CEO=45°+90°﹣∠ABD=135°﹣∠ABD,∴∠AEO=45°+∠ABD,∵∠CEO=∠EAB+∠AOE,∴∠AOE=45°+∠ABD,∴∠AOE=∠AEO,∴AO=AE=10,∵∠DAE=∠ABD,∠D=∠D,∴△DAE∽△DBA,∴=,∴AD=2DE,∵AD2+DE2=AE2=100,∴AD=4,∵OH∥AD,∴,∴OH=AD=2,∵∠OEB=45°=∠EOH,∴EH=OH=2,∴EO=2,故选:D.8.D.【解析】∵方程有一个整数根,∴△=25m2﹣8(2m2﹣5)=9m2+40>0,设△=p2(p为正整数),∴(3m﹣p)(3m+p)=﹣40,∵3m﹣p≤3m+p且同奇偶,∴3m﹣p=﹣4,﹣10,﹣2,﹣20,3m+p=10,4,20,2,∴m=±3,±1,经检验,均有一根为整数,∴符合条件的整数m的值有4个,故选:D.9.D.【解析】由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a9==45、a i=、a11==66,则a9+a11﹣a i=83,可得:45+66﹣=83,解得:i=7,故选:D.10.C【解析】如图,设等边三角形△EBC,△ABD,△ACF的面积分别是S3,S2,S1,AC =b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2.∵S3=a2,S2=c2,S1=b2,∴S3﹣S2=(a2﹣c2)=b2=9,S3﹣S1=a2﹣b2=(a2﹣b2)=c2=9+7=16,∴b=6,c=8,即AB=8,AC=6,∴BC===10,故选:C.二.填空题(共8小题,满分32分,每小题4分)11..【解析】原式=÷||=×||∵a+b=2,b﹣a=﹣2,ab=1 ∴原式=×===.故答案为:.12..【解析】设第一套教材上册为a,下册为b,第二套教材为上册为x,下册为y.共有12种情况,恰好组成一套教材的情况数有4种,所以能组成一套教材的概率为,故答案为.13.8.【解析】过A作AM⊥CD交CD于M,依题意有AM=6,又∵∠ACD=60°∠AMC=90°,∴AC=4,同理可得BD=4,∴四边形的面积=AC×BD=4×4=8.故答案为8.14.3.【解析】如图1,连接OC,Q取OB的中点E,连接DE.则OE=EB=OB=3.在△OBC中,DE是△OBC的中位线,∴DE=OC=3,∴EO=ED=EB,即点D是在以E为圆心,2为半径的圆上,∴求AD的最大值就是求点A与⊙E上的点的距离的最大值,如图2,当D在线段AE延长线上时,AD取最大值,∵OA=OB=6,∠AOB=60°,OE=EB,∴AE=3,DE=3,∴AD取最大值为3+3.故答案为3.15.98或77.【解析】∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.16.2.【解析】过B作BG⊥x轴于G,过A作AH⊥x轴于H,连接OE,设C(a,b),∵CD⊥x轴,,∴E(a,b),∵点E在反比例函数图象上,∴k=ab,∵CD⊥x轴,AH⊥x轴,∴AH∥CD,∴△AOH∽△COD,∴=,∵OH=,∴=,∴AH=b,∵点A与点B关于原点对称,∴BG=AH,∵△BDC的面积为6,∴OD•BG+CD•OD=a×b+ab=ab=6,∴ab=2,∴k=2.故答案为:2.17.61.【解析】∵●〇、●●〇、●●●〇、●●●●〇、●●●●●〇、●●●●(n+1+2)n÷2=,●●〇的个数分别是2、3、4、5、6、7、…,∴前n组圆的总数是:∵,,1952<2005<2015,∴前2005个圆中有61个空心圆.故答案为:61.18.100.【解析】∵a+b+ab+1=(a+1)(b+1),∴每次操作前和操作后,黑板上的每个数加1后的乘积不变,设经过99次操作后,黑板上剩下的数为x,则x+1=(1+1)×()×(+1)×(+1)×…×(+1)×(1+),化简得:x+1=101,解得:x=100,∴经过99次操作后,黑板上剩下的数是100.故答案为:100.三.解答题(共6小题,8+8+8+10+12+12=58分)19.【解析】(a+b﹣2ab)(a+b﹣2)+(1﹣ab)2=[(a+b)﹣2ab][(a+b)﹣2]+(1﹣ab)2=(a+b)2﹣2(ab+1)(a+b)+4ab+(1﹣ab)2=(a+b)2﹣2(ab+1)(a+b)+[4ab+(1﹣ab)2]=(a+b)﹣22(ab+1)(a+b)+(1+ab)2=[(a+b)﹣(ab+1)]2=[(a﹣1)(1﹣b)]2=(a﹣1)2(b﹣1)2.20.【解析】(1)x1=2,x2=.提示:∵△=(﹣4n)2﹣4×4(n﹣2)(n+2)=64>0,∴关于x的一元二次方程(n+2)x2﹣4nx+4(n﹣2)=0(n>﹣2)一定有两个不相等的实数根;(2)∵x=,∴x1=2,x2=,故答案为:x1=2,x2=;(3)∵方程的两根都是整数,∴n=2;(4)∵x1=2,x2=,∴y=•(x1﹣x2)=•(2﹣)=,∵n>﹣2,∴y>0或y<﹣4,∴y的范围为y>0或y<﹣4.21.【解析】空调安装的高度足够.理由如下:如图,延长FG交直线AD于点H,过F作FO⊥AD于点O,则FO=ED=250﹣50=200(cm),AO=200﹣20=180(cm),∠HFO=136°﹣90°=46°.∵在Rt△FHO中,tan46°=,∴HO=FO×tan46°≈200×1.04=208>200,∴HO>AO,∴空调安装的高度足够.22.【解析】(1)∵AD是⊙Q的直径,∴∠AEB=∠AED=90°,∴∠AEB=∠AOB=90°,∵BA垂直平分CD,∴BC=BD∴∠ABO=∠ABE∵BA=BA,∴△ABE≌△ABO(AAS)∴AE=AO=4;(2)设BO=x,则AB=x+2,在Rt△ABO中,由AO2+OB2=AB2得42+x2=(x+2)2,解得:x=3,∴OB=BE=3∵∠EAB+∠ABE=90°,∠ACB+∠ABC=90°∴∠EAB=∠ACB∵∠BF A=∠AFC∴△BF A∽△AFC∴==,即=;(3)①如图1,当△DEF∽△AEB时,有∠BAE=∠FDE∴∠ADE=∠FDE∴BD垂直平分AF∴AB=BF∴∠BAE=∠BFE∴∠BAE=∠BFE=∠BAO=30°∴==∴=,②如图2,设⊙Q交y轴于点G,连接DG,作FH⊥DG于H,当△DEF∽△BEA时,有∠ABE=∠FDE∴∠DAE=∠DAG=∠FDE=∠FDH∴AG=AE=4,FE=FH=OG=8∴==∴=,∴的值是或.23.【解析】(1)当1≤x≤7时,y=60;当8≤x≤20时,设y=kx+b,将(8,50)、(18,40)代入得,解得,∴y=﹣x+58;综上,y=;设m=ax+c,将(1,20)、(2,24)代入得,解得,则m=4x+16(0≤x≤20,且x为整数);(2)设当天的总利润为w,当1≤x≤7时,w=(60﹣18)(4x+16)=168x+672,则x=7时,w取得最大值,最大值为1848元;当8≤x≤20时,w=(﹣x+58﹣18)(4x+16)=﹣4x2+144x+640=﹣4(x﹣18)2+1936,∴当x=18时,w取得最大值,最大利润为1936元;综上,在销售的第18天时,当天的利润最大,最大利润是1936元;(3)当1≤x≤7时,168x+672≥1680,解得x≥6,∴此时满足条件的天数为第6、7这2天;当8≤x≤20时,﹣4(x﹣18)2+1936≥1680,解得10≤x≤26,又∵x≤20,∴10≤x≤20,∴此时满足条件的天数有11天;综上,试销的20天中当天的销售利润不低于1680元的有13天.24.【解析】(1)x2﹣2x﹣3=0,则x=3或﹣1,故点A、B的坐标分别为(﹣1,﹣1)、(3,﹣3),设抛物线的表达式为:y=ax2+bx,将点A、B的坐标代入上式得:,解得:,故抛物线的表达式为:y=﹣x2+x;(2)将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=﹣x﹣,故点C(0,﹣),同理可得:直线OP的表达式为:y=﹣x;①过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+x),则点H(x,﹣x),△BOD面积=×DH×x B=×3(﹣x2+x+x)=﹣x2+x,∵,故△BOD面积有最大值,此时x=,故点D(,﹣);②当OP=PC时,则点P在OC的中垂线上,故y P=﹣,则点P(,﹣);②当OP=OC时,t2+t2=()2,解得:t=(舍去负值),故点P(,﹣);③当PC=OC时,同理可得:点P(,﹣);综上,点P(,﹣)或(,﹣)或(,﹣).。
初中数学青年教师基本功大赛笔试试卷

初中数学青年教师基本功大赛笔试试卷题目一:选择题(共20题,每题2分,共40分)1. 设x=2,y=3,则表达式3x+2y的值为()。
A. 12B. 13C. 14D. 152. 已知矩形的长为5 cm,宽为3 cm,则该矩形的面积是()。
A. 8 cm²B. 13 cm²C. 15 cm²D. 18 cm²3. 下列选项中,是2的倍数的数是()。
A. 9B. 15C. 20D. 254. 简化下列代数式:4x - (3x - 2)的结果是()。
A. x + 2B. x - 1C. x - 2D. x + 15. 若甲乘以乙的结果是18,而甲除以乙的结果是6,那么甲和乙分别是()。
A. 15、3B. 9、2C. 12、2D. 6、16. 若一辆汽车以每小时60公里的速度行驶,那么它行驶1小时30分钟可走的距离是()。
A. 45公里B. 60公里C. 75公里D. 90公里7. 已知等腰直角三角形斜边的长度为5 cm,则该三角形的底边长度是()。
A. 3 cmB. 4 cmC. 5 cmD. 6 cm8. 小明的体重是45千克,增加了15%,则他的体重变为()。
A. 50.25千克B. 52千克C. 51.75千克D. 48.75千克9. 若5x−3=12,y+7=15,则x的值是()。
A. 3B. 4C. 6D. 910. 已知正方形的面积是64 cm²,则该正方形的边长是()。
A. 4 cmB. 6 cmC. 8 cmD. 16 cm11. 若一辆自行车的速度为每小时20公里,行驶了4小时,则它行驶的总路程为()。
A. 40公里B. 60公里C. 80公里D. 100公里12. 两个角互为互补角,若其中一个角的度数是45°,则另一个角的度数是()。
A. 45°B. 60°C. 75°D. 90°13. 小明有一笔钱,他把其中的3/5存入银行,剩下的40元放在家里。
初中数学青年教师解题比赛及答案

秒初中数学青年教师解题比赛决 赛 试 卷本试卷共8页, 23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分,请将唯一正确的答案代号填在第3页的答题卷上.) 1.已知集合{}{12}A x x a B x x =<=<<,,且()UA B =R ,则实数a 的取值范围是(A )1a ≤(B )a ≥1(C )a ≤2(D )2a ≥2.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于(A )1(B )56(C )16(D )1303.某班50名学生在一次百米测试中,成绩全部介于13秒 与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于 14秒且小于15秒;……;第六组,成绩大于等于18秒且 小于等于19秒.右图是按上述分组方法得到的频率分布 直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数 为y ,则从频率分布直方图中可分析出x 和y 分别为 (A )0.9,35 (B )0.9,45 (C )0.1,35(D )0.1,454.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为 (A )3(B )2-(C )3或2-(D )3-或25. 如图,P A 、PB 切O 于A 、B ,50P ∠=,点C 是O 上异于A 、B 的任意一点,则ACB ∠的度数为(A )65 (B )115 (C )65或115 (D )无法确定 6.已知函数()x f 为R 上的减函数,则满足()11f x f <⎪⎪⎭⎫⎝⎛的实数x 的取值范围是 (A) ()1,1- (B)()1,0 (C)()()1,00,1 - (D) ()()+∞-∞-,11, 7.设m 是不小于1-的实数,使得关于x 的方程222(2)330x m x m m +-+-+=有两个不相等的实数根1x 、2x .若22126x x +=,则m 的值是(A(B(C(D )1-第14题图 NM DC B A第14题8. 如图是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm ).将它们拼成如图的新几何体,则该新几何体的体积为 ( ) cm 3.(A )48π (B )50π (C )58π (D )60π9.给定点M (-1, 2),N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标是(A)21 (B) 43(C) 1 (D) 2 10.已知a 、b 、c 为正整数,且19222=---++ac bc ab c b a ,那么c b a ++的最小值等于(A) 11 (B) 10 (C) 8 (D) 6二、填空题(本大题共6小题,每小题5分,共30分,将答案直接填在答题卷上.)11.函数0)2()3lg(1-+-=x x y 中,自变量x 的取值范围是______.12. 设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .13.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.则取出的4个球均为黑球的概率是__________.14.如图,平行四边形ABCD 中,AM ⊥BC 于M , AN ⊥CD 于N ,已知AB =10,BM =6, MC =3,则MN 的长为_________.15.若()f x 表示3x +和2283x x -+中较大者,则函数()f x 的最小值是 .16.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 .第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州市初中数学青年教师教学基本功评比
解题能力竞赛题
1.(满分15分)
(1)请你用几种不同的分割方法,将正三角形分别分割成四个等腰三角形(要求,徒手画出正三角形、画出分割线,并标出必要的角的度数).
(2)如图,是某学生按题(1)要求画出的一种分割图,请简述你将如何讲解?
第1题
2. (满分15分)已知ABCD是矩形,以C为圆心,CA为半径画一个圆弧分别交AB,AD延长
线于点E,点F,连接EB,FD,若把直角∠BCD绕点C旋转角度θ(0 < θ < 90°),使得该角的两边分别交线段AE,AF于点P,点Q,则CQ2+CP2等于()
A.2QF⋅PE B.QF2 + PE2C.(QF+ PE)2D.QF2 + PE2 +QF⋅PE
(1)请用你认为最简单的方法求解(注意:是选择题);
(2)请用几何方法证明你的选择是正确的;
(3)建立一个直角坐标系,用代数方法证明你的选择是正确的.
(第2题)
3. (满分15分)如图,已知圆柱底面半径为r,SA是它的一条母线,长为l. 设从点A出
发绕圆柱n圈到点S的最短距离为m (n为正整数).
(1) 用r与l表示m可得m = (注意:是填空题).
(2) 写出你得出题(1)结论的详细过程.
(第3题)
4. (满分15分)如图,七个边长均为1的等边三角形分别用①至⑦表示.给出命题:如果移出其中1个三角形,再把某些三角形整体作一次位置变换,那么一定可以与位置未变的三角形拼成一个正六边形.
(1) 设位置变换为平移变换,试通过具体操作说明命题是正确的(分别写出:移出哪个三角形?哪些三角形组成的图形作平移,及平移的方向和平移的距离);
(2) 设位置变换为旋转变换,请列举出能使命题成立的所有情况(分别写出:移出哪个三角形?哪些三角形组成的图形作旋转,旋转的方向、角度,并在图中标上字母表示旋转中心;
(3) 将移出的三角形作相似变换,使之放置在某个位置时,能盖住正六边形,问:相似比能否等于3.14? 请说明理由.
(第4题)
5. (满分20分)图形既关于点O中心对称,又关于AC,BD轴对称. 已知AC = 10,BD = 6,点E,M是线段AB上的动点. 称互相对称的一对三角形组成的图形为“蝶形”,称以点O 为圆心,且过蝶形其它顶点的圆为蝶形的外接圆.
设点O到EF和MN的距离分别为h1和h2,且h1+ h2 = k(0< k <10).
记△OEF与△OGH组成的蝶形O–EFGH的面积为SⅠ,△OMN与△OPQ组成的蝶形O–MNPQ的面积为SⅡ.
(1) 不妨设h1 < h2, 试比较SⅠ与SⅡ的大小;
(2) 当蝶形O–EFGH和蝶形O–MNPQ的外接圆相同,且图形不重合时,这对蝶形构成“最美蝶形”,试证明最美蝶形的面积S= SⅠ+ SⅡ不存在最值.
(第5题)
6. (满分15分)如图所示的八个点处各写一个数字,已知每个点处所写的数字等于和这个点有线段相连的三个点处的数字的平均数,求证:这八个数相等.
7.(满分20分)在等腰Rt △ABC 中,∠C =90︒,AC = 1,过点C 作直线l ∥AB .
(1)以点A 为圆心,AB 长为半径作圆,圆与直线l 相交于点F 1,F 2,分别作F 1M ,F 2N 垂直于直线BC ,点M ,N 是为垂足,连结,F 1M ,F 2N , 并作AH 垂直于l 于H .
① 求线段F 1M 和F 2N 的长度;
② 图中哪三个三角形的面积相等?试写出,并给予证明;
(2) F 是l 上的一个动点(不与C 重合),点F 到直线BC 的距离为t .设 AF =x (2
2
x ≥),试求出t 关于x 的函数关系式,并求出当 2x = 时的t 的值.
第6题
(第7题)
8.(满分5分)。