曲线积分和曲面积分习题与答案

合集下载

第九章--曲线积分与曲面积分习题解答(详解)

第九章--曲线积分与曲面积分习题解答(详解)

曲线积分与曲面积分习题详解习题9-11 计算下列对弧长的曲线积分:(1)I s=⎰,其中C是抛物线2y x=上点(0,0)O到(1,1)A之间的一段弧;解: 由于C由方程2y x=(01x≤≤)给出,因此1I s x x===⎰⎰⎰123211(14)1)1212x⎡⎤=+=⎢⎥⎣⎦.(2)dCI x s=⎰,其中C是圆221x y+=中(0,1)A到B之间的一段劣弧;解:C AB=的参数方程为:cos,sinx yθθ==()42ππθ-≤≤,于是24cosIππθ-=⎰24cos1dππθθ-==⎰.(3)(1)dCx y s++⎰,其中C是顶点为(0,0),(1,0)O A及(0,1)B的三角形的边界;解: L是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Cx y ds++⎰(1)OAx y ds=++⎰(1)ABx y ds+++⎰(1)BOx y ds+++⎰,由于OA:0y=,01x≤≤,于是ds dx===,故13(1)(01)2x y ds x dx++=++=⎰⎰OA,而:AB1y x=-,01x≤≤,于是ds==.xyoABC10(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =(01y ≤≤),0ds =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. (4)22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.(5)2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如图所示, 2222ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222A BB CC Dx y z d s x y z d sx y z d sd s Γ=++⎰⎰⎰⎰(6)2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解: Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 则332π2π2222 01ds sin d sin d 222y a θθθθΓ===⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解 依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.则C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分:(1)LIxds ,其中L 是圆221xy中(0,1)A 到11(,)22B 之间的一段劣弧;解:1(1)2.(2)(1)Lx y ds,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)322Lxyds.(3)22Lxy ds,其中L 为圆周22x yx ;解:222Lxy ds.(4)2Lx yzds ,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C (1,2,3)D ;解:2853Lx yzds .2 求八分之一球面2221(0,0,0)xyzx y z 的边界曲线的重心,设曲线的密度1。

解故所求重心坐标为444,,333.习题10—21 设L 为xOy 面内一直线y b (b 为常数),证明xyz(0,0,0)A (0,0,2)B (1,0,2)C (1,2,3)D xyoABC(,)0LQ x y dy 。

证明:略.2 计算下列对坐标的曲线积分:(1)Lxydx ,其中L 为抛物线2yx 上从点(1,1)A 到点(1,1)B 的一段弧。

解:45Lxydx 。

(2)Ldy y xdx y x 2222)()(,其中L 是曲线x y11从对应于0x 时的点到2x 时的点的一段弧;解34)()(2222Ldyy xdxy x.(3),Lydx xdy L 是从点(,0)A a 沿上半圆周222xya 到点(,0)B a 的一段弧;解0.Lydxxdy(4)22Lxy dyx ydx ,其中L 沿右半圆222xya 以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a 的路径;解22Lxy dyx ydx44a 。

(5)3223Lx dx zy dy x ydz ,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解3223Lx dx zy dy x ydz3187874t dt。

第八章 曲线积分和曲面积分题目+简案

第八章 曲线积分和曲面积分题目+简案

的封闭曲线, L 的方向为逆时针方向。
答案:(1)18
(2)16 (3) 2
五、证明: (2x sin y)dx x cos ydy 是某一函数的全微分,并求出一个原函数.
答案:所求原函数为 x2 x sin y C . ( C 为任意常数).
六、⑴在全平面上,证明:曲线积分 y2exdx 2 yexdy 与路径无关,并求 y2exdx 2yexdy L
L
L

P(
x,
y)
2x x2 Q(x, y)(1 x) ds .
十、证明:曲线积分有估计式 P(x, y)dx Q(x, y)dy LM ,其中L 为积分路径的长度, L
M max P2 Q2 . ( x, y)L
答案:证明略.
十一、计算下列曲面积分。
(1)计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的
z
顶部.
(2)计算曲面积分 (xz 36x2 9 y2 4z2 )dS, 其中 是 x2 y2 z2 1,其面积为 A.

49
(3)计算 I (x z2 )dydz zdxdy ,其中 是 z 1 (x2 y2 ) 介于平面 z 0 及 z 2
3. 设 为球面 x2 y2 z2 1,则 3x2ds 4 .
1 4. 设 u ln x2 y2 z2 ,则 div(gradu) x2 y2 z2 .
5. 设 是有向光滑曲面,则第二型曲面积分 Pdydz Qdzdx Rdxdy 化为第一型曲面积

(x2 y 2 z )2 3

(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)

第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。

10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。

第十章(第六部分)曲面积分习题解答

第十章(第六部分)曲面积分习题解答

第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。

解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,0=⎰⎰∑xd S ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x .y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。

分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。

解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )(402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。

曲线积分与曲面积分习题答案.pdf

曲线积分与曲面积分习题答案.pdf
(1) (2x y 2z) dS,其中 为平面 x y z 1在第一卦限的部分;
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr

高数期末复习题 第十一章 曲线积分与曲面积分

高数期末复习题  第十一章  曲线积分与曲面积分

第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。

ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。

x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。

用曲线积分表示力对物体所做的功=W 。

d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。

αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。

011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。

dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。

第九章_曲线积分与曲面积分习题解答(详细讲解)

第九章_曲线积分与曲面积分习题解答(详细讲解)

曲线积分与曲面积分习题详解1计算下列对弧长的曲线积分: (1)/ = J c 7ydy. 是抛物线y = x 2±.点0(0,0)到 A(l,l)之间的一段弧:解:由于C 由方程y = x 2 (0<x<l )给出,因此/ =+=卜』+ 4耳」1>心2[詁(5俣])•解:C = AB 的参数方程为:其中C 是圆X + y 2 = 1中A(0J)到“5"0-討誇),于是[\ cos & J(-sin &),+ cos ,(3) 切.Cr + y + l)d.其中C 是顶点为0(0,0)/(1・0)及B(0J)的三角形的边界:解:厶是分段光滑的闭曲线,如图9一2所示,根据积分的可加性, 则有(^(x + y + \)c/s=L (x + y + \)ds + J# (x + y + \)cls +1。

(x + y + V)ds ,由于 OA: y = 0 0<x< 1,于是ds = J(—)2+(—)2dx = W+0认=dx , V dxdxL (x + y + l)tZy = £(x + 0 + \)dx =寸,而AB: y = l-x, OSSI,于是 + (-厅dx = dlx ・之间的一段劣弧;ds =[^(x + y + l)cls= [ [x + (\-x) + \]y/2dx = 2y/2 »同理可知BO:x = 0(0<y<l), ds = 1(—)2 + (—)2 Jv = Vo2 + l2c/y = Jv > 则Y ay dyL(x+y + l)〃$= (JO+y + lk/y = [・综上所述df r(x-y + l)J5 = - + 2V2 + - = 3 + 2>/2 ・( 2 2(4)y/x2 + y2ds ,其中C 为圆周x2 + y2 = x :解直接化为左积分.C』勺参数方程为JC =1+J>COS&, y = -sin& ( Q<0<2TT ),2 2 - 2且ds =加⑹ F +[y(e)F〃e=”& •于是(5)[r x\yzds,英中T为折线段ABCD.这里A,3・C\D的坐标依次为(0,0.0), (0,0,2), (1,0,2), (1,2,3):解如图所示,^x2yzcls = \_x2yzds+ \_x2yzJs+ [_・线段殛的参数方程为x = 0,.y = 0,z = 2r(0<r<l),则T份+%+(少= V0:+02 +22Jr = 2r/r,= J 0 • 0 • 2/ • 2clt = 0线段BC 的参数方程为x = /,y = 0,z = 2(0<r<l),则ds = jF+O'+oTud?,故f _Fyzd$ = f ・0・2d/ = 0, J RC - J o线段丽的参数方程为x = l,y = 2/,z = 2 + r (0<r<l),则 ds = Jo, +2, + Fdf = yj5dt , 故J-x 2yzds = f 'l 2-2t (2 + t)-甌=2x/5j ;⑵ +12= |点所以L 疋 gds = |*_x 2 yzcls + [—yzds + J 而yzjds = ->j5 .2 2 2 2(6)f rds,其中「为空间曲线广+ G/>o ).JrX + z =",»解:F 在x,y 平而的投影为:x 2+y 2+(a-x)2=a 2 ,即 2x 2 + y 2-2t/x = 0 ,从而利用椭圆的苓奴方程得F 的参数二x = —a + — acos 0. 2 22设一段曲线y = lnx (0<a<x<b)上任一点处的线密度的大小等于该点横坐标的 平方,求其质量.解 依题意曲线的线密度为p = x 2,故所求质疑为M=\(X 2ds,英中0 <(9 < 2^.由于则ds = y]x ,2 + y t2 +z t2d0 =d&.sin 2 ede = ^=.2V2/ c 2nC :y = \nx (Q<a<x<b)・则C 的参数方程为片=片(0 < < x < b) > y = In x所以M = £—V1 + A -\Z Y = [*(1 + d = *[(1 +戻);一(1 + “2)訂3求八分之一球面x 2 + r + z 2=l(x>0,y>0.z>0)的边界曲线的重心,设曲线的密 度 ° =解 设曲线在xOy^yOz^Ox 坐标平而的弧段分别为厶、L 「厶,曲线的重心坐标为2「xdx _ 2 _ 4 =A/JoTf-x 2=A/=3^'故所求重心坐标为[二.二、学.\37T 3龙 3〃 丿4. 径为川 中心角为加的圆弧C 对于它的对称轴的转动惯応/ (设线密度解:如右图建立坐标系,则I = J c y 2^ •为了便于计算,利用c 的参数方程C :x = Rcost,y = Rsint (-a <t <a).于是I = Jc y 2(^s =「R‘ sin 2 tyj(-Rsinty +(/?cos/)2dr =R 、[a sin 2 tdt = /?'(a-sintzcostz).J-ajv=HS Jv=(订习lx — — \l\ + x 2dx , X由对称性可得重心坐标则曲线的质量为出=j ds诂卩严+o+J 严卜為严习题9・21设L为xOy直线y = b (b为常数),证明J g, y)dy=o。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 曲线积分和曲面积分(A )1、计算下列对弧长的曲线积分 1)ds y x n L)(22+⎰,其中:)20(sin ,cos :π≤≤==t t a y t a x L2),xds L⎰其中围成及为由2x y x y L == 3),2yzds x T⎰其中T 为折线ABCD ,这里A ,B ,C ,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) 4),)(22ds y x L+⎰其中L :)20(),cos (sin ),sin (cos π≤≤-=+=t t t t a y t t t a x2 、计算下列对坐标的曲线积分 1),)(22dx y x L-⎰其中L 是2x y =上从(0,0)到(2,4)的一段弧2),xydx L⎰其中L 是222)(a y a x =+-及x 轴围成的在第一象限内的区域的整个边界(逆时针向) 3),ydz dy dx T+-⎰其中T 为有向闭折线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1) 4)dy xy y dx xy x L)2()2(22-+-⎰,其中L 是2x y =上从点(-1,1)到(1,1)的一段弧3、利用格林公式,计算下列曲线积分 1),)635()42(dy x y dx y x L-+++-⎰其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界 2),)2sin ()sin 2cos (222dy ye x x dx e y x xy x y x x x L -+-+⎰其中L 为正向星形线)0(323232>=+a a y x3),)3sin 21()cos 2(2223dy y x x y dx x y xy L+-+-⎰其中L 为抛物线22y x π=上由(0,0)到()1,2π的一段弧4、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某个),(y x u 的全微分,并求这样的),(y x u1)dy y x dx y x )2()2(+++2)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++5 、计算下列对面积的曲面积分 1)⎰⎰∑++,)342(ds z y x 其中∑为平面1432=++zy x 在第一卦限中的部分 2)⎰⎰∑++,)(ds xz yz xy 其中∑为锥面22y x z +=被柱面ax y x 222=+所截得的有限部分6 、计算下列对坐标的曲面积分 1)⎰⎰∑,22zdxdy y x 其中∑是球面2222R z y x =++的下半部分的下侧 2)⎰⎰∑++,yzdzdx xydydz xzdxdy 其中∑是平面1,0,0,0=++===z y x z y x 围成区域的整个边界曲面的外侧7 、利用高斯公式计算曲面积分 1)⎰⎰∑++,333dxdy z dzdx y dydz x 其中∑为球面2222a z y x =++的外侧 2)⎰⎰∑++,zdxdy ydzdx xdydz 其中∑为界于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧8 、 求下列向量的散度1)k xy z j xz y i yz x A )()()(222+++++=ϖ 2)k xz j xy i e A xy)cos()cos(2++=ϖ9、求下列向量场A 的旋度1)k x y j z x i y z A )2()3()32(-+-+-=ϖ2)j y x z i y z A )cos ()sin (--+=ϖ(B)1、一段铁丝成半圆形22x a y -=,其上任一点处的线密度的大小等于该点的纵坐标,求其质量. 2、 把xdy ydx x L-⎰2化为对弧长的曲线积分,其中L 为2x y =从点A (-1,1)到B (1,1)的弧段. 3、把xzdz yzdy xyzdx ++⎰Γ化成对弧长的曲线积分,其中Γ为曲线32,,t z t y t x ===0()1≤≤t 一段弧.4、求心形线t a t a y t a t a x 2sin sin 2,2cos cos 2-=-=所围图形的面积.5、求dy y xy x ye dx y xy x e y x x L)322()23(22222-++++++⎰,其中:L 为21x y -=从A (1,0)到B (0,1).6、 把⎰⎰∑++Rdxdy Qdzdx Pdydz 化为对面积的曲面积分,其中1)∑是平面632=+-z y x 在第二卦限部分上侧2)∑是222y x a z --=上侧7 、,2)()(22 zdxdy dzdx zx y dydz yz x +-+-⎰⎰∑其中∑为锥面)0(122≥+-=z y x z 的上侧. 8、dz y x dy x z dx z y )()()(222222-+-+-⎰Γ,其中Γ为柱面122=+y x 与平面1=++z y x 的交线,从z 轴正向看Γ为逆时针方向.(C )1、 计算,)()()(dz y x dy x z dx z y I L -+-+-=⎰其中:L :⎪⎩⎪⎨⎧=+=+,1222hza x a y x (),0,0>>h a 从X 轴正向看去L 为逆时针. 2、 已知曲线积分,)3(33dy x x dx y I L-+=⎰其中L 为)0(222>=+R R y x 正向,求(1) R 为何值时0=I ; (2) 求I 的最大值. 3 、计算=I [][][]dxdy z z y x f dzdx y z y x f dydz x z y x f +++++⎰⎰∑),,(),,(2),,(,其中:),,(z y x f 连续,∑为1=+-z y x 在第Ⅳ卦限部分的上侧.第十章 曲线积分和曲面积分习 题 答 案(A )1、1)122+n aπ 2))12655(121-+ 9)3( )21(2)4(232ππ+a 2、1)1556- 2)32a π- 3)21 4)1514-3、 12)1 0)2 4)32π 4、2221221)1y xy x ++ y x x y cos sin )222+ 5 、614)1 421564)2a 6 、71052)1R π 81)2 7、 5512)1a π π81)2 8、 z y x divA 222)1++= )sin(2)sin()22xz xz xy x yedivA xy--=9、k j i rotA 642)1++= j i rotA +=)2(B )1、提示:222:,2x a y L a yds m L-===⎰,上半圆22a2、提示:222412sin ,411cos ,2tan ,2,:xx xx x y x y L +=+==='=αααds xx y ds xx xxyx xdy ydx x LL L22222241)2()412411(+-=+-+=-⎰⎰⎰3、提示:,3,2,1,,,232t z t y x t z t y t x t t t ='='='===42342429413cos ,9412cos ,9411cos t t t tt t tt ++=++=++=γβα,⎰⎰⎰++=++++=++Γds tt xyzds tt xz t tyz xyz xzdz yzdy xyzdx 424229416941324、2621a ydx xdy s L π=-=⎰ 5、连OA ,OB ,(O (0,0)),使OA ,OB ,L 构成41圆周,τ于是⎰⎰⎰∂∂-∂∂=Dd y P x Q στ)(=0而1,1)3(,13210210-=∴-=-===⎰⎰⎰⎰⎰L B O AO dy y dx x 6、{},3,2,1)1-=h ϖ143cos ,142cos ,141cos =-==γβαds R Q P ds R Q P )32(141)cos cos cos (⎰⎰⎰⎰∑∑+-=++=γβα 2),,2222z y z z x yx a xz y x -=-=---=,1,,⎭⎬⎫⎩⎨⎧=z y z x h ϖ,,,cos 222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=z y x z z y x y z y x x α ⎰⎰⎰⎰∑∑++++=ds zy x R Q P z y x 222(。

7、设⎩⎨⎧==+∑01:221z y x 下侧,则1∑+∑ 构成闭曲面,于是:⎰⎰⎰⎰⎰∑+∑Ω=++=132)22(πdv z y x ,而⎰⎰⎰⎰∑∑=∴=π32,0。

8、⎰⎰⎰∑Γ---∂∂∂∂∂∂=222222cos cos cos y x x z z y z y x γβαds , {}31cos cos cos ,1,1,1====γβαh ϖ,⎰⎰⎰∑Γ------=∴ds z x y x z y )222222(31⎰⎰⎰⎰∑∑-=++-=ds ds z y x 34)(34,34-=π43-=⎰⎰∑dxdyC1解::L 参数方程为,20)cos 1(sin cos π≤≤⎪⎩⎪⎨⎧-===t t h z ta y t a x []{[]⎰--+---=π20cos sin )cos 1()sin ()cos 1(cos t a t a t h t a t h t a I})(2sin )sin (cos h a a dt t h t t a +-=-+π 另解:用stokes 公式: ⎰⎰⎰⎰∑∑++-=++-=ds dxdy dzdx dydz I )cos cos (cos 22γβα,{}⎭⎬⎫⎩⎨⎧++==2222,0,cos ,cos ,cos h a hha ah γβαϖ, ⎰⎰∑+-=++-=)(2222h a a ds ha h a I π2、解:⎰⎰⎰⎰--=∂∂-∂∂=DDdxdy y x d y Px Q I )333()(22σ ⎰⎰-=-=ππθ20222)21(3)1(3R R rdr r d R,2)1(=∴R 时,0=I ,1,0)1(6)2(2==-='R R R I ππ23,1max ==∴I R 3、解:平面∑的法向量{}1,1,1-=h ϖ,则,31cos ,31cos ,31cos =-==γβα[][][]ds z z y x f y z y x f x z y x f I ⎰⎰∑⎭⎬⎫⎩⎨⎧+++-+=∴),,(31),,(231),,(31 ⎰⎰⎰⎰⎰⎰∑∑===+-=2133131)(31dxdy ds ds z y x xyD。

相关文档
最新文档