2016中考数学平面直角坐标系习题

合集下载

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编

中考数学靶向专题练习《平面直角坐标系的十大必考问题》专题汇编1. 如图是雷达探测器测得的结果,图中显示在点A,B,C,D,E,F处有目标出现,目标的表示方法为(r,α),其中,r表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.例如,点A,D的位置表示为A(5,30°),D(4,240°).用这种方法表示点B,C,E,F的位置,其中正确的是( )A.B(2,90°)B.C(2,120°)C.E(3,120°)D.F(4,210°)2. 某同学的座位号为(2,4),那么该同学所座位置是( )A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定3.观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是__ __.4. 如图中的三个点分别表示学校、图书馆、李华家,学校和图书馆都在李华家的北偏西方向,学校又在图书馆的北偏东方向,那么图中表示图书馆的点是__ .5. 将正整数按如图所示的规律排列下去,若有序实数对(m,n)表示第m排,从左到右第n个数,如(4,3)表示实数8,则表示实数15的有序实数对是__ 表示实数2 009的有序实数对是__ .1. 如图是某地区简图的一部分,图中“大北门”在F6区,那么“故宫”“鼓楼”所在的区域分别是 ( C )A.D7区,E6区B.D6区,E7区C.E7区,D6区D.E6区,D7区2. 如图是某学校平面简图的一部分,其中M1代表仓库,其所在的区域为A2区.M2代表办公楼,M3代表实验楼,试说出办公楼、实验楼所在的区域.3. 如图是小李设计的49方格扫雷游戏,“★”代表地雷(图中显示的地雷在游戏中都是隐藏的),点A可用(2,3)表示,如果小惠不想因走到地雷上而结束游戏的话,下列选项中,她应该走( )A.(7,2)B.(2,6)C.(7,6)D.(4,5)4. 如图,是做课间操时,李明,李刚和李红三人的相对位置,如果用(4,5)表示李明的位置,(2,4)表示李刚的位置,则李红的位置可表示为( )A.(0,0)B.(0,1)C.(1,0)D.(1,2)5.如图,由李亮家向东走20 m,再向北走10 m就到了李丽家;若再向北走30 m就到了李红家;再向东走40 m,就到了李涛家.若用(0,0)表示李亮家的位置,用(2,1)表示李丽家的位置.(1)李红、李涛家如何表示?(2)李刚家的位置是(6,3),则李涛到李刚家怎么走?1. 若点A(a,b)在第二象限,则点B(a,-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 在平面直角坐标系中,点P(m-3,4-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限3. 点P(5,-8)关于x轴的对称点为A,A关于y轴的对称点为B,则B的坐标为( )A.(5,8)B.(5,-8)C.(-5,-8)D.(-5,8)4. 已知A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为 .5. 已知点P到x轴的距离是2,到y轴的距离是1,求点P的坐标.1. 在平面直角坐标系中有两点A(-2,2),B(3,2),C是坐标轴上的一点,若△ABC是直角三角形,则满足条件的点共有( )A.1个B.2个C.4个D.6个2. 如图,已知点A(a,b),O是原点,OA=OA1,OA⊥OA1,则点A1的坐标是__ __.3. 在平面直角坐标系内,A,B,C三点的坐标分别是A(5,0),B(0,3),C(5,3),O为坐标原点,点E在线段BC上,若△AEO为等腰三角形,求点E的坐标.(画出图象,不需要写计算过程)4.如图,在平面直角坐标系中:(1)写出△ABC各顶点的坐标.(2)求△ABC的面积.5.△ABC三个顶点A,B,C的坐标分别为A(2,-1),B(1,-3),C(4,-5).(1)在平面直角坐标系中画出△ABC.(2)求三角形的三边长,判断三角形的形状.(3)把△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标,并在平面直角坐标系中描出这些点.(4)求出△A1B1C1的面积.1. 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0)B.(5,0)C.(0,5)D.(5,5)2.如图,在平面直角坐标系中,有若干个横、纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2 012个点的横坐标为__45__.3. 如图所示,一个机器人从O点出发,向正东方向走3 m到达A1点,再向正北方向走6 m到达A 2点,再向正西方向走9 m到达A3点,再向正南方向走12 m到达A4点,再向正东方向走15 m到达A5点,按此规律走下去,相对于点O,机器人走到A6时的位置是__ __.4. 如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形An Bn-1Bn的顶点Bn的横坐标为__ __.5.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(__ __,__ __),A3(__ __,__ __),A12(__ __,__ __).(2)写出点A4n的坐标(n是正整数).(3)指出蚂蚁从点A100到A101的移动方向.1. 若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 点P(2a-1,a+2)在x轴上,则点P的坐标为__ __.3. 在平面直角坐标系中,点M(2+x,9-x2)在x轴的负半轴上,则点M的坐标是__ __.4. 若点A(a-1,a2-25)在x轴的负半轴上,则a的值为__ __.5.已知:P(4x,x-3)在平面直角坐标系中.(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.6(1)已知点P(2a-6,a+4)在y轴上,求点P的坐标.(2)已知两点A(-3,m-1),B(n+1,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围.(3)在(1)(2)的条件下,如果线段AB的长度是6,试判断以P,A,B为顶点的三角形的形状,并说明理由.1. 如图,OA=OB,A点坐标是(-,0),OB与x轴正方向夹角为45°,则B点坐标是____;AB与y轴交于点C,若以OC为轴,将△OBC沿OC翻折,B点落在第二象限内B′处,则BB′的长度为__ __.2.已知:A(-2,0),B(2,4),C(5,0).(1)在如图所示的坐标系中描出各点,画出△ABC.(2)求△ABC的面积.(3)点P是y轴负半轴上一动点,连接BP交x轴于点D,是否存在点P使△ADP与△BDC的面积相等?若存在,请直接写出点P的坐标;若不存在,请说明理由.1.在平面直角坐标系中,坐标轴上到点A(3,4)的距离等于5的点有__ __个.2. 如图,在平面直角坐标系中,已知点M在坐标轴上,点B(3,3),若三角形MBO是等腰三角形,则满足条件的M点的个数是__ __个.1. 已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积.(3)设点P在y轴上,且△ABP与△ABC的面积相等,求点P的坐标.2. 如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0(1)求a,b,c的值.(2)如果在第二象限内有一点P,,请用含m的式子表示四边形ABOP的面积.(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.1. 已知点P(2,3),则点P关于x轴的对称点的坐标为( )A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)2. 点P(1,-2)关于y轴对称的点的坐标是( )A.(1,2)B.(-1,2)C.(-1,-2)D.(-2,1)3. 已知△ABC在平面直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是( )A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)4. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN,若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是 ( )A.(1,0)B.(0,1)C.(-6,0)D.(0,-6)5.已知点P(3,2),求点P关于x轴的对称点P1,再求点P1关于y轴的对称点P2的坐标.6.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A,B,C三点.(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D,E,F的坐标.。

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案坐标与图形性质单选题专训1、(2016南通.中考真卷) 平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A .B .C .D .2、(2016苏州.中考真卷) 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E 的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)3、(2017福州.中考模拟) 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为()A . a=bB . 2a﹣b=1C . 2a+b=﹣1D . 2a+b=14、(2017玉田.中考模拟) 如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A . 1个B . 2个C . 3个D . 4个5、(2017保定.中考模拟) 如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)6、(2016石家庄.中考模拟) 如图所示,等腰直角三角形ABC与等腰直角三角形A′B′C′是位似图形,位似中心为点O,位似比1:2,点A的坐标为(1,0),点C的坐标为(0,1),则点B′的坐标为()A . (2,2)B . (﹣2,2)C . (﹣2,﹣2)D . (2,2)或(﹣2,﹣2)7、(2019通州.中考模拟) 已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,a+1)落在△ABC内部(不含边界),则a 的取值范围是()A . ﹣3<a<2B .C .D . ﹣2<a<28、(2019.中考模拟) 抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A . ≤a≤1B . ≤a≤2C . ≤a≤1D . ≤a≤29、(2019温州.中考模拟) 如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A,B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A . 3B . 4C . 5D . 1010、(2018湖州.中考模拟) 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A . 向右平移了3个单位B . 向左平移了3个单位C . 向上平移了3个单位D . 向下平移了3个单位11、(2019山东.中考模拟) 直线y=- x+ 与x轴,y轴交于A、B两点,若把△AB0沿直线AB翻折,点O落在第一象限的C处,则C点的坐标为()A .B .C .D .12、(2017新泰.中考模拟) 已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A .B .C .D .13、(2017历下.中考模拟) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A . ()2016B . ()2017C . ()2016D . ()201714、(2017曹.中考模拟) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A 的坐标为(1,),则点C的坐标为()A . (﹣,1)B . (﹣1,)C . (,1)D . (﹣,﹣1)15、(2017三门峡.中考模拟) 如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A . 2π﹣4B . 4π﹣8C .D .16、(2019黄石.中考真卷) 如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A .B .C .D .17、(2017福田.中考模拟) 如图,已知E′(2,﹣1),F′(,),以原点O 为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A . (﹣4,2)B . (4,﹣2)C . (﹣1,﹣1)D . (﹣1,4)18、(2011河池.中考真卷) 如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是()A . 外切B . 相交C . 内含D . 外离19、(2019重庆.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A . 16B . 20C . 32D . 4020、(2016平武.中考模拟) 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . ﹣3C . ﹣4D . 421、(2017南充.中考真卷) 如图,等边△OAB的边长为2,则点B的坐标为()A . (1,1)B . (,1)C . (,)D . (1,)22、(2017五华.中考模拟) 阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A . (4,60°)B . (4,45°)C . (2 ,60°)D . (2 ,50°)23、(2019西藏自治区.中考真卷) 已知点是直线与双曲线(为常数)一支的交点,过点作轴的垂线,垂足为,且,则的值为()A .B .C .D .24、(2020丰南.中考模拟) 如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C 的个数是()A . 2B . 3C . 4D . 525、(2020宜昌.中考模拟) 将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是()A . (4,2)B . (2,4)C . (,3)D . (3,)26、(2020琼海.中考模拟) 如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A . (,2)B . (,1)C . (,2)D . (,1)27、(2020河南.中考真卷) 如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A .B .C .D .28、(2020荆州.中考真卷) 如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .B .C .D .29、(2021荆州.中考模拟) 如图,直径为10的⊙A经过点和点,点是轴右侧⊙A优弧上一点,,则点的坐标为()A .B .C .D .30、如图,矩形的边,分别在x轴、y轴的正半轴上,点D在的延长线上.若,,以O为圆心、长为半径的弧经过点B,交y轴正半轴于点E,连接,。

人教版初中数学函数之平面直角坐标系技巧及练习题附答案解析

人教版初中数学函数之平面直角坐标系技巧及练习题附答案解析

2.在平面直角坐标系中,长方形 ABCD的三个顶点 A(3,2), B(1,2),C 1, 1, 则第四个
顶点 D 的坐标是( ).
A. 2,1
B. (3, 1)
C. 2,3
D. (3,1)
【答案】B 【解析】 【分析】
根据矩形的性质(对边相等且每个角都是直角),由矩形 ABCD 点的顺序得到 CD⊥AD, 可以把 D 点坐标求解出来.
∴ OA OP cos 5 3 3 , 5
∴ PA OP2 OA2 =4,
∵点 P 在第二象限, ∴点 P 的坐标是(-3,4) 故选:B.
【点睛】
此题考查三角函数,勾股定理,直角坐标系中点的坐标特点,解题中注意点所在象限的坐 标的符号特点.
8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为 4 的正方形
A. (4, 2)
B. (2, 4)
C. (3, 2)
D. (2, 1)
【答案】A
【解析】
【分析】
根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.
【详解】
如图所示,根据“車”的点坐标为 2, 0 ,可知 x 轴在“車”所在的横线上,
又根据“炮”的点坐标 1, 2 ,可推出原点坐标如图所示,
点的坐标为()
A. 3, 4
B. 3,4
C. 4,3
D. 3, 5
【答案】B 【解析】 【分析】
过点 P 作 PA⊥x 轴于 A,利用 OP 5, cos 3 求出 OA,再根据勾股定理求出 PA 即可得 5
到点 P 的坐标. 【详解】 过点 P 作 PA⊥x 轴于 A,
∵ OP 5, cos 3 , 5
上,可以得到点 A 的坐标. 【详解】

中考数学平面直角坐标系专题训练题

中考数学平面直角坐标系专题训练题

中考复习数学专题训练:《平面直角坐标系》解答题专项培优(三)1.已知平面直角坐标系中有一点P(2m+1,m﹣3).(1)若点P在第四象限,求m的取值范围;(2)若点P到y轴的距离为3,求点P的坐标.2.已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.3.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a级关联点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级关联点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为;(2)若点P的“5级关联点”的坐标为(9,﹣3),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级关联点”P′位于坐标轴上.求点P′的坐标.4.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P到两坐标轴的距离相等,求P点的坐标.5.在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.6.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上、向右、向下、向右……的方向依次不断移动,每次移动一个单位长度,其行走路线如图.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A n的坐标(n是4的倍数);(3)写出A 2016和点A 2017的坐标,并指出蚂蚁从点A 2016到点A 2017的移动方向.7.综合与实践问题背景:(1)已知A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出这几个点,并分别找到线段AB 和CD 中点P 1、P 2,然后写出它们的坐标,则P 1 ,P 2 .探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 .拓展应用:(3)利用上述规律解决下列问题:已知三点E (﹣1,2),F (3,1),G (1,4),第四个点H (x ,y )与点E 、点F 、点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.8.如图,学校植物园的护栏是由两种大小不等的正方形间隔排列组成,将护栏的图案放在平面直角坐标系中,已知小正方形的边长为1米,则A 1的坐标为(2,2)、A 2的坐标为(5,2)(1)A 3的坐标为 ,A n 的坐标(用n 的代数式表示)为 .(2)2020米长的护栏,需要两种正方形各多少个?9.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A 4 ,A 8 ;(2)写出点A 4n 的坐标(n 为正整数) ;(3)蚂蚁从点A 2014到点A 2017的移动方向 .10.如图,在直角坐标系的坐标轴上按如下规律取点:A 1在x 轴正半轴上,A 2在y 轴正半轴上,A 3在x 轴负半轴上,A 4在y 轴负半轴上,A 5在x 轴正半轴上,…,且OA 1+1=OA 2,OA 2+1=OA 3,OA 3+1=OA 4…,设A 1,A 2,A 3,A 4…,有坐标分别为(a 1,0),(0,a 2),(a 3,0),(0,a 4)…,s n =a 1+a 2+a 3+…+a n .(1)当a 1=1时,求a 5的值;(2)若s 7=1,求a 1的值;(3)当a 1=1时,直接写出用含k (k 为正整数)的式子表示x 轴负半轴上所取点坐标.11.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B )位置的坐标;(2)若体育馆位置坐标为C (﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC ,求△ABC 的面积.12.国庆假期期间,笑笑所在的学习小组组织了到方特梦幻王国的游园活动,笑笑和乐乐对着景区示意图(如图所示)讨论景点位置:(图中小正方形边长代表100m)笑笑说:“西游传说坐标(300,300).”乐乐说:“华夏五千年坐标(﹣100,﹣400).”若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系xOy;(2)用坐标描述其他地点的位置.13.如图所示的是某市市政府周边的一些建筑,以市政府为坐标原点,建立平面直角坐标系(每个小方格的边长为1).(1)请写出商会大厦和医院的坐标;(2)王老师在市政府办完事情后,沿(2,0)→(2,﹣1)→(2,﹣3)→(0,﹣3)→(0,﹣1)→(﹣2,﹣1)的路线逛了一下,然后到汽车站坐车回家,写出他路上经过的地方.14.如图(小方格的边长为1),这是某市部分简图.(1)请你根据下列条件建立平面直角坐标系(在图中直接画出):①火车站为原点;②宾馆的坐标为(2,2).(2)市场、超市的坐标分别为、;(3)请将体育场、宾馆和火车站看作三点,用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A′B′C′(在图中直接画出);(4)根据坐标情况,求△ABC的面积.15.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m 长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.16.在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.17.在平面直角坐标系xOy中,对任意两点P1(x1,y1),P2(x2,y2),如果|x1﹣x2|+|y1﹣y2|=d,则称P1与P2互为“d﹣距点”.例如:点P1(3,6),p2(1,7),由d=|3﹣1|+|6﹣7|=3,可得P1与P2互为“3﹣距点”.(1)在点D(﹣2,﹣2),E(5,﹣1),F(0,4)中,原点O的“4﹣距点”是(填字母);(2)已知点A(2,1),点B(0,b),过点B平行于x轴的直线l.①当b=3时,直线l上的点A的“2﹣距点”的坐标为;②若直线l上存在点A的“2﹣距点”,在坐标系中画出这些A的“2﹣距点”组成的图形,并写出b的取值范围.18.已知M(3|a|﹣9,4﹣2a)在y轴负半轴上,直线MN∥x轴,且线段MN长度为4.(1)求点M的坐标;(2)求(2﹣a)2020+1的值;(3)求N点坐标.19.如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB∥CD.(1)求证:∠ABO+∠CDO=90°;(2)如图2,BM平分∠ABO交x轴于点M,DN平分∠CDO交y轴于点N,求∠BMO+∠OND 的值.20.在平面直角坐标系中,已知点M (m ﹣1,2m +3).(1)若点M 在y 轴上,求m 的值.(2)若点N (﹣3,2),且直线MN ∥y 轴,求线段MN 的长.21.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则该两点间距离公式为P 1P 2=,同时,当两点在同一坐标轴上或所在直线平行于x 轴、平行于y 轴时,两点间的距离公式可化简成|x 1﹣x 2|和|y 1﹣y 2|(1)若已知两点A (3,3),B (﹣2,﹣1),试求A ,B 两点间的距离;(2)已知点M ,N 在平行于y 轴的直线上,点M 的纵坐标为7,点N 的纵坐标为﹣2,试求M ,N 两点间的距离;(3)已知一个三角形各顶点的坐标为A (﹣1,),B (,),C (,),你能判定这三点是否共线?若共线请说明理由,若不共线请求出图形的面积.22.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y |.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.23.在平面直角坐标系中,有A (﹣2,a +1),B (a ﹣1,4),C (b ﹣2,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.24.在平面直角坐标系中,有A (﹣2,a +2),B (a ﹣3,4)C (b ﹣4,b )三点.(1)当AB ∥x 轴时,求A 、B 两点间的距离;(2)当CD ⊥x 轴于点D ,且CD =3时,求点C 的坐标.25.如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB 或DE 的长度,显然是转化为求Rt △ABC 或Rt △DEF 的斜边长.下面:以求DE 为例来说明如何解决:从坐标系中发现:D (﹣7,5),E (4,﹣3).所以DF =|5﹣(﹣3)|=8,EF =|4﹣(﹣7)|=11,所以由勾股定理可得:DE ==. 下面请你参与:(1)在图①中:AC = ,BC = ,AB = .(2)在图②中:设A (x 1,y 1),B (x 2,y 2),试用x 1,x 2,y 1,y 2表示AC = ,BC = ,AB = .(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A (2,1),B (4,3),C 为坐标轴上的点,且使得△ABC 是以AB 为底边的等腰三角形.请求出C 点的坐标.参考答案1.解:(1)由题知,解得:﹣<m <3;(2)由题知|2m +1|=3,解得m =1或m =﹣2.当m =1时,得P (3,﹣2);当m =﹣2时,得P (﹣3,﹣5).综上,点P 的坐标为(3,﹣2)或(﹣3,﹣5).2.解:∵点P(2﹣a,3)到x轴、y轴的距离相等.∴|2﹣a|=3,∴2﹣a=±3,∴a=5或a=﹣1,∴点P的坐标(﹣3,3)或(3,3).3.解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P的坐标为(﹣1,5),则它的“3级关联点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(2,﹣1);(3)∵点P(m﹣1,2m)的“﹣3级关联点”为P′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),①P′位于x轴上,∴m﹣1+(﹣3)×2m=0,解得:m=,∴﹣3(m﹣1)+2m=4,∴P′(4,0).②P′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴P′(0,﹣16).综上所述,点P′的坐标为(4,0)或(0,﹣16).4.解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P 到两坐标轴的距离相等,∴|8﹣2m |=|m ﹣1|,∴8﹣2m =m ﹣1或8﹣2m =1﹣m ,解得:m =3或m =7,∴P (2,2)或(﹣6,6).5.解:(1)由题意得:m ﹣1=0,解得:m =1;(2)由题意得:m ﹣1=2m +3,解得:m =﹣4.6.解:(1)∵蚂蚁每次移动1个单位,∴OA 1=1,OA 3=1,OA 12=6,∴A 1(0,1),A 3(1,0),A 12(6,0);故答案为:0,1;1,0,6,0;(2)根据(1)OA n =n ÷2=,∴点A 4n 的坐标(,0);(3)∵2016÷4=504,∴从点A 2016到点A 2018的移动方向:点A 2016在x 轴上,向上移动一个到A 2017,∴A 2016(1008,0),A 2017(1008,1).7.解:(1)如图:A (1,2),B (3,2),C (1,﹣1),D (﹣3,﹣3).在平面直角坐标系中描出它们如下:线段AB 和CD 中点P 1、P 2的坐标分别为(2,2)、(﹣1,﹣2)故答案为:(2,2)、(﹣1,﹣2).(2)若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为.故答案为:.(3)∵E(﹣1,2),F(3,1),G(1,4),∴EF、FG、EG的中点分别为:(1,)、(2,)、(0,3)∴①HG过EF中点(1,)时,=1,=解得:x=1,y=﹣1,故H(1,﹣1);②EH过FG中点(2,)时,=2,=解得:x=5,y=3,故H(5,3);③FH过EG的中点(0,3)时,=0,=3解得:x=﹣3,y=5,故H(﹣3,5).∴点H的坐标为:(1,﹣1),(5,3),(﹣3,5).8.解:(1)∵A1的坐标为(2,2)、A2的坐标为(5,2),∴A1,A2,A3,…,A n各点的纵坐标均为2,∵小正方形的边长为1,∴A1,A2,A3,…,A n各点的横坐标依次大3,∴A3(5+3,2),A n(,2),即A3(8,2),A n(3n﹣1,2),故答案为(8,2);(3n﹣1,2);(2)∵2020÷3=673…1,∴需要小正方形674个,大正方形673个.9.解:(1)由图可知,A4,A8,A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,∴A 4(2,0),A 8(4,0),故答案为:(2,0);(4,0);(2)根据(1)OA 4n =4n ÷2=2n ,∴点A 4n 的坐标(2n ,0);故答案为:(2n ,0);(3)∵2014÷4=503…2,∴2014除以4余数为2,∴从点A 2014到点A 2017的移动方向与从点A 2到A 5的方向一致为:向下,向右,再向上. 故答案为:向下,向右,再向上.10.解:(1)当a 1=1时,a 2=1+1=2,a 3=﹣(2+1)=﹣3,a 4=﹣(3+1)=﹣4,a 5=4+1=5;(2)∵a 2=a 1+1,a 3=﹣(a 1+2),a 4=﹣(a 1+3),a 5=a 1+4,a 6=a 1+5,a 7=﹣(a 1+6), ∴s 7=a 1+a 2+…+a 7=a 1﹣1,当s 7=1时,则a 1﹣1=1,∴a 1=2;(3)∵当a 1=1时,则a 3=﹣3,a 7=﹣7,a 11=﹣11,…∴a 4k ﹣1=﹣(4k ﹣1)=﹣4k +1∴A 4k ﹣1(﹣4k +1,0).11.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.12.解:(1)如图所示:(2)太空飞梭(0,0),秦岭历险(0,400),魔幻城堡(400,﹣200),南门(0,﹣500),丛林飞龙(﹣200,﹣100).13.解:(1)由图可得:商会大厦的坐标为(﹣1,2),医院的坐标为(3,1).(2)路上经过的地方为:大剧院,体育公园,购物广场.14.解:(1)如图,(2)市场的坐标为(4,3),超市的坐标为(2,﹣3);(3)如图;(4)△ABC面积=3×6﹣×2×2﹣×4×3﹣×1×6=18﹣2﹣6﹣3=7.故答案为(4,3),(2,﹣3).15.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).16.解:(1)①∵点A (﹣3,1)到x 、y 轴的距离中最大值为3,∴与A 点是“等距点”的点是E 、F .②当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A 符合“等距点”的是(﹣3,3).故答案为①E 、F ;②(﹣3,3);(2)T 1(﹣1,﹣k ﹣3),T 2(4,4k ﹣3)两点为“等距点”,①若|4k ﹣3|≤4时,则4=﹣k ﹣3或﹣4=﹣k ﹣3解得k =﹣7(舍去)或k =1.②若|4k ﹣3|>4时,则|4k ﹣3|=|﹣k ﹣3|解得k =2或k =0(舍去).根据“等距点”的定义知,k =1或k =2符合题意.即k 的值是1或2.17.解:(1)∵|﹣2﹣0|+|﹣2﹣0|=4,|5﹣0|+|﹣1﹣0|=6,|0﹣0|+|4﹣0|=4, ∴原点O 的“4﹣距点”是点D 、点F .故答案为:D 、F ;(2)①∵点B (0,b ),l 为过点B 平行于x 轴的直线,∴当b =3时,l 为直线y =3,设直线l 上的点A (2,1)的“2﹣距点”的坐标为(x ,3),则有:|2﹣x |+|1﹣3|=2,解得:x =2,∴直线l 上的点A (2,1)的“2﹣距点”的坐标为(2,3);故答案为:(2,3);②由①知当直线l经过点(2,3)时,b=3;∵A(2,1),l为过点B平行于x轴的直线,∴当直线l经过点(2,﹣1)时,b=﹣1,∴若直线l上存在点A的“2﹣距点”,则b的取值范围是﹣1≤b≤3.如图所示:18.解:(1)∵M在y轴负半轴上,∴3|a|﹣9=0,且4﹣2a<0,∴a=±3,且a>2,∴a=3.∴4﹣2a=﹣2,M(0,﹣2);(2)∵a=3,∴(2﹣a)2020+1=(2﹣3)2020+1=1+1=2;(3)∵直线MN∥x轴,M(0,﹣2),∴设N(x,﹣2),又∵线段MN长度为4,∴MN=|x﹣0|=|x|=4,∴x=±4,∴N(4,﹣2)或(﹣4,﹣2).19.(1)证明:∵AB∥CD,∴∠ABO=∠DCO,∵∠DCO+∠CDO=90°;∴∠ABO+∠CDO=90°;(2)∵BM平分∠ABO,DN平分∠CDO,∴∠MBO=∠ABO,∠NDO=∠CDO,∴∠MBO+∠NDO=(∠ABO+∠CDO)=45°,∴∠BMO+∠OND=135°.20.解:(1)由题意得:m﹣1=0,解得:m=1;(2)∵点N(﹣3,2),且直线MN∥y轴,∴m﹣1=﹣3,解得m=﹣2.∴M(﹣3,﹣1),∴MN=2﹣(﹣1)=3.21.解:(1)∵点A(3,3),B(﹣2,﹣1),∴AB==,即A,B两点间的距离是;(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为﹣2,∴MN=|﹣2﹣7|=9,即M,N两点间的距离是9;(3)这三点不共线,该三角形为直角三角形.理由:∵一个三角形各顶点的坐标为A(﹣1,),B(,),C(,),∴AB==,AC==,BC==,∵AB2+AC2=()2+()2=()2=BC2,∴△ABC是直角三角形,=AB•AC=××=.∴S△ABC22.解:(1)A,B两点间的距离==4;(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE==5,DF==5,EF==6,∴DE=DF,∴△DEF为等腰三角形.23.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).24.解:(1)∵AB∥x轴,∴A点和B的纵坐标相等,即a+2=4,解得a=2,∴A(﹣2,4),B(﹣1,4),∴A、B两点间的距离为﹣1﹣(﹣2)=1;(2)∵当CD⊥x轴于点D,CD=3,∴|b|=3,解得b=3或b=﹣3,∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,∴C点坐标为(﹣1,3)或(﹣7,﹣3).25.解:(1)AC=4,BC=3,AB==5;(2)结合图形可得:AC=y1﹣y2,BC=x1﹣x2,AB=.(3)若点C在x轴上,设点C的坐标为(x,0),则AC=BC,即=,解得:x=5,即点C的坐标为(5,0);若点C在y轴上,设点C的坐标为(0,y),则AC=BC,即=,解得:y=5,即点C的坐标为(0,5).综上可得点C的坐标为(5,0)或(0,5).故答案为:4,3,5;y1﹣y2,x1﹣x2,A.。

中考数学专题练习 平面直角坐标系(解析版)

中考数学专题练习 平面直角坐标系(解析版)

平面直角坐标系1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.214.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个17.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.518.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.26.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2010个正方形的面积为()A.B. C.D.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是.28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是.30.在平面直角坐标系中,点A(2,﹣3)位于第象限.平面直角坐标系参考答案与试题解析1.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;点的坐标.菁优网版权所有【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.2.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(﹣13,﹣13) C.(14,14)D.(﹣14,﹣14)【考点】规律型:点的坐标.菁优网版权所有【分析】观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.【解答】解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);…55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);故选C.【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.3.坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)【考点】点的坐标.菁优网版权所有【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是﹣5;故点P的坐标为(﹣5,4),故选A.【点评】本题考查了平面直角坐标系内点的位置的确定,解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,以及明确点到坐标轴距离的含义.4.在平面直角坐标系中,点P(﹣1,3)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(﹣1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选B.【点评】解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可.【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.【点评】本题考查了象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.7.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:①f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);②g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【考点】点的坐标.菁优网版权所有【专题】压轴题;新定义.【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故选A.【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.8.在平面直角坐标系中,点P(2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.菁优网版权所有【分析】点P(2,3)的横、纵坐标均为正,可确定在第一象限.【解答】解:点P(2,3)的横、纵坐标均为正,所以点P在第一象限,故选A.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)【考点】坐标确定位置.菁优网版权所有【专题】压轴题.【分析】根据两点之间的距离公式,d=,将四个选项代入公式中,观察哪一个等于,再作答.【解答】解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,则(x﹣2)2+(y﹣3)2=(x﹣4)2+(y﹣1)2,化简得x﹣y=1;又因为标志点到“宝藏”点的距离是,所以(x﹣2)2+(y﹣3)2=10;把x=1+y代入方程得,y=0或y=4,即x=1或5,所以“宝藏”C点的坐标是(1,0)或(5,4).故选C.【点评】本题考查了坐标的确定及利用两点的坐标确定两点之间的距离公式,是一道中难度题.10.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.菁优网版权所有【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.11.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.菁优网版权所有【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.12.以百色汽车总站为坐标原点,向阳路为y轴建立直角坐标系,百色起义纪念馆位置如图所示,则其所覆盖的坐标可能是()A.(﹣5,3)B.(4,3)C.(5,﹣3)D.(﹣5,﹣3)【考点】坐标确定位置.菁优网版权所有【分析】观察图形可知,百色起义纪念馆位置在第四象限,根据第四象限的符号特点进行判断即可.【解答】解:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,﹣3).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.如图所示,A(﹣,0)、B(0,1)分别为x轴、y轴上的点,△ABC为等边三=S△ABC,则a的值为()角形,点P(3,a)在第一象限内,且满足2S△ABPA.B.C.D.2【考点】坐标与图形性质;等边三角形的性质;勾股定理.菁优网版权所有【专题】压轴题.【分析】过P点作PD⊥x轴,垂足为D,根据A(﹣,0)、B(0,1)求OA、OB,=S△AOB+S梯形BODP﹣S△ADP,列方程求a.利用勾股定理求AB,可得△ABC的面积,利用S△ABP【解答】解:过P点作PD⊥x轴,垂足为D,由A(﹣,0)、B(0,1),得OA=,OB=1,∵△ABC为等边三角形,由勾股定理,得AB==2,=×2×=,∴S△ABC=S△AOB+S梯形BODP﹣S△ADP又∵S△ABP=××1+×(1+a)×3﹣×(+3)×a,=,=S△ABC,得=,由2S△ABP∴a=.故选C.【点评】本题考查了点的坐标与线段长的关系,不规则三角形面积的表示方法.14.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【考点】坐标与图形性质;平行四边形的性质.菁优网版权所有【专题】压轴题.【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.15.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是()A.(5,3)B.(3,5)C.(5,4)D.(4,5)【考点】坐标与图形性质;勾股定理;垂径定理.菁优网版权所有【专题】压轴题.【分析】根据已知条件,纵坐标易求;再根据切割线定理即OQ2=OM•ON求OQ可得横坐标.【解答】解:过点P作PD⊥MN于D,连接PQ.∵⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,∴OM=2,NO=8,∴NM=6,∵PD⊥NM,∴DM=3∴OD=5,∴OQ2=OM•ON=2×8=16,OQ=4.∴PD=4,PQ=OD=3+2=5.即点P的坐标是(4,5).故选D.【点评】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度中等的综合题,关键是根据垂径定理确定点P的纵坐标,利用切割线定理确定横坐标.16.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个 B.4个 C.3个 D.2个【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.【解答】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,﹣2)(0,4).故选B.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决特殊的问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.17.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2 B.3 C.4 D.5【考点】等腰三角形的判定;坐标与图形性质.菁优网版权所有【专题】动点型.【分析】根据题意,结合图形,分两种情况讨论:①OA为等腰三角形底边;②OA为等腰三角形一条腰.【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;利用等腰三角形的判定来解决实际问题,其关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.18.如图在平面直角坐标系中,□MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)【考点】平行四边形的性质;坐标与图形性质.菁优网版权所有【分析】要求点N的坐标,根据平行四边形的性质和关于原点对称的规律写出点N的坐标.【解答】解:在▱MNEF中,点F和N关于原点对称,∵点F的坐标是(3,2),∴点N 的坐标是(﹣3,﹣2).【点评】本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.19.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A、B 的坐标分别是()A.(4,0)(7,4)B.(4,0)(8,4)C.(5,0)(7,4)D.(5,0)(8,4)【考点】菱形的性质;坐标与图形性质.菁优网版权所有【分析】过C作CE⊥OA,根据勾股定理求出OC的长度,则A、B两点坐标便不难求出.【解答】解:过C作CE⊥OA于E,∵顶点C的坐标是(3,4),∴OE=3,CE=4,∴OC===5,∴点A的坐标为(5,0),5+3=8,点B的坐标为(8,4).故选D.【点评】根据菱形的性质和点C的坐标,作出辅助线是解决本题的突破口.20.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是()A.(2+,)B.(2﹣,) C.(﹣2+,)D.(﹣2﹣,)【考点】菱形的性质;坐标与图形性质;特殊角的三角函数值.菁优网版权所有【分析】过A作AE⊥CO,根据“OA=2,∠AOC=45°”求出OE、AE的长度,点B的坐标便不难求出.【解答】解:如图,过A作AE⊥CO于E,∵OA=2,∠AOC=45°,∴AE=AOsin45°=,OE=AOcos45°=,∴点B的横坐标为﹣(2+),纵坐标为,∴B点的坐标是(﹣2﹣,).故选D.【点评】通过作辅助线求出点A到坐标轴的距离是解本题的突破口.21.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,﹣2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.【解答】解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.【点评】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.22.如图所示,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(﹣2,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【考点】确定圆的条件;坐标与图形性质.菁优网版权所有【专题】压轴题;网格型.【分析】连接AB、AC,作出AB、AC的垂直平分线,其交点即为圆心.【解答】解:如图所示,∵AW=1,WH=3,∴AH==;∵BQ=3,QH=1,∴BH==;∴AH=BH,同理,AD=BD,所以GH为线段AB的垂直平分线,易得EF为线段AC的垂直平分线,H为圆的两条弦的垂直平分线的交点,则BH=AH=HC,H为圆心.于是则该圆弧所在圆的圆心坐标是(﹣1,1).故选C.【点评】根据线段垂直平分线上的点到这条线段两端点的距离相等,找到圆的半径,半径的交点即为圆心.23.在平面直角坐标系中,以点(3,2)为圆心、3为半径的圆,一定()A.与x轴相切,与y轴相切B.与x轴相切,与y轴相交C.与x轴相交,与y轴相切D.与x轴相交,与y轴相交【考点】直线与圆的位置关系;坐标与图形性质.菁优网版权所有【分析】由已知点(3,2)可求该点到x轴,y轴的距离,再与半径比较,确定圆与坐标轴的位置关系.设d为直线与圆的距离,r为圆的半径,则有若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵点(3,2)到x轴的距离是2,小于半径,到y轴的距离是3,等于半径,∴圆与x轴相交,与y轴相切.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.24.如图,⊙O的半径为2,点A的坐标为(2,2),直线AB为⊙O的切线,B为切点.则B点的坐标为()A.(﹣,)B.(﹣,1)C.(﹣,)D.(﹣1,)【考点】切线的性质;坐标与图形性质.菁优网版权所有【专题】压轴题.【分析】先利用切线AC求出OC=2=OA,从而∠BOD=∠AOC=60°,则B点的坐标即可求出.【解答】解:过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∵⊙O的半径为2,点A的坐标为(2,2),即OC=2,∴AC是圆的切线.∵点A的坐标为(2,2),∴OA==4,∵BO=2,AO=4,∠ABO=90°,∴∠AOB=60°,∵OA=4,OC=2,∴sin∠OAC=,∴∠OAC=30°,∴∠AOC=60°,∠AOB=∠AOC=60°,∴∠BOD=180°﹣∠AOB﹣∠AOC=60°,∴OD=1,BD=,即B点的坐标为(﹣1,).故选D.【点评】本题综合考查了圆的切线长定理和坐标的确定,是综合性较强的综合题,关键是根据切线长定理求出相关的线段,并求出相对应的角度,利用直角三角形的性质求解.25.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.【考点】切线的性质;坐标与图形性质;三角形的面积;相似三角形的判定与性质.菁优网版权所有【专题】压轴题;动点型.【分析】由于OA 的长为定值,若△ABE 的面积最小,则BE 的长最短,此时AD 与⊙O 相切;可连接CD ,在Rt △ADC 中,由勾股定理求得AD 的长,即可得到△ADC 的面积;易证得△AEO ∽△ACD ,根据相似三角形的面积比等于相似比的平方,可求出△AOE 的面积,进而可得出△AOB 和△AOE 的面积差,由此得解.【解答】解:若△ABE 的面积最小,则AD 与⊙C 相切,连接CD ,则CD ⊥AD ;Rt △ACD 中,CD=1,AC=OC +OA=3;由勾股定理,得:AD=2;∴S △ACD =AD•CD=; 易证得△AOE ∽△ADC ,∴=()2=()2=,即S △AOE =S △ADC =;∴S △ABE =S △AOB ﹣S △AOE =×2×2﹣=2﹣; 另解:利用相似三角形的对应边的比相等更简单!故选:C .【点评】此题主要考查了切线的性质、相似三角形的性质、三角形面积的求法等知识;能够正确的判断出△BE 面积最小时AD 与⊙C 的位置关系是解答此题的关键.26.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为( )A.B.C.D.【考点】相似三角形的判定与性质;坐标与图形性质;勾股定理;正方形的性质.菁优网版权所有【专题】压轴题;规律型.【分析】根据相似三角形的判定原理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的面积公式计算三个正方形的面积,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的面积分别为S1,S2 (2010)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,在直角△ADO中,根据勾股定理,得:AD=,cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=+=×,同理,得:C1A2=××,由正方形的面积公式,得:S1=,S2=×,S3=××,由此,可得S n=×(1+)2n﹣2,∴S2010=5×()2×2010﹣2,=5×()4018.故选:D【点评】本题综合考查了相似三角形的判定、勾股定理、正方形的性质等知识点,另外,在解题过程中,要认真挖掘题中隐藏的规律,这样可以降低解题的难度,提高解题效率.27.在平面直角坐标系中,点P(a﹣1,a)是第二象限内的点,则a的取值范围是0<a<1.【考点】点的坐标.菁优网版权所有【分析】已知点P(a﹣1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【解答】解:∵点P(a﹣1,a)是第二象限内的点,∴a﹣1<0且a>0,解得:0<a<1.故答案填:0<a<1.【点评】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(﹣,+).28.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为(9,81).【考点】点的坐标.菁优网版权所有【专题】规律型.【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A9的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12;当n=2时,A2(2,4),即x=2,y=22;当n=3时,A3(3,9),即x=3,y=32;当n=4时,A1(4,16),即x=4,y=42;∴当n=9时,x=9,y=92,即A9(9,81).故答案填(9,81).【点评】解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.29.如果点P(m﹣1,2﹣m)在第四象限,则m的取值范围是m>2.【考点】点的坐标;解一元一次不等式组.菁优网版权所有【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【解答】解:∵点P(m﹣1,2﹣m)在第四象限,∴,解得m>2,故m的取值范围是m>2.【点评】本题考查象限点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键.30.在平面直角坐标系中,点A(2,﹣3)位于第四象限.【考点】点的坐标.菁优网版权所有【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:因为点A(2,﹣3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限.故答案为:四.【点评】解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.。

中考数学复习题 平面直角坐标系(含解析)(2021学年)

中考数学复习题 平面直角坐标系(含解析)(2021学年)

四川省雅安市2016届中考数学复习题平面直角坐标系(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省雅安市2016届中考数学复习题平面直角坐标系(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省雅安市2016届中考数学复习题平面直角坐标系(含解析)的全部内容。

平面直角坐标系一、选择题1.根据下列表述,能确定位置的是( )A.红星电影院2排ﻩB.北京市四环路C.北偏东30°D.东经118°,北纬40°2.若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是( )A.第一象限ﻩB.第二象限C.第三象限ﻩD.第四象限3.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )A.(3,3)ﻩB.(﹣3,3)ﻩC.(﹣3,﹣3) D.(3,﹣3)4.点P(x,y),且xy<0,则点P在()A.第一象限或第二象限ﻩB.第一象限或第三象限C.第一象限或第四象限D.第二象限或第四象限5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度ﻩB.向左平移1个单位长度C.向上平移3个单位长度ﻩD.向下平移1个单位长度6.如图所示的象棋盘上,若“帅”位于点(1,﹣2)上,“相"位于点(3,﹣2)上,则“炮”位于点( )A.(1,﹣2)B.(﹣2,1)ﻩC.(﹣2,2)D.(2,﹣2)7.若点M(x,y)的坐标满足x+y=0,则点M位于()A.第二象限B.第一、三象限的夹角平分线上C.第四象限D.第二、四象限的夹角平分线上8.将△ABC的三个顶点的横坐标都加上﹣1,纵坐标不变,则所得图形与原图形的关系是( )A.将原图形向x轴的正方向平移了1个单位B.将原图形向x轴的负方向平移了1个单位C.将原图形向y轴的正方向平移了1个单位D.将原图形向y轴的负方向平移了1个单位9.在坐标系中,已知A(2,0),B(﹣3,﹣4),C(0,0),则△ABC的面积为( )A.4 B.6 C.8 D.310.点P(x﹣1,x+1)不可能在( )A.第一象限ﻩB.第二象限C.第三象限ﻩD.第四象限二、填空题11.已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是.12.已知点A(﹣1,b+2)在坐标轴上,则b= .13.如果点M(a+b,ab)在第二象限,那么点N(a,b)在第象限.14.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是.15.已知点A(﹣4,a),B(﹣2,b)都在第三象限的角平分线上,则a+b+ab的值等于.16.已知矩形ABCD在平面直角坐标系中的位置如图所示,将矩形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点B的坐标是.三、解答题17.如图,正方形ABCD的边长为3,以顶点A为原点,且有一组邻边与坐标轴重合,求出正方形ABCD各个顶点的坐标.18.若点P(x,y)的坐标x,y满足xy=0,试判定点P在坐标平面上的位置.19.已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.四、解答题20.在平面直角坐标系中描出下列各点A(5,1),B(5,0),C(2,1),D(2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A′、B′、C′、D′的坐标.21.已知三角形的三个顶点都在以下表格的交点上,其中A(3,3),B(3,5),请在表格中确立C点的位置,使S△ABC=2,这样的点C有多少个,请分别表示出来.22.如图,点A用(3,3)表示,点B用(7,5)表示,若用(3,3)→(5,3)→(5,4)→(7,4)→(7,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.五、解答题23.图中显示了10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:小时).(1)用有序实数对表示图中各点.(2)图中有一个点位于方格的对角线上,这表示什么意思?(3)图中方格纸的对角线的左上方的点有什么共同的特点它右下方的点呢?(4)估计一下你每周用于阅读课外书的时间和用于看电视的时间,在图上描出来,这个点位于什么位置?24.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC;(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标.ﻬ试题解析一、选择题1.根据下列表述,能确定位置的是()A.红星电影院2排ﻩB.北京市四环路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A.第一象限ﻩB.第二象限 C.第三象限ﻩD.第四象限【考点】点的坐标.【分析】根据点在第三象限的条件横坐标是负数,纵坐标是负数,可判断出点A坐标中m、n的符号特点,进而可求出所求的点B的横纵坐标的符号,进而判断点B所在的象限.【解答】解:∵点A(m,n)在第三象限,∴m<0,n<0,∴|m|>0,n<0,∴点B(|m|,n)在第四象限.故选:D.【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来进行考查.3.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )A.(3,3)ﻩB.(﹣3,3)C.(﹣3,﹣3) D.(3,﹣3)【考点】点的坐标.【分析】根据点到直线的距离和各象限内点的坐标特征解答.【解答】解:∵点P在x轴下方,y轴的左方,∴点P是第三象限内的点,∵第三象限内的点的特点是(﹣,﹣),且点到各坐标轴的距离都是3,∴点P的坐标为(﹣3,﹣3).故选C.【点评】本题考查了各象限内的点的坐标特征及点的坐标的几何意义,熟练掌握平面直角坐标系中各个象限的点的坐标的符号特点是正确解此类题的关键.4.点P(x,y),且xy<0,则点P在( )A.第一象限或第二象限ﻩB.第一象限或第三象限C.第一象限或第四象限ﻩD.第二象限或第四象限【考点】点的坐标.【分析】先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:∵xy<0,∴x,y异号,当x>0时,y<0,即点的横坐标大于0,纵坐标小于0,点在第四象限;当x<0时,y>0,则点的横坐标小于0,纵坐标大于0,点在第二象限.故选D.【点评】本题主要考查了平面直角坐标系中点的坐标的符号特点.5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度ﻩD.向下平移1个单位长度【考点】坐标与图形变化—平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:观察图形可得:图1与图2对应点所连的线段平行且相等,且长度是3;故发生的变化是向左平移3个单位长度.故选A.【点评】本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移中,对应点的对应坐标的差相等.6.如图所示的象棋盘上,若“帅”位于点(1,﹣2)上,“相”位于点(3,﹣2)上,则“炮”位于点( )A.(1,﹣2)ﻩB.(﹣2,1)ﻩC.(﹣2,2)ﻩD.(2,﹣2)【考点】坐标确定位置.【专题】数形结合.【分析】先利用“帅”和“相”所在点的坐标画出直角坐标系,然后写出“炮”所在点的坐标.【解答】解:如图,“炮”所在点的坐标为(﹣2,1).故选B.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.7.若点M(x,y)的坐标满足x+y=0,则点M位于( )A.第二象限B.第一、三象限的夹角平分线上C.第四象限D.第二、四象限的夹角平分线上【考点】点的坐标.【分析】先整理为y=﹣x,再根据点的坐标的特征判断即可.【解答】解:∵x+y=0,∴y=﹣x,∴点M(x,y)位于第二、四象限的夹角平分线上.故选D.【点评】本题考查了点的坐标,熟练掌握各象限内点的坐标特征是解题的关键.8.将△ABC的三个顶点的横坐标都加上﹣1,纵坐标不变,则所得图形与原图形的关系是()A.将原图形向x轴的正方向平移了1个单位B.将原图形向x轴的负方向平移了1个单位C.将原图形向y轴的正方向平移了1个单位D.将原图形向y轴的负方向平移了1个单位【考点】坐标与图形变化-平移.【分析】由于将△ABC的三个顶点的横坐标都加上﹣1,纵坐标不变,所以根据平移规律即可确定选择项.【解答】解:∵将△ABC的三个顶点的横坐标都加上﹣1,纵坐标不变,∴所得图形与原图形的位置关系是△ABC向x轴的负方向平移1个单位.故选B.【点评】此题主要考查了坐标与图形的变化﹣平移的问题,解题的关键是掌握平移的规律即可解决问题.9.在坐标系中,已知A(2,0),B(﹣3,﹣4),C(0,0),则△ABC的面积为( )A.4ﻩB.6 C.8 D.3【考点】三角形的面积;坐标与图形性质.【分析】找出三角形ABC的底边和底边对应的高,从三点位置得出以AC为底边,点B的纵坐标为AC的高解答.【解答】解:由题意点B坐标的纵坐标的绝对值即为△ABC底边AC的高,∴AC=|2﹣0|=2,∴S△ABC=×AC×|﹣4|=×2×4=4.故选A【点评】本题考查了三角形的面积计算,确定三角形ABC的底边AC,以及该底边的高点B的纵坐标即求得.10.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限ﻩC.第三象限D.第四象限【考点】点的坐标.【分析】根据题意列出不等式组,求出不等式组的解即可.【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故点P不能在第四象限,故选D.【点评】本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为不等式组的问题,该知识点是中考的常考点.二、填空题11.已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是(4,3)或(﹣4,3).【考点】点的坐标.【分析】根据在x轴上方的点的纵坐标为正,点到y轴的距离为点的横坐标的绝对值即可得解.【解答】解:∵点A在x轴上方,到x轴的距离是3,∴点A的纵坐标是3,∵点A到y轴的距离是4,∴点A的横坐标是4或﹣4.∴点A的坐标是(4,3)或(﹣4,3).故答案为:(4,3)或(﹣4,3).【点评】本题就是考查点的坐标的几何意义,牢记点到x轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.12.已知点A(﹣1,b+2)在坐标轴上,则b=﹣2 .【考点】点的坐标.【分析】根据点在坐标轴上的坐标特点解答即可.【解答】解:∵点A(﹣1,b+2)在坐标轴上,横坐标是﹣1,∴一定不在y轴上,当点在x轴上时,纵坐标是0,即b+2=0,解得:b=﹣2.故填﹣2.【点评】本题主要考查了坐标轴上的点的坐标的特点,即点在x上时,纵坐标为0;在y轴上时,横坐标等于0.13.如果点M(a+b,ab)在第二象限,那么点N(a,b)在第三象限.【考点】点的坐标.【分析】先根据点M(a+b,ab)在第二象限确定出a+b<0,ab>0,再进一步确定a,b的符号即可求出答案.【解答】解:∵点M(a+b,ab)在第二象限,∴a+b<0,ab>0;∵ab>0可知ab同号,又∵a+b<0可知a,b同是负数.∴a<0 b<0,即点N在第三象限.故答案填:三.【点评】本题主要考查了点在各象限内坐标的符号及不等式的解法,比较简单.14.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则点P的坐标是(3,﹣5).【考点】点的坐标.【分析】根据点在第四象限的坐标特点解答即可.【解答】解:∵点P(x,y)在第四象限,∴x>0,y<0,又∵|x|=3,|y|=5,∴x=3,y=﹣5,∴点P的坐标是(3,﹣5).故答案填(3,﹣5).【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点及点的坐标的几何意义.注意横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离.15.已知点A(﹣4,a),B(﹣2,b)都在第三象限的角平分线上,则a+b+ab的值等于2.【考点】坐标与图形性质.【分析】本题应先根据题意得出第三象限的角平分线的函数表达式,在根据A、B的坐标得出a、b的值,代入原式即可.【解答】解:∵点A(﹣4,a),B(﹣2,b)都在第三象限的角平分线上且第三象限的角平分线为:y=x,∴a=﹣4,b=﹣2∴a+b+ab=2.故答案为2.【点评】本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.16.已知矩形ABCD在平面直角坐标系中的位置如图所示,将矩形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点B的坐标是(﹣5,﹣3).【考点】坐标与图形变化—平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:根据题意:将矩形ABCD沿x轴向左平移到使点C与坐标原点重合后,即向左平移5个单位;再沿y轴向下平移到使点D与坐标原点重合,即向下平移3个单位;平移前B点的坐标为(0,0),向左平移5个单位,再向下平移3个单位,此时点B的坐标是(﹣5,﹣3).故答案填:(﹣5,﹣3).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.如图,正方形ABCD的边长为3,以顶点A为原点,且有一组邻边与坐标轴重合,求出正方形ABCD各个顶点的坐标.【考点】坐标与图形性质;正方形的性质.【专题】作图题;开放型.【分析】本题可根据正方形的四边相等和对边分别平行求解.【解答】解:在正方形中,AB=BC=CD=AD=3,AB∥CD,AD∥BC,以顶点A为原点,且有一组邻边与坐标轴重合,则BC平行于y轴,CD平行于x轴,所以点A的坐标为(0,0),点B的坐标为(3,0),点C的坐标为(3,3),点D的坐标为(0,3).【点评】本题主要考查了正方形的性质及坐标与图形性质的联系,主要利用了正方形的四边相等的性质求解.18.若点P(x,y)的坐标x,y满足xy=0,试判定点P在坐标平面上的位置.【考点】点的坐标.【分析】可先判断出点的横纵坐标的可能值,进而判断点P在坐标平面上的位置.【解答】解:∵xy=0,∴x=0,或y=0,或x=0,y=0;当x=0时,点在y轴上;当y=0时,点在x轴上;当x=0,y=0时,点在原点.∴点P在坐标轴上.【点评】本题用到的知识点为:在x轴上点的特点是:纵坐标为0;在y轴上点的特点是:横坐标为0;原点的坐标是(0,0).19.已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.【考点】三角形的面积;坐标与图形性质.【分析】首先根据面积求得OA的长,再根据已知条件求得OB的长,最后求得OC的长.最后写坐标的时候注意点的位置.【解答】解:∵S△ABC=BC•OA=24,OA=OB,BC=12,∴OA=OB===4,∴OC=8,∵点O为原点,∴A(0,4),B(﹣4,0),C(8,0).【点评】写点的坐标的时候,特别注意根据点所在的位置来确定坐标符号.四、解答题20.在平面直角坐标系中描出下列各点A(5,1),B(5,0),C(2,1),D(2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A′、B′、C′、D′的坐标.【考点】坐标与图形变化—平移.【专题】作图题.【分析】直接利用平移中点的变化规律求解即可.【解答】解:在平面直角坐标系中各点的位置如图所示:由点的平移规律可知,此题规律是(x,y﹣4),照此规律计算可知A′、B′、C′、D′的坐标.则平移后各点的坐标分别为A′(5,﹣3),B′(5,﹣4),C′(2,﹣3),D′(2,﹣1).【点评】本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.21.已知三角形的三个顶点都在以下表格的交点上,其中A(3,3),B(3,5),请在表格中确立C点的位置,使S△ABC=2,这样的点C有多少个,请分别表示出来.【考点】三角形的面积.【专题】网格型.【分析】根据三角形的面积公式求得点C到AB的距离为2,据此可以找到符合条件的点C.【解答】解:设点C到直线AB的距离为h.如图,∵A(3,3),B(3,5),∴AB=2,且AB⊥x轴.∴S△ABC=AB•h=h=2,解得h=2,即点C到直线AB的距离是2.∴点C是与AB平行且距离为2的直线l与表格格点的交点,如图所示,符合条件的点C有6×2=12个.【点评】本题考查了三角形的面积.三角形的面积公式是S=×底×高.22.如图,点A用(3,3)表示,点B用(7,5)表示,若用(3,3)→(5,3)→(5,4)→(7,4)→(7,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.【考点】坐标确定位置.【专题】数形结合.【分析】利用有序实数对的意义,可以由(3,3)表示的点走到(3,5)表示的点,再走到B点或由(3,3)表示的点走到(7,3)表示的点,再走到B点,利用平移的性质可判断这几种走法的路程相等.【解答】解:由A到B的走法可为:(3,3)→(3,5)→(7,5)或(3,3)→(7,3)→(7,5).这几种走法的路程相等.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.五、解答题23.图中显示了10名同学平均每周用于阅读课外书的时间和用于看电视的时间(单位:小时).(1)用有序实数对表示图中各点.(2)图中有一个点位于方格的对角线上,这表示什么意思?(3)图中方格纸的对角线的左上方的点有什么共同的特点它右下方的点呢?(4)估计一下你每周用于阅读课外书的时间和用于看电视的时间,在图上描出来,这个点位于什么位置?【考点】条形统计图.【专题】阅读型.【分析】(1)由图可知:则用有序实数对表示图中各点为(1,9)(1,6)(2,7)(3,5)(4,2)(5,5)(6,4)(7,2)(7,3)(9,1);(2)图中有一个点位于方格的对角线上,这表示该同学每周看电视和读书的时间是一样的; (3)左上方的点每周阅读的时间都超过5小时,且看电视的时间不超过5小时,右下方的点看电视都超过4小时,读书都不超过4小时;(4)此问具有开放性,只要和符合你的情况即可,答案不唯一.【解答】解:(1)(1,9)(1,6)(2,7)(3,5)(4,2)(5,5)(6,4)(7,2)(7,3)(9,1);(2)表示该同学每周看电视和读书的时间是一样的;(3)左上方的点每周阅读的时间都超过5小时,且看电视的时间不超过5小时,右下方的点看电视都超过4小时,读书都不超过4小时;(4)此问具有开放性,只要和符合你的情况即可,答案不唯一.【点评】本题考查利用有序对来表示点的位置以及坐标系表示的意义.24.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC;(3)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC变化位置,并写出A′、B′、C′的坐标.【考点】作图—平移变换.【分析】(1)根据各点所在象限的符号和距坐标轴的距离可得各点的坐标;(2)S△ABC=边长为4,5的长方形的面积减去直角边长为2,4的直角三角形的面积,减去直角边长为3,5的直角三角形的面积,减去边长为1,3的直角三角形面积;(3)把三角形ABC的各顶点向上平移2个单位,再向右平移2个单位得到平移后的坐标,顺次连接平移后的各顶点即为平移后的三角形,根据各点所在象限的符号和距坐标轴的距离可得各点的坐标.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣×2×4﹣×1×3﹣×3×5=7;(3)A′(1,1),B′(6,4),C′(3,5).【点评】格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差;图形的平移要归结为各顶点的平移;平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.以上就是本文的全部内容,可以编辑修改。

【精选试卷】(必考题)中考数学专项练习经典习题(含答案解析)

【精选试卷】(必考题)中考数学专项练习经典习题(含答案解析)

一、选择题1.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .52.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C .24D .0.33.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 4.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=,则GAF ∠的度数为( )A .110B .115C .125D .1305.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S Vh h=≠,这个函数的图象大致是( )A .B .C .D .6.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)7.如果√(2a −1)2=1−2a ,则a 的取值范围是( ) A .a <12 B .a ≤12 C .a >12 D .a ≥128.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°10.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°11.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A.3 B.23C.32D.612.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 13.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+14.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.15.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°16.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5 17.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.1818.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个19.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁20.如图,⊙O的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为()A.12B.5C.532D.5321.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°22.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)23.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.624.下列四个实数中,比1-小的数是( ) A .2-B .0C .1D .225.若直线1l 经过点()0,4,直线2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()6,0- B .()6,0 C .()2,0- D .()2,026.在数轴上,与表示6的点距离最近的整数点所表示的数是( ) A .1B .2C .3D .427.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A .B .C .D .28.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .29.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)30.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A.6 B.5 C.3 D.32【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.C4.A5.C6.A7.B8.B9.D10.D11.B12.C13.D14.B15.C16.C17.B18.C19.D20.D21.A22.D23.A24.A25.D26.B27.B28.C29.D30.C2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.2.B解析:B【解析】【分析】【详解】ABC =D 故选B .3.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.4.A解析:A 【解析】 【分析】依据AB//CD ,EFC 40∠=,即可得到BAF 40∠=,BAE 140∠=,再根据AG 平分BAF ∠,可得BAG 70∠=,进而得出GAF 7040110∠=+=. 【详解】 解:AB//CD ,EFC 40∠=,BAF 40∠∴=, BAE 140∠∴=,又AG 平分BAF ∠,BAG 70∠∴=,GAF 7040110∠∴=+=,故选:A . 【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.5.C解析:C 【解析】 【分析】 【详解】解:由题意可知:00v h >>, , ∴ (0)v s h h=≠中,当v 的值一定时,s 是h 的反比例函数, ∴函数 (0)v s h h=≠的图象当00v h >>,时是:“双曲线”在第一象限的分支. 故选C.6.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.7.B解析:B 【解析】试题分析:根据二次根式的性质1可知:√(2a −1)2=|2a −1|=1−2a ,即2a −1≤0故答案为B.a ≤12.考点:二次根式的性质.8.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.10.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 12.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.13.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.14.B解析:B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.15.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.16.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.17.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.18.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.19.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 20.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为AB的中点,∴OC⊥AB,在Rt△OAE中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.21.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.22.D解析:D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】∵把A (12,y 1),B (2,y 2)代入反比例函数y=1x 得:y 1=2,y 2=12, ∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52,即P(52,0),故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.23.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.24.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.25.D解析:D【解析】【分析】根据1l与2l关于x轴对称,可知2l必经过(0,-4),1l必经过点(3,-2),然后根据待定系数法分别求出1l、2l的解析式后,再联立解方程组即可求得1l与2l的交点坐标.【详解】∵直线1l经过点(0,4),2l经过点(3,2),且1l与2l关于x轴对称,∴直线1l经过点(3,﹣2),2l经过点(0,﹣4),设直线1l的解析式y=kx+b,把(0,4)和(3,﹣2)代入直线1l的解析式y=kx+b,则4342 bk=⎧⎨+=-⎩,解得:24kb=-⎧⎨=⎩,故直线1l的解析式为:y=﹣2x+4,设l2的解析式为y=mx+n,把(0,﹣4)和(3,2)代入直线2l的解析式y=mx+n,则324m nn+=⎧⎨=-⎩,解得m2n4=⎧⎨=-⎩,∴直线2l的解析式为:y=2x﹣4,联立2424y xy x=-+⎧⎨=-⎩,解得:2xy=⎧⎨=⎩即1l与2l的交点坐标为(2,0).故选D.【点睛】本题考查了关于x轴对称的点的坐标特征、待定系数法求一次函数的解析式即两直线的交点坐标问题,熟练应用相关知识解题是关键.26.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B.【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.27.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.28.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.29.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。

(易错题精选)初中数学函数之平面直角坐标系技巧及练习题附答案解析(1)

(易错题精选)初中数学函数之平面直角坐标系技巧及练习题附答案解析(1)

(易错题精选)初中数学函数之平面直角坐标系技巧及练习题附答案解析(1)一、选择题1.如图所示,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A .(2,0)B .(-1,-1)C .( -2,1)D .(-1, 1)【答案】D【解析】【分析】 利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.2.在平面直角坐标系中,点(),P x y 经过某种变换后得到点()'1,2P y x -++,我们把点()'1,2P y x -++叫做点(),P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3,P 点3P 的终结点为4P ,这样依次得到1234,,,,,n P P P P P ⋅⋅⋅.若点1P 的坐标为(50,),则2017P 点的坐标为( )A .()2,0B .()3,0C .()4,0D .()5,0【答案】D【解析】【分析】根据题意先求出12345,,,,P P P P P L 的坐标,然后找到规律,利用规律即可求出答案.【详解】 ∵点1P 的坐标为(5)0,,根据题意有 ∴2345(1,7),(6,3),(2,4),(5,0)P P P P ---,由此可见,n P 点的坐标是四个一循环,201745041÷=Q L ,∴2017P 点的坐标为()5,0,故选:D .【点睛】本题主要考查点的坐标的规律,找到规律是解题的关键.3.下列说法正确的是( )A .相等的角是对顶角B .在同一平面内,不平行的两条直线一定互相垂直C .点P(2,﹣3)在第四象限D .一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A 、相等的角是对顶角,错误;B 、在同一平面内,不平行的两条直线一定相交,故此选项错误;C 、点P (2,﹣3)在第四象限,正确;D、一个数的算术平方根一定是正数或零,故此选项错误.故选:C.此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.4.点P(a,b)在y轴右侧,若P到x轴的距离是2,到y轴的距离是3,则点P的坐标为()A.(﹣3,2)B.(﹣2,3)C.(3,2)或(3,﹣2)D.(2,3)或(2,﹣3)【答案】C【解析】【分析】根据点P在y轴右侧可知点P在第一象限或第四象限,结合点P到x轴的距离是2可知点P的纵坐标是2或2-,而再根据其到y轴的距离是3得出点P的横坐标是3,由此即可得出答案.【详解】∵点P在y轴右侧,∴点P在第一象限或第四象限,又∵点P到x轴的距离是2,到y轴的距离是3,∴点P的纵坐标是2或2-,横坐标是3,∴点P的坐标是(3,2)或(3,2-),故选:C.【点睛】本题主要考查了直角坐标系中各象限内点的坐标特征,熟练掌握相关概念是解题关键.5.平面直角坐标系中,P(-2a-6,a-5)在第三象限,则a的取值范围是()A.a>5 B.a<-3 C.-3≤a≤5D.-3<a<5【答案】D【解析】【分析】根据第三象限的点的坐标特点:x<0,y<0,列不等式组,求出a的取值范围即可.【详解】∵点P在第三象限,∴26050aa--<⎧⎨-<⎩,解得:-3<a<5,故选D.【点睛】本题考查了象限点的坐标的符号特征以及解不等式,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.6.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)【答案】D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.7.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(02)C.(2,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法8.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】B【解析】【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【详解】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.9.若点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,则点P的坐标是( )A.(-2,3) B.(-2,-3) C.(2,-3) D.(2,3)【答案】B【解析】【分析】根据点P到x轴的距离为3,则这一点的纵坐标是3或-3,到y轴的距离为2,那么它的横坐标是2或-2,再根据点P所处的象限即可确定点P的坐标.【详解】∵点P到x轴的距离为3,∴点的纵坐标是3或-3,∵点P到y轴的距离为2,∴点的横坐标是2或-2,又∵点P在第三象限,∴点P的坐标为:(-2,-3),故选B.【点睛】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.10.如果点P在第三象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是()A.(﹣4,﹣5)B.(﹣4,5)C.(﹣5,4)D.(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P到x轴的距离是4,到y轴的距离是5,∴点P的横坐标是﹣5,纵坐标是﹣4,∴点P的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.11.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A 点在原点上,B 点在横轴上,C 点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C12.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).故选:C .【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.13.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.14.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【答案】C【解析】【分析】根据“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C.【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y轴,向上平移2个单位所得直线是x轴是解题关键.15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(-a,b),如f(1,2)=(-1,2);②g(a,b)=(b,a),如g(1,2)=(2,1);③h(a,b)=(-a,-b),如h(1,2)=(-1,-2);按照以上变换有:g(h(f (1,2)))=g(h(-1,2))=g(1,-2)=(-2,1),那么h(f(g(3,-4)))等于()A.(4,-3)B.(-4,3)C.(-4,-3)D.(4,3)【答案】C【解析】【分析】根据f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b),可得答案.【详解】由已知条件可得h(f(g(3,-4)))= h(f(-4,3))= h(4,3)=(-4,-3)故选:C本题考查了点的坐标,利用f(a,b)=(-a,b).g(a,b)=(b,a).h(a,b)=(-a,-b)是解题关键.16.在平面直角坐标系中,点(一6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B.【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 17.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.18.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学 平面直角坐标系与点的坐标一、选择题1. (2016 ) 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A (5,0),OB=45,点P 是对角线OB 上的一个动点,D (0,1),当CP+DP 最短时,点P 的坐标为( )A. (0,0)B.(1,21)C.(56,53)D.(710,75)【考点】菱形的性质,平面直角坐标系,,轴对称——最短路线问题,三角形相似,勾股定理,动点问题.【分析】点C 关于OB 的对称点是点A ,连接AD ,交OB 于点P ,P 即为所求的使CP+DP 最短的点;连接CP ,解答即可.【解答】解:如图,连接AD ,交OB 于点P ,P 即为所求的使CP+DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF ⊥OA ,垂足为F.2.(2016 )平面直角坐标系中,点P (﹣2,3)关于x 轴对称的点的坐标为( ) A .(﹣2,﹣3) B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2)【考点】关于x 轴、y 轴对称的点的坐标.【分析】直接利用关于x 轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案. 【解答】解:点P (﹣2,3)关于x 轴对称的点的坐标为(﹣2,﹣3). 故选:A .3. (2016 )将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x 轴上,若OA=2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A ′的坐标为( )A .(,﹣1)B .(1,﹣)C .(,﹣) D .(﹣,)【考点】坐标与图形变化-旋转.【分析】先根据题意画出点A′的位置,然后过点A′作A′C⊥OB,接下来依据旋转的定义和性质可得到OA′的长和∠COA′的度数,最后依据特殊锐角三角函数值求解即可.【解答】解:如图所示:过点A′作A′C⊥OB.∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA′=OA.∴∠COA′=45°.∴OC=2×=,CA′=2×=.∴A′的坐标为(,﹣).故选:C.【点评】本题主要考查的是旋转的定义和性质、特殊锐角三角函数值的应用,得到∠COA′=45°是解题的关键.4.(2016 )在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限点的坐标的符号特征,记住各象限点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二、填空题1.(2016·)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B 的坐标是(,1),则点A8的横坐标是.6+6.【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.2.(2016省聊城市,3分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.3.(2016.省市,3分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n B n顶点B n的横坐标为2n+1﹣2.﹣1【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.7.(2016.省威海市,3分)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A作A,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为﹣()2015.【考点】坐标与图形性质.【分析】先求出A1、A2、A3、A4、A坐标,探究规律,利用规律解决问题.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4整除的话在y 轴的负半轴上,余数是1在x 轴的正半轴上,余数是2在y 轴的正半轴上,余数是3在x 轴的负半轴上, ∵2016÷4=504,∴A 2016在y 轴的负半轴上,纵坐标为﹣()2015.故答案为﹣()2015.三、解答题(2016·)(本题满分12分) 如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,1),取一点B (b ,0),连接AB ,作线段AB 的垂直平分线l 1,过点B 作x 轴的垂线l 2,记l 1,l 2的交点为P.(1)当b=3时,在图1中补全图形(尺规作图,不写作法,保留作图痕迹);(2)小慧多次取不同数值b ,得出相应的点P ,并把这些点用平滑的曲线连接起来,发现:这些点P 竟然在一条曲线L 上!①设点P 的坐标为(x ,y ),试求y 与x 之间的关系式,并指出曲线L 是哪种曲线; ②设点P 到x 轴,y 轴的距离分别为d 1,d 2,求d 1+d 2的围. 当d 1+d 2=8时,求点P 的坐标;③将曲线L 在直线y=2下方的部分沿直线y=2向上翻折,得到一条“W ”形状的新曲线,若直线y=kx+3与这条“W ”形状的新曲线有4个交点,直接写出k 的取值围.图1 图2【考点】二次函数,一次函数,尺规作图,平面直角坐标系,勾股定理,一元二次方程,轴对称——翻折,最值问题.【分析】(1)根据垂直平分线、垂线的尺规作图方法画图即可,要标出字母;(2)①分x >0和x ≤0两种情况讨论:当x >0时,如图2,连接AP ,过点P 作PE⊥y 轴于点E ,可得出PA=PB=y ;再在Rt △APE 中,EP=OB=x ,AE=OE-OA= y-1,由勾股定理,可求出y 与x 之间的关系式;当x ≤0时,点P (x ,y )同样满足y=21x 2+21,曲线L 就是二次函数y=21x 2+21的图像,也就是说曲线L 是一条抛物线.②首先用代数式表示出d 1,d 2:d 1=21x 2+21,d 2=|x |,得出d 1+d 2=21x 2+21+|x |,可知当x=0时,d1+d2因此d1+d2的围是d1+d2当d1+d2=8时,2|x|=8. 将x从绝对值中开出来,故需分x≥0和x<0两种情况讨论:当x≥0时,将原方程2,解出x1,x2即可;当x<0时,将原方程化为2P的纵坐标,从而得2x=8,解出x1,x2即可;最后将x=±3代入出点P的坐标.③直接写出k的取值围即可.【解答】解:(1)如图1所示(画垂直平分线,垂线,标出字母各1分).……………………………………………………………..3分图1 图2(2)①当x>0时,如图2,连接AP,过点P作PE⊥y轴于点E.∵l1垂直平分AB∴PA=PB=y.在Rt△APE中,EP=OB=x,AE=OE-OA= y-1.由勾股定理,得 (y-1)2+x2=y2. ………………………………………5分整理得,2当x≤0时,点P(x,y)同样满足2……………………….6分∴曲线L就是二次函数2.即曲线L是一条抛物线. …………………………………………………………7分②由题意可知,d12d2=|x|.∴d1+d22|x|.当x=0时,d1+d2∴d1+d2的围是d1+d2………………………………………………8分当d1+d2=82|x|=8.(Ⅰ)当x≥02解得 x1=3,x2= -5(舍去).(Ⅱ)当x<02x=8.解得 x1= -3,x2= 5(舍去).将x=±3代入2 y=5. …………………………………….9分∴点P的坐标为(3,5)或(-3,5). …………………………….10分③k k…………………………………………….12分解答过程如下(过程不需写):把y=2代入2x1=x2∴直线y=2与抛物线222).当直线y=kx+32)时,可求得当直线y=kx+32)时,可求得 k=故当直线y=kx+3与这条“W”形状的新曲线有4个交点时,k的取值围是:k……………………………………………………………….12分【点评】本题是压轴题,综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题. 读懂题目、准确作图、熟谙二次函数及其图像是解题的关键. 近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的主角。

相关文档
最新文档