2020年重庆市中考数学试卷(B)及答案
(中考精品)重庆市中考数学真题(B卷)(原卷版)

重庆市2022年初中学业水平暨高中招生考试数学试卷(B 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-. 一、选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A 、B 、C 、D 的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1. 2-的相反数是( )A. 2-B. 2C. 12 D. 12- 2. 下列北京冬奥会运动标识图案是轴对称图形的是( )A B.C. D.3. 如图,直线a b ∥,直线m 与a ,b 相交,若1115∠=︒,则2∠的度数为( )A. 115°B. 105°C. 75°D. 65° 4. 如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为.( )A. 3时B. 6时C. 9时D. 12时 5. 如图,ABC 与DEF 位似,点O 是它们的位似中心,且位似比为1∶2,则ABC 与DEF 的周长之比是( )A. 1∶2B. 1∶4C. 1∶3D. 1∶9 6. 把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A. 15B. 13C. 11D. 97. 4的值在( )A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间8. 学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x ,根据题意,下列方程正确的是( )A. 2625(1)400x -=B. 2400(1)625x +=C. 2625400x =D. 2400625x =9. 如图,在正方形ABCD 中,对角线AC 、BD 相交于点O . E 、F 分别为AC 、BD 上一点,且OE OF =,连接AF ,BE ,EF .若25AFE ∠=︒,则CBE ∠的度数为( )A. 50°B. 55°C. 65°D. 70° 10. 如图,AB 是O 的直径,C 为O 上一点,过点C 的切线与AB 的延长线交于点P,若AC PC ==,则PB 的长为( )B. 32C. D. 3 11. 关于x 的分式方程31133x a x x x-++=--的解为正数,且关于y 的不等式组92(2)213y y y a +≤+⎧⎪-⎨>⎪⎩的解集为5y ≥,则所有满足条件的整数a 的值之和是( ) A. 13 B. 15 C. 18 D. 20 12. 对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确个数为( )A. 0B. 1C. 2D. 3二、填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13. 0|2|(3-+=_________.14. 不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是________.15. 如图,在矩形ABCD 中,1AB =,2BC =,以B 为圆心,BC 的长为半轻画弧,交AD 于点E .则图中阴影部分的面积为_________.(结果保留π)16. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题(共2个小题,每小题8分,共16分)17. 计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷ ⎪⎝⎭-+. 18. 我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a ,高为h 的三角形的面积公式为12S ah =.想法是:以BC 为边作矩形BCFE ,点A 在边FE 上,再过点A 作BC 的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A 作BC 的垂线AD 交BC 于点的D .(只保留作图痕迹)在ADC 和CFA △中,∵AD BC ⊥,∴90ADC ∠=︒.∵90F ∠=︒,∴______①____.∵EF BC ∥,∴______②_____.又∵____③______.∴ADC CFA △≌△(AAS ).同理可得:_____④______.11112222ABC ADC ABD ADCF AEBD BCFE S S S S S S ah =+=+== 矩形矩形矩形. 三、解答题(共7个小题,每小题10分,共70分)19. 在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x ,67x ≤<,记为6;78x ≤<,记为7;89x ≤<,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11, 七、八年级抽取的学生课外阅读时长统计表年级七年级 八年级 平均数8.3 8.3 众数a 9 中位数 8 b8小时及以上所占百分比 75% c根据以上信息,解答下列问题:(1)填空:=a ______________,b =______________,c =______________.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由,(写出一条理由即可)20. 反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x =的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<解集; (3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积. 21. 为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙的的施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22. 湖中小岛上码头C 处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A 处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA 方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A 的北偏东30°方向上,B 在A 的北偏东60°方向上,且B 在C 的正南方向900米处.(1)求湖岸A 与码头C 的距离(结果精确到11.732=);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计) 23. 对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247(247)2471319÷++=÷=,∴247是13的“和倍数”.又如:∵214(214)2147304÷++=÷= ,∴214不是“和倍数”.(1)判断357,441否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A . 24. 如图,在平面直角坐标系中,抛物线234y x bx c =-++与x 轴交于点(4,0)A ,与y 轴交于点(0,3)B .是(1)求抛物线的函数表达式;(2)点P 为直线AB 上方抛物线上一动点,过点P 作PQ x ⊥轴于点Q ,交AB 于点M ,求65PM AM +的最大值及此时点P 的坐标; (3)在(2)的条件下,点P '与点P 关于抛物线234y x bx c =-++的对称轴对称.将抛物线234y x bx c =-++向右平移,使新抛物线的对称轴l 经过点A .点C 在新抛物线上,点D 在l 上,直接写出所有使得以点A 、P '、C 、D 为顶点的四边形是平行四边形的点D 的坐标,并把求其中一个点D 的坐标的过程写出来.25. 在ABC 中,90BAC ∠=︒,AB AC ==D 为BC 的中点,E ,F 分别为AC ,AD 上任意一点,连接EF ,将线段EF 绕点E 顺时针旋转90°得到线段EG ,连接FG ,AG .(1)如图1,点E 与点C 重合,且GF 的延长线过点B ,若点P 为FG 的中点,连接PD ,求PD 的长;(2)如图2,EF 的延长线交AB 于点M ,点N 在AC 上,AGN AEG ∠=∠且GN MF =,求证:AM AF +=;(3)如图3,F 为线段AD 上一动点,E 为AC 的中点,连接BE ,H 为直线BC 上一动点,连接EH ,将BEH △沿EH 翻折至ABC 所在平面内,得到B EH '△,连接B G ',直接写出线段B G '的长度的最小值。
2022年重庆市中考数学试卷(B卷)及答案解析

2022年重庆市中考数学试卷(B卷)一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(4分)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.(4分)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°4.(4分)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.(4分)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:96.(4分)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.(4分)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间8.(4分)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=6259.(4分)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD 上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°10.(4分)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.311.(4分)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2012.(4分)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n =x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)|﹣2|+(3﹣)0=.14.(4分)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.15.(4分)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留π)16.(4分)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三.解答题(共2个小题,每小题8分,共16分)17.(8分)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.18.(8分)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE 上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CFA中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CFA(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.三.解答题(共7个小题,每小题10分,共70分)19.(10分)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=,b=,c=.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.(10分)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.21.(10分)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.(10分)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)23.(10分)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.24.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.25.(10分)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.2022年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据平行线的性质,可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=115°,∴∠2=115°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.【分析】直接由图形可得出结果.【解答】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C.【点评】本题主要考查了折线统计图的意义,理解横纵轴表示的意义是解题的关键.5.【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.【点评】本题考查了位似三角形的性质,明确两三角形位似,周长比等于相似比是解题的关键.6.【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.【点评】本题主要考查了图形的变换规律,归纳出第n个图案中菱形的个数为2n﹣1,是解题的关键.,体现了从特殊到一般的数学思想.7.【分析】用夹逼法估算无理数的大小即可得出答案.【解答】解:∵49<54<64,∴7<<8,∴3<﹣4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.【分析】第三年的植树量=第一年的植树量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意得:400(1+x)2=625,故选:B.【点评】考查列一元二次方程解决实际问题,读懂题意,找到等量关系列方程是解决本题的关键.9.【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠FAO=∠EOB=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.10.【分析】连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC=PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tan P=求出⊙O的半径r即可得出答案.【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90°+x=180°,∴x=30°,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.故选:D.【点评】本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P=30°是解题的关键.11.【分析】解分式方程得得出x=a﹣2,结合题意及分式方程的意义求出a>2且a≠5,解不等式组得出,结合题意得出a≤7,进而得出2<a≤7且a≠5,继而得出所有满足条件的整数a的值之和,即可得出答案.【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.12.【分析】根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z ﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.【点评】本题考查了整式的加减,解题的关键是注意可以添加1个括号,也可以添加2个括号.二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.14.【分析】画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为,故答案为:.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】先根据锐角三角函数求出∠AEB=30°,再根据扇形面积公式求出阴影部分的面积.【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.【点评】本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.16.【分析】先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由三种特产的总利润是总成本的25%列方程可得=,从而解答此题.【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.【点评】本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解.三.解答题(共2个小题,每小题8分,共16分)17.【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)(x﹣y)+y(y﹣2)=x2﹣y2+y2﹣2y=x2﹣2y;(2)原式=÷=•=.【点评】本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.18.【分析】根据矩形的性质、垂直的定义得出∠F=∠ADC=90°,再根据EF∥BC,推出∠1=∠2,进而证明△ADC≌△CFA(AAS),同理可得:④△ADB≌△BEA(AAS),最后得出三角形的面积公式为S=ah.【解答】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF∥BC,∴∠1=∠2,∵AC=AC,在△ADC与△CFA中,∴△ADC≌△CFA(AAS).同理可得:④△ADB≌△BEA(AAS),=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.∴S△ABC故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).【点评】本题主要考查了基本作图、全等三角形、矩形的判定与性质,掌握5种基本作图,全等三角形、矩形的判定与性质的应用,其中全等的证明是解题关键.三.解答题(共7个小题,每小题10分,共70分)19.【分析】(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b的值,根据频率=可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数;(3)由中位数、众数的比较得出结论.【解答】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即a=8;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为=8.5,因此中位数是8.5小时,即b=8.5;c=×100%=65%,故答案为:8,8.5,65%;(2)400×=160(人),答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.【点评】本题考查中位数、众数、平均数以及样本估计总体,理解中位数、众数的定义是正确解答的前提.20.【分析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由直线解析式求得C点的坐标,然后根据三角形面积公式即可求解.【解答】解:(1)∵(m,4),(﹣2,n)在反比例函数y=的图象上,∴4m=﹣2n=4,解得m=1,n=﹣2,∴A(1,4),B(﹣2,﹣2),把(1,4),(﹣2,﹣2)代入y=kx+b中得,解得,∴一次函数解析式为y=2x+2.画出函数y=2x+2图象如图:(2)由图象可得当0<x<1或x<﹣2时,直线y=﹣2x+6在反比例函数y=图象下方,∴kx+b<的解集为x<﹣2或0<x<1.(3)把y=0代入y=2x+2得0=2x+2,解得x=﹣1,∴点C坐标为(﹣1,0),==2.∴S△AOC【点评】本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x ﹣20)米,由题意可得:5(x﹣20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,由题意可得:,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.22.【分析】(1)延长CB到D,则CD⊥AD于点D,根据题意可得∠NAC=∠CAB=30°,BC=900米,BC∥AN,所以∠C=∠NAC=30°=∠BAD,然后根据含30度角的直角三角形即可解决问题;(2)设快艇在x分钟内将该游客送上救援船,根据救援船的平均速度为150米/分,快艇的平均速度为400米/分,列出方程150x+(400x﹣900)=1559,进而可以解决问题.【解答】解:(1)如图,延长CB到D,则CD⊥AD于点D,根据题意可知:∠NAC=∠CAB=30°,BC=900米,BC∥AN,∴∠C=∠NAC=30°=∠BAD,∴AB=BC=900米,∵∠BAD=30°,∴BD=450米,∴AD=BD=450(米),∴AC=2AD=900≈1559(米)答:湖岸A与码头C的距离约为1559米;(2)设快艇在x分钟内将该游客送上救援船,∵救援船的平均速度为150米/分,快艇的平均速度为400米/分,∴150x+(400x﹣900)=1559,∴x≈4.5,答:快艇能在5分钟内将该游客送上救援船.【点评】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.23.【分析】(1)根据“和倍数”的定义依次判断即可;(2)设A=(a+b+c=12,a>b>c),根据“和倍数”的定义表示F(A)和G(A),代入中,根据为整数可解答.【解答】解:(1)∵357÷(3+5+7)=357÷15=23……12,∴357不是“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”;(2)设A=(a+b+c=12,a>b>c),由题意得:F(A)=,G(A)=,∴===,∵a+c=12﹣b,为整数,∴====7+(1﹣b),∵1<b<9,∴b=3,5,7,∴a+c=9,7,5,3,①当b=3,a+c=9时,(舍),,则A=732或372;②当b=5,a+c=7时,,则A=156或516;③当b=7,a+c=5时,此种情况没有符合的值;综上,满足条件的所有数A为:732或372或156或516.【点评】本题考查了新定义问题,根据新定义问题进行计算是解题关键.24.【分析】(1)将点A、B坐标分别代入抛物线解析式,解方程即可;(2)利用△AQM∽△AOB,得MQ:AQ:AM=3:4:5,则PM+,设P (m,﹣),M(m,﹣),Q(m,0),用含m的代数式表示出PM+2MQ,利用二次函数的性质可得答案;(3)根据原来抛物线和新抛物线的对称轴知,抛物线向右平移个单位,则平移后抛物线解析式为y'=﹣,设D(4,t),C(c,﹣),分AP'与DC为对角线或P'D与AC为对角线或AD与P'C为对角线,分别利用中点坐标公式可得方程,从而解决问题.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).∴,∴.∴抛物线的函数表达式为y=﹣;(2)∵A(4,0),B(0,3),∴OA=4,OB=3,由勾股定理得,AB=5,∵PQ⊥OA,∴PQ∥OB,∴△AQM∽△AOB,∴MQ:AQ:AM=3:4:5,∴AM=,,∴PM+,∵B(0,3),A(4,0),∴l AB:y=﹣,∴设P(m,﹣),M(m,﹣),Q(m,0),∴PM+2MQ=﹣=﹣,∵﹣,∴开口向下,0<m<4,∴当m=1时,PM+的最大值为,此时P(1,);(3)由y=﹣知,对称轴x=,∴P'(2,),∵直线l:x=4,∴抛物线向右平移个单位,∴平移后抛物线解析式为y'=﹣,设D(4,t),C(c,﹣),①AP'与DC为对角线时,,∴,∴D(4,),②P'D与AC为对角线时,,∴,∴D(4,﹣),③AD与P'C为对角线时,,∴,∴D(4,),综上:D(4,)或(4,﹣)或(4,).【点评】本题是二次函数综合题,主要考查了二次函数的图象与性质,待定系数法求函数解析式,相似三角形的判定与性质,平行四边形的判定与性质等知识,根据平行四边形的顶点坐标,利用中点坐标公式列方程是解题的关键,同时注意分类讨论.25.【分析】(1)连接CP,判断出△FCG为等腰直角三角形,进而判断出CP⊥FG,进而得出DP=BC,再求出BC,即可求出答案;(2)过点E作EH⊥AE交AD的延长线于H,先判断出△EGA≌△EFH(SAS),得出AG=FH,∠EAG=∠H=45°,进而判断出△AGN≌△AMF(AAS),即可得出结论;(3)先求出BE=,再判断出点B'是以点E为圆心,为半径的圆上,再判断出点G在点A右侧过点A与AD垂直且等长的线段上,进而得出EF最大时,B'G最小,即可求出答案.【解答】(1)解:如图1,连接CP,由旋转知,CF=CG,∠FCG=90°,∴△FCG为等腰直角三角形,∵点P是FG的中点,∴CP⊥FG,∵点D是BC的中点,∴DP=BC,在Rt△ABC中,AB=AC=2,∴BC=AB=4,∴DP=2;(2)证明:如图2,过点E作EH⊥AE交AD的延长线于H,∴∠AEH=90°,由旋转知,EG=EF,∠FEG=90°,∴∠FEG=∠AEH,∴∠AEG=∠HEF,∵AB=AC,点D是BC的中点,∴∠BAD=∠CAD=∠BAC=45°,∴∠H=90°﹣∠CAD=45°=∠CAD,∴AE=HE,∴△EGA≌△EFH(SAS),∴AG=FH,∠EAG=∠H=45°,∴∠EAG=∠BAD=45°,∵∠AMF=180°﹣∠BAD﹣∠AFM=135°﹣∠AFM,∵∠AFM=∠EFH,∴∠AMF=135°﹣∠EFH,∵∠HEF=180°﹣∠EFH﹣∠H=135°﹣∠EFH,∴∠AMF=∠HEF,∵△EGA≌△EFH,∴∠AEG=∠HEF,∵∠AGN=∠AEG,∴∠AGN=∠HEF,∴∠AGN=∠AMF,∵GN=MF,∴△AGN≌△AMF(AAS),∴AG=AM,∵AG=FH,∴AM=FH,∴AF+AM=AF+FH=AH=AE;(3)解:∵点E是AC的中点,∴AE=AC=,根据勾股定理得,BE==,由折叠直,BE=B'E=,∴点B'是以点E为圆心,为半径的圆上,由旋转知,EF=EG,∴点G在点A右侧过点A与AD垂直且等长的线段上,∴B'G的最小值为B'E﹣EG,要B'G最小,则EG最大,即EF最大,∵点F在AD上,∴点F在点A或点D时,EF最大,最大值为,∴线段B′G的长度的最小值﹣.【点评】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,等腰三角形的性质,作出辅助线构造出全等三角形是解本题的关键.。
2020年重庆市中考数学试卷(B卷)(后附答案)

2020年重庆市中考数学试卷(B卷)(后附答案).. .2020年中考数学试卷(B 卷)题号⼀⼆三四总分得分⼀、选择题(本⼤题共12⼩题,共48.0分) 1. 5的绝对值是()A. 5B. ?5C. 15D. ?152. 如图是⼀个由5个相同正⽅体组成的⽴体图形,它的主视图是()A.B.C.D.3. 下列命题是真命题的是()A. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为2:3B. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9C. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为2:3D. 如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为4:94. 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为()A. 60°B. 50°C. 40°D. 30°5.抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=?2C. 直线x=1D. 直线x=?16.某次知识竞赛共有20题,答对⼀题得10分,答错或不答扣5分,⼩华得分要超过120分,他⾄少要答对的题的个数为()A. 13B. 14C. 15D. 167.估计√5+√2×√10的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间8.根据如图所⽰的程序计算函数y的值,若输⼊x的值是7,则输出y的值是-2,若输⼊x的值是-8,则输出y的值是()A. 5B. 10C. 19D. 219.如图,在平⾯直⾓坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反⽐例函数y=xx(k>0,x>0)经过点C,则k的值等于()A. 10B. 24C. 48D. 50第2页,共34页.. .10. 如图,AB 是垂直于⽔平⾯的建筑物.为测量AB 的⾼度,⼩红从建筑物底端B 点出发,沿⽔平⽅向⾏⾛了52⽶到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC =BC .在点D 处放置测⾓仪,测⾓仪⽀架DE ⾼度为0.8⽶,在E 点处测得建筑物顶端A 点的仰⾓∠AEF 为27°(点A ,B ,C ,D ,E 在同⼀平⾯内).斜坡CD 的坡度(或坡⽐)i =1:2.4,那么建筑物AB 的⾼度约为()(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A. 65.8⽶B. 71.8⽶C. 73.8⽶D. 119.8⽶11. 若数a 使关于x 的不等式组{x32≤14(x ?7),6x ?2x>5(1?x )有且仅有三个整数解,且使关于y的分式⽅程1?2xx ?1-x1?x =-3的解为正数,则所有满⾜条件的整数a 的值之和是()A. ?3B. ?2C. ?1D. 112. 如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折⾄△ABC 所在的平⾯内,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G .则四边形DFEG 的周长为()A. 8B. 4√2C. 2√2+4D. 3√2+2⼆、填空题(本⼤题共6⼩题,共24.0分) 13. 计算:(√3-1)0+(12)-1=______.14. 2019年1⽉1⽇,“学习强国”平台全国上线,截⾄2019年3⽉17⽇⽌,重庆市党员“学习强国”APP 注册⼈数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000⽤科学记数法表⽰为______.15.⼀枚质地均匀的骰⼦,骰⼦的六个⾯上分别刻有1到6的点数.连续掷两次骰⼦,在骰⼦向上的⼀⾯上,第⼆次出现的点数是第⼀次出现的点数的2倍的概率是______.16.如图,四边形ABCD是矩形,AB=4,AD=2√2,以点A为圆⼼,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的⾯积是______.17.⼀天,⼩明从家出发匀速步⾏去学校上学.⼏分钟后,在家休假的爸爸发现⼩明忘带数学书,于是爸爸⽴即匀速跑步去追⼩明,爸爸追上⼩明后以原速原路跑回家.⼩明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(⼩明被爸爸追上时交流时间忽略不计).两⼈之间相距的路程y(⽶)与⼩明从家出发到学校的步⾏时间x(分钟)之间的函数关系如图所⽰,则⼩明家到学校的路程为______⽶.18.某磨具⼚共有六个⽣产车间,第⼀、⼆、三、四车间毎天⽣产相同数量的产品,第五、六车间每天⽣产的产品数量分別是第⼀车间每天⽣产的产品数量的34和83.甲、⼄两组检验员进驻该⼚进⾏产品检验,在同时开始检验产品时,每个车间原有成品⼀样多,检验期间各车间继续⽣产.甲组⽤了6天时间将第⼀、⼆、三第4页,共34页.. .车间所有成品同时检验完;⼄组先⽤2天将第四、五车间的所有成品同时检验完后,再⽤了4天检验完第六车间的所有成品(所有成品指原有的和检验期间⽣产的成品).如果每个检验员的检验速度⼀样,则甲、⼄两组检验员的⼈数之⽐是______.三、计算题(本⼤题共1⼩题,共10.0分) 19. 计算:(1)(a +b )2+a (a -2b );(2)m -1+2x ?6x 2?9+2x +2x +3.四、解答题(本⼤题共7⼩题,共68.0分) 20. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .21.为落实视⼒保护⼯作,某校组织七年级学⽣开展了视⼒保健活动.活动前随机测查了30名学⽣的视⼒,活动后再次测查这部分学⽣的视⼒.两次相关数据记录如下:活动前被测查学⽣视⼒数据:4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.64.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.95.0 5.0 5.1活动后被测查学⽣视⼒数据:4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.84.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.95.0 5.0 5.1 5.1活动后被测查学⽣视⼒频数分布表第6页,共34页...4.8≤x <5.0 12 5.0≤x <5.24根据以上信息回答下列问题:(1)填空:a =______,b =______,活动前被测查学⽣视⼒样本数据的中位数是______,活动后被测查学⽣视⼒样本数据的众数是______;(2)若视⼒在4.8及以上为达标,估计七年级600名学⽣活动后视⼒达标的⼈数有多少?(3)分析活动前后相关数据,从⼀个⽅⾯评价学校开展视⼒保健活动的效果.22.在数的学习过程中,我们总会对其中⼀些具有某种特性的数进⾏研究,如学习⾃然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究⼀种特殊的⾃然数-“纯数”.定义:对于⾃然数n,在通过列竖式进⾏n+(n+1)+(n+2)的运算时各位都不产⽣进位现象,则称这个⾃然数n为“纯数”.例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产⽣进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产⽣了进位.(1)请直接写出1949到2019之间的“纯数”;(2)求出不⼤于100的“纯数”的个数,并说明理由.23.函数图象在探索函数的性质中有⾮常重要的作⽤,下⾯我们就⼀类特殊的函数展开探索.画函数y=-2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所⽰;经历同样的过程画函数y=-2|x|+2和y=-2|x+2|的图象如图所⽰.第8页,共34页.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前⾯的系数相同,则图象的开⼝⽅向和形状完全相同,只有最⾼点和对称轴发⽣了变化.写出点A,B的坐标和函数y=-2|x+2|的对称轴.(2)探索思考:平移函数y=-2|x|的图象可以得到函数y=-2|x|+2和y=-2|x+2|的图象,分别写出平移的⽅向和距离.(3)拓展应⽤:在所给的平⾯直⾓坐标系内画出函数y=-2|x-3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,⽐较y1,y2的⼤⼩.24.某菜市场有2.5平⽅⽶和4平⽅⽶两种摊位,2.5平⽅⽶的摊位数是4平⽅⽶摊位数的2倍.管理单位每⽉底按每平⽅⽶20元收取当⽉管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.(1)菜市场毎⽉可收取管理费4500元,求该菜市场共有多少个4平⽅⽶的摊位?. .(2)为推进环保袋的使⽤,管理单位在5⽉份推出活动⼀:“使⽤环保袋送礼物”,2.5平⽅⽶和4平⽅⽶两种摊位的商户分别有40%和20%参加了此项活动.为提⾼⼤家使⽤环保袋的积极性,6⽉份准备把活动⼀升级为活动⼆:“使⽤环保袋抵扣管理费”,同时终⽌活动⼀.经调査与测算,参加活动⼀的商户会全部参加活动⼆,参加活动⼆的商户会显著增加,这样,6⽉份参加活动⼆的2.5平⽅⽶摊位的总个数将在5⽉份参加活动⼀的同⾯积个数的基础上增加2a%,毎个摊位的管理费将会减少310a%;6⽉份参加活动⼆的4平⽅⽶摊位的总个数将在5⽉份参加活动⼀的同⾯积个数的基础上增加6a%,每个摊位的管理费将会减少14a%.这样,参加活动⼆的这部分商户6⽉份总共缴纳的管理费⽐他们按原⽅式共缴纳的管理费将减少518a%,求a的值.25.在?ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的⾯积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.第10页,共34页.. .26. 在平⾯直⾓坐标系中,抛物线y =-√34x 2+√32x +2√3与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上⽅抛物线上⼀动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最⼤时,求PH +HK +√32KG 的最⼩值及点H 的坐标.(2)如图2,将抛物线沿射线AC ⽅向平移,当抛物线经过原点O 时停⽌平移,此时抛物线顶点记为D ′,N 为直线DQ 上⼀点,连接点D ′,C ,N ,△D ′CN 能否构成等腰三⾓形?若能,直接写出满⾜条件的点N 的坐标;若不能,请说明理由.第12页,共34页.. . 答案和解析1.【答案】A【解析】解:在数轴上,数5所表⽰的点到原点0的距离是5;故选:A.根据绝对值的意义:数轴上⼀个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为⾮负数;即可得解.本题考查了绝对值,解决本题的关键是⼀个正数的绝对值是它本⾝,⼀个负数的绝对值是它的相反数,0的绝对值是0.2.【答案】D【解析】解:从正⾯看易得第⼀层有4个正⽅形,第⼆层有⼀个正⽅形,如图所⽰:.故选:D.找到从正⾯看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正⾯看得到的视图.3.【答案】B【解析】解:A、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9,是假命题;B、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的周长⽐为4:9,是真命题;C、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为16:81,是假命题;D、如果两个三⾓形相似,相似⽐为4:9,那么这两个三⾓形的⾯积⽐为16:81,是假命题;故选:B.根据相似三⾓形的性质分别对每⼀项进⾏分析即可.此题考查了命题与定理,⽤到的知识点是相似三⾓形的性质,关键是熟练掌握有关性质和定理.4.【答案】B【解析】解:∵AC是⊙O的切线,∴AB⊥AC,且∠C=40°,∴∠ABC=50°,故选:B.由题意可得AB⊥AC,根据直⾓三⾓形两锐⾓互余可求∠ABC=50°.本题考查了切线的性质,直⾓三⾓形两锐⾓互余,熟练运⽤切线的性质是本题的关键.5.【答案】C【解析】解:∵y=-3x2+6x+2=-3(x-1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1.故选:C.将抛物线的⼀般式配⽅成为顶点式,可确定顶点坐标及对称轴.第14页,共34页.本题考查了⼆次函数的性质.抛物线y=a(x-h)2+k的顶点坐标为(h,k),对称轴为x=h.6.【答案】C【解析】解:设要答对x道.10x+(-5)×(20-x)>120,10x-100+5x >120,15x >220,解得:x>,根据x必须为整数,故x取最⼩整数15,即⼩华参加本次竞赛得分要超过120分,他⾄少要答对15道题.故选:C.根据竞赛得分=10×答对的题数+(-5)×未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.此题主要考查了⼀元⼀次不等式的应⽤,得到得分的关系式是解决本题的关键.7.【答案】B【解析】解:=+2=3,∵3=,6<<7,故选:B.化简原式等于3,因为3=,所以<<,即可求解;. .本题考查⽆理数的⼤⼩;能够将给定的⽆理数锁定在相邻的两个整数之间是解题的关键.8.【答案】C【解析】解:当x=7时,可得,可得:b=3,当x=-8时,可得:y=-2×(-8)+3=19,故选:C.把x=7与x=-8代⼊程序中计算,根据y值相等即可求出b的值.此题考查了函数值,弄清程序中的关系式和理解⾃变量取值范围是解本题的关键.9.【答案】C【解析】解:如图,过点C作CE⊥OA于点E,∵菱形OABC的边OA在x轴上,点A(10,0),∴OC=OA=10,∵sin∠COA==.∴CE=8,∴OE==6∴点C坐标(6,8)第16页,共34页.∵若反⽐例函数y=(k>0,x>0)经过点C,∴k=6×8=48故选:C.由菱形的性质和锐⾓三⾓函数可求点C(6,8),将点C坐标代⼊解析式可求k的值.本题考查了反⽐例函数性质,反⽐例函数图象上点的坐标特征,菱形的性质,锐⾓三⾓函数,关键是求出点C坐标.10.【答案】B【解析】解:过点E作EM⊥AB与点M,延长ED交BC于G,∵斜坡CD的坡度(或坡⽐)i=1:2.4,BC=CD=52⽶,∴设DG=x,则CG=2.4x.在Rt△CDG中,∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,∴DG=20⽶,CG=48⽶,∴EG=20+0.8=20.8⽶,BG=52+48=100⽶.∵EM⊥AB,AB⊥BG,EG⊥BG,∴四边形EGBM是矩形,∴EM=BG=100⽶,BM=EG=20.8⽶.在Rt△AEM中,∵∠AEM=27°,∴AM=EM?tan27°≈100×0.51=51⽶,. .∴AB=AM+BM=51+20.8=71.8⽶.故选:B.过点E作EM⊥AB与点M,根据斜坡CD的坡度(或坡⽐)i=1:2.4可设CD=x,则CG=2.4x,利⽤勾股定理求出x的值,进⽽可得出CG与DG的长,故可得出EG的长.由矩形的判定定理得出四边形EGBM是矩形,故可得出EM=BG,BM=EG,再由锐⾓三⾓函数的定义求出AM的长,进⽽可得出结论.本题考查的是解直⾓三⾓形的应⽤-仰⾓俯⾓问题,根据题意作出辅助线,构造出直⾓三⾓形是解答此题的关键.11.【答案】A【解析】解:由关于x 的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴-<a<3;由关于y 的分式⽅程-=-3得1-2y+a=-3(y-1),∴y=2-a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴-<a<2,且a≠1,∴所有满⾜条件的整数a的值为:-2,-1,0,其和为-3.故选:A.第18页,共34页.先解不等式组根据其有三个整数解,得a的⼀个范围;再解关于y的分式⽅程-=-3,根据其解为正数,并考虑增根的情况,再得a的⼀个范围,两个范围综合考虑,则所有满⾜条件的整数a的值可求,从⽽得其和.本题属于含参⼀元⼀次不等式组和含参分式⽅程的综合计算题,⽐较容易错,属于易错题.12.【答案】D【解析】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°-∠ABC=45°,∴△ABD是等腰直⾓三⾓形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB-∠ADG=∠EDG-∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直⾓三⾓形,. .。
2020年重庆市中考招生考试数学试题(B卷)(解析版)

A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(
)
A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.
2023年重庆市中考数学试卷(B卷)含答案解析

绝密★启用前2023年重庆市中考数学试卷(B卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 4的相反数是( )A. 14B. −14C. −4D. 42.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.如图,直线a,b被直线c所截,若a//b,∠1=63°,则∠2的度数为( )A. 27°B. 53°C. 63°D. 117°4.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.55. 反比例函数y=6的图象一定经过的点是( )xA. (−3,2)B. (2,−3)C. (−2,−4)D. (2,3)6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 267. 估计√ 5×(√ 6)的值应在( )√ 5A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8. 如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A. 30°B. 40°C. 50°D. 60°9.如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为( )A. 2B. √ 3C. 1D. √ 210. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:|−5|+(2−√ 3)0=______ .12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是______ .13. 若七边形的内角中有一个角为100°,则其余六个内角之和为______ .14. 如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为______ .15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .16.如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______ (结果保留π).17. 若关于x的不等式组{x+23>x2+14x+a<x−1的解集为x<−2,且关于y的分式方程a+2y−1+y+21−y=2的解为正数,则所有满足条件的整数a的值之和为______ .18. 对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7−1=6,3−1=2,∴7311是“天真数”;四位数8421,∵8−1≠6,∴8421不是“天真数”,则最小的“天真数”为______ ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a−5,若P(M)Q(M)能被10整除,则满足条件的M的最大值为______ .三、解答题(本大题共8小题,共78.0分。
2022年重庆市中考数学试卷(b卷)(解析版)

2022年重庆市中考数学试卷(B卷)一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:96.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=6259.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB 的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.311.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2012.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留π)16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CF A(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=,b=,c=.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快(接送游客上下船的时间忽略不计)艇能否在5分钟内将该游客送上救援船?请说明理由.23.(10分)(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.24.(10分)(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.25.(10分)(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.2022年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°【分析】根据平行线的性质,可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=115°,∴∠2=115°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时【分析】直接由图形可得出结果.【解答】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C.【点评】本题主要考查了折线统计图的意义,理解横纵轴表示的意义是解题的关键.5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.【点评】本题考查了位似三角形的性质,明确两三角形位似,周长比等于相似比是解题的关键.6.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.【点评】本题主要考查了图形的变换规律,归纳出第n个图案中菱形的个数为2n﹣1,是解题的关键.,体现了从特殊到一般的数学思想.7.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解答】解:∵49<54<64,∴7<<8,∴3<﹣4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=625【分析】第三年的植树量=第一年的植树量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意得:400(1+x)2=625,故选:B.【点评】考查列一元二次方程解决实际问题,读懂题意,找到等量关系列方程是解决本题的关键.9.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠F AO=∠EOB=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.3【分析】连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC=PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tan P=求出⊙O的半径r即可得出答案.【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90°+x=180°,∴x=30°,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.故选:D.【点评】本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P=30°是解题的关键.11.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.20【分析】解分式方程得得出x=a﹣2,结合题意及分式方程的意义求出a>2且a≠5,解不等式组得出,结合题意得出a≤7,进而得出2<a≤7且a≠5,继而得出所有满足条件的整数a的值之和,即可得出答案.【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.12.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【分析】根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.【点评】本题考查了整式的加减,解题的关键是注意可以添加1个括号,也可以添加2个括号.二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=3.【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.【分析】画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为,故答案为:.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为π.(结果保留π)【分析】先根据锐角三角函数求出∠AEB=30°,再根据扇形面积公式求出阴影部分的面积.【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.【点评】本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为4:3.【分析】先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由三种特产的总利润是总成本的25%列方程可得=,从而解答此题.【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.【点评】本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)(x﹣y)+y(y﹣2)=x2﹣y2+y2﹣2y=x2﹣2y;(2)原式=÷=•=.【点评】本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①∠ADC=∠F.∵EF∥BC,∴②∠1=∠2.又∵③AC=AC,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS).S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.【分析】根据矩形的性质、垂直的定义得出∠F=∠ADC=90°,再根据EF∥BC,推出∠1=∠2,进而证明△ADC≌△CF A(AAS),同理可得:④△ADB≌△BEA(AAS),最后得出三角形的面积公式为S=ah.【解答】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF∥BC,∴∠1=∠2,∵AC=AC,在△ADC与△CF A中,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS),∴S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).【点评】本题主要考查了基本作图、全等三角形、矩形的判定与性质,掌握5种基本作图,全等三角形、矩形的判定与性质的应用,其中全等的证明是解题关键.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=8,b=8.5,c=65%.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)【分析】(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b的值,根据频率=可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数;(3)由中位数、众数的比较得出结论.【解答】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即a=8;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为=8.5,因此中位数是8.5小时,即b=8.5;c=×100%=65%,故答案为:8,8.5,65%;(2)400×=160(人),答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.【点评】本题考查中位数、众数、平均数以及样本估计总体,理解中位数、众数的定义是正确解答的前提.20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.【分析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由直线解析式求得C点的坐标,然后根据三角形面积公式即可求解.【解答】解:(1)∵(m,4),(﹣2,n)在反比例函数y=的图象上,∴4m=﹣2n=4,解得m=1,n=﹣2,∴A(1,4),B(﹣2,﹣2),把(1,4),(﹣2,﹣2)代入y=kx+b中得,解得,∴一次函数解析式为y=2x+2.画出函数y=2x+2图象如图;(2)由图象可得当0<x<1或x<﹣2时,直线y=﹣2x+6在反比例函数y=图象下方,∴kx+b<的解集为x<﹣2或0<x<1.(3)把y=0代入y=2x+2得0=2x+2,解得x=﹣1,∴点C坐标为(﹣1,0),∴S△AOC==2.【点评】本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x ﹣20)米,由题意可得:5(x﹣20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,由题意可得:,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快。
2020年重庆市中考数学试卷(B)及答案

重庆市2016年初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D )A.-4B.4C.41- D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B )4.如图,直线a ,b 被直线c 所截,且a //b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D )A.对重庆市居民日平均用水量的调查;B.对一批LED 节能灯使用寿命的调查;C.对重庆新闻频道“天天630”栏目收视率的调查;D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2-a 有意义,则a 的取值范围是( A )A.a ≥2B.a ≤2C.a >2D.a ≠28.若m =-2,则代数式m 2-2m -1的值是( B )A.9B.7C.-1D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39π D.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D )B.32.1 米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x <-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫ ⎝⎛+π=____8______. 15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB =40°,则∠C =__25__度.16.点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_ 51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
2020年重庆市中考数学试卷-(含答案)

2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(10分)计算: (1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8.19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒, CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”; 745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389. 24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-. 26.证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE ,AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE AD =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点,1222CF DE AD ∴==;(2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC a ∴===, 由(1)可知:BAD CAE ∆≅∆,2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴= 3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BN ∴=,BC BM =,60PBN CBM ∠=︒=∠, BPN ∴∆是等边三角形,CBM ∆是等边三角形, 60BPN BNP ∴∠=∠=︒,BM CM =, BM CM =,AB AC =,AM ∴垂直平分BC , AD BC ⊥,60BPD ∠=︒,3BD ∴=,AB AC =,90BAC ∠=︒,AD BC ⊥,AD BD ∴=, ∴3PD PD AP =+,312PD +∴=, 3332BD PD +∴==, 由(1)可知:332CE BD +==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2016年初中毕业曁高中招生考试数学试题(B 卷)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D )A.-4B.4C.41- D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B )4.如图,直线a ,b 被直线c 所截,且a //b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D )A.对重庆市居民日平均用水量的调查;B.对一批LED 节能灯使用寿命的调查;C.对重庆新闻频道“天天630”栏目收视率的调查;D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2-a 有意义,则a 的取值范围是( A )A.a ≥2B.a ≤2C.a >2D.a ≠28.若m =-2,则代数式m 2-2m -1的值是( B )A.9B.7C.-1D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39π D.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D )B.32.1 米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x <-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫ ⎝⎛+π=____8______. 15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB =40°,则∠C =__25__度.16.点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_ 51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点,所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第_120___秒。
解析:根据坐标分别求出中间实线和虚线的解析式,联立解方程即可求得交点坐标,横坐标即为所求18.如图,在正方形ABCD 中,AB =6,点E 在边CD 上,DE =31DC ,连接AE ,将△ADE 沿AE 翻折,点D 落在点F 处,点O 是对角线BD 的中点,连接OF 并延长OF 交CD 于点G ,连接BF ,BG ,则△BFG 的周长是___51012512+_____. (第18题) (答案图)解:延长EF ,交BC 于点H ,则可证得△ABH 全等△AFH ,所以BH =FH ,在△HCE 中,令FH =x ,则HE =x +2,EC =4,HC =6-x ,由勾股定理可得x =3,所以H 是BC 的中点,所以OH =3。
再由△OHF 相似△GEF ,OH =FH =3,可得EG =EF =2,所以GC =2,所以BG =210, 在△OJG 中,OJ =3,JG =1,由勾股定理可得OG =10,所以FG =510252=OG 。
在△HCE 中,HI :HC =HF :HE +FI :EC ,可求得HI =59,FI =512,所以BI =524, 在△BFI 中可求得BF =5512。
所以C △BFG =BF +FG +BG =51012512+。
三、解答题 19.如图,在△ABC 和△CED 中,AB //CD ,AB =CE ,AC =CD ,求证:∠B =∠E .证明:∵AB //CD ,∴∠DCA =∠CAB 。
又∵AB =CE ,AC =CD ,∴△CAB 全等△DCE 。
∴∠B =∠E .20.某校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动,校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如下不完整的统计图,请根据统计图完成下列问题: 参加本次调查有__240___名学生,根据调查数据分析,全校约有__400____名学生参加了音乐社团;请你补全条形统计图。
解:补全图如下:四、解答题21.计算:(1)))(2()(2y x y x y x +---; (2))(x x x x x x x 22242244+-÷+++.解:(1)原式=3y 2-xy . (2)原式=21-x 。
22.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A ,B 两点,与x 轴交于点C ,与Y 轴交于点D ,点B 的坐标为(m ,-4),连接AO ,AO =5,sin ∠AOC =53。
(1)求反比例函数的解析式;(2)连接OB ,求△AOB 的面积。
解:(1)先求得点A (-4,3),所以y =x12-. (2)点B (3,-4),则直线AB 的解析式为y =-x -1,所以点C (-1,0),所以S △AOB =3.5.23.近期猪肉价格不断走高,引起市民与政府的高度关注,当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日猪肉价格为每千克40元,5月21日,某市决定投入储备猪肉,并规定其销售价格在5月20日每千克40元的基础上下调a %出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为40元的情况下,该天的两种猪肉总销量比5月20日增加了a %,且储备猪肉的销量占总销量的43,两种猪肉销售的总金额比5月20日提高了%101a ,求a 的值. 解:(1)5月20日每千克猪肉的价格为100÷2.5=40(元),则年初猪肉价格的最低价为40÷(1+60%)=25(元)。
(2)设5月20日的总销量为1,由题意,得令t =a %,方程可化为5t 2-t =0,解得t 1=0(舍),t 2=0.2,所以a %=0.2,即a =20.24.我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F (n )=qp ,例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是最佳分解,所以F (12)=43. (1)如果一个正整数a 是另外一个正整数b 的平方,我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1.(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”中F (t )的最大值.(1)证明:设m =n 2=nxn ,其中m 和n 均为正整数,所以F (m )=1=nn . (2)解:由题意得,10y +x -(10x +y )=18,即y =x +2,所以t 可能的值为13,24,35,46,57,68,79,当t =13时,F (t )=131, 当t =24时,F (t )=32, 当t =35时,F (t )=75, 当t =46时,F (t )=232, 当t =57时,F (t )=193, 当t =68时,F (t )=174, 当t =79时,F (t )=791, 所以F (t )的最大值为75。
五、解答题25.已知△ABC 是等腰三角形,∠BAC =90°,CD =1/2BC ,DE ⊥CE ,DE =CE ,连接AE ,点M 是AE 的中点.(1)如图1,若点D 在BC 边上,连接CM ,当AB =4时,求CM 的长;(2)如图2,若点D 在△ABC 的内部,连接BD ,点N 是BD 中点,连接MN ,NE ,求证MN ⊥AE ;(3)如图3,将图2中的△CDE 绕点C 逆时针旋转,使∠BCD =30°,连接BD ,点N 是BD中点,连接MN ,探索ACMN 的值并直接写出结果 解:(1)CE =2,CM =52AE = (2)如图,延长EN 到NF ,使NE =NF ,再连接BF ,AF ,可得BF =DE =CE ,∠FBN =∠NDE ,则∠ACE =90°-∠DCB∠ABF =∠BDE -∠ABN =∠180°-∠DBC -∠DCB -∠EDC -∠ABN =180°-(∠DBC +∠ABN )-45°-∠DCB =90°-∠DCB所以∠ACE =∠ABF ,所以△ABF 全等于△ACE ,所以∠F AB =∠EAC ,所以∠F AE =∠BAC =90°,因为MN //AF ,所以MN ⊥AE 。
(3)同(2)可得MN =1/2AF ,AF =AE ,又AC =2CE ,∠ACE =120,可求得AE =AC 27, 所以47=AC MN 26.如图1,二次函数12-212+=x x y 的图象与一次函数y =kx +b (k ≠0)的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数y =kx +b (k ≠0)的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且S △AMO :S 四边形AONB =1:48.(1)求直线AB 和直线BC 的解析式;(2)点P 是线段AB 上一点,点D 是线段BC 上一点,PD //x 轴,射线PD 与抛物线交于点G ,过点P 作PE ⊥x 轴于点E ,PF ⊥BC 于点F ,当PF 与PE 的乘积最大时,在线段AB 上找一点H (不与点A ,点B 重合),使GH +22BH 的值最小,求点H 的坐标和GH +22BH 的最小值;(3)如图2,直线AB 上有一点K (3,4),将二次函数12-212+=x x y 沿直线BC 平移,平移的距离是t (t ≥0),平移后抛物线使点A ,点C 的对应点分别为点A ’,点C ’;当△A ’C ’K 是直角三角形时,求t 的值。