本部《信号与系统》B卷答案

合集下载

06信号与系统AB卷标准答案2

06信号与系统AB卷标准答案2

一、选择题(将唯一正确答案填入括号中,每题2分,共32分。

)1.积分dt t t e t )]()(['2δδ+⎰∞∞--等于:( D )(A )0 (B )1 (C )2 (D )3 2.序列和)2()4sin(-∑-∞=n n kn δπ等于:( C ) (A )1 (B )u(k) (C )u(k-2) (D ))2(-k δ3.已知某系统的单位样值响应)()5.1()(n u n h n =,则该系统的因果性和稳定性:( B )(A )因果,稳定 (B )因果,不稳定(C )非因果,稳定 (D )非因果,不稳定 4.dt t t t ejwt)]()([0--⎰∞∞--δδ 的结果为:( A ) (A )01jwt e -- (B )01jwt e -+ (C )01jwt e - (D )01jwt e + 5.序列卷积和)4()2()2()1(-*+--*+k k u k k u δδ等于:( B )(A ))(k δ (B ))1(-k δ (C ))1(-k u (D ))3(-k u 6.已知23)]([1-+=z z n x Z ,(2>z ),)3)(1()]([2++=z z zn x Z ,(3>z ),则)]()([21n x n x Z *为:( A )(A ))2)(1(-+z z z ,2>z (B ))2)(1(-+z z z,1>z(C ))2)(1(-+z z z ,6>z (D ))2)(1(-+z z z,3>z7.一LTI 无失真传输系统,它的幅度特性和相位特性要求为:( D )(A )幅度特性为常数,相位特性无要求 (B )幅度特性和相位特性均无要求(C )幅度特性无要求,相位特性的斜率为0t - (D )幅度特性为常数,相位特性的斜率为0t -8.若一LTI 系统输入)(1t e ,输出为)(1t r ,输入)(2t e ,输出为)(2t r ,则输入为dtt de t ae )()(21+,输出为:( C ) (A ))()(21t r t ar + (B ))()(21t r t r + (C )dt t dr t ar )()(21+(D )dtt dr t r )()(21+ 9.一理想低通滤波器的截止频率为c w ,下列信号经该滤波器滤波后信号不失真的是(cw w 32=):( B ) (A )cos2wt (B) coswt (C) coswt+cos2wt (D) cos3wt10.一LTI 系统响应的分解不对的是:( A )(A )强迫响应和瞬态响应 (B )零输入响应和零状态响应 (C )稳态响应和瞬态响应 (D )自由响应和强迫响应 11.已知一因果序列)(n f 的Z 变换式为)2)(1(12)(+++=z z z z z F ,则)(n f 的初值为:( B )(A ) 1 (B ) 0 (C )0.5 (D )2 12.若FE )()]([w F t f =,则FE )]([0t at f +为:( A )(A )a jwt e a w F a /0)(1 (B )0)(1jwt e a wF a- (C )0)(1jwt e a w F a(D )a jwt e a wF a /0)(1-13.已知1)]([2-=z zn x Z ,(1>z ),则)](3[n x Z n 为:( D ) (A )12-z z ,1>z (B )932-z z,1>z(C )12-z z ,3>z (D )932-z z,3>z14.若)()]([),()]([2211s F t f L s F t f L ==,则])()([222211dtt f d K dt t df K L +为:( C ) (A )]/)0(/)([]/)0(/)([22222111s f s s F K s f s s F K +++ (B ))]0(')0()([)]0()([22222111f sf s F s K f s sF K ++++ (C ))]0(')0()([)]0()([22222111f sf s F s K f s sF K --+-(D )]/)0(/)([]/)0(/)([22222111s f s s F K s f s s F K -+- 15.已知1)]([2-=z zn x Z ,(1>z ),则)]([2n x n Z 为:( B ) (A )2)1(2-z z (B )32)1(22-+z z z (C )32)1(-+z zz (D )12-z z 16.以下哪项陈述不是状态空间法分析系统的优点:( A )(A )特别适用于单输入单输出系统的分析 (B )特别适用于多输入多输出系统的分析(C )便于研究系统内部的一些物理量的变化规律 (D )适用于非线性时变系统的研究二、计算题17.求)12)(2(2)(2+++=s s s ss F 的拉氏逆变换。

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。

又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。

∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。

2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

大学考试试卷《信号与系统》及参考答案

大学考试试卷《信号与系统》及参考答案

信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。

2. 连续信号,该信号的拉普拉斯变换收敛域为()。

A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。

7. 下列论断正确的为()。

A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。

8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。

B. 若起始状态为零,则零状态响应为零。

C. 若系统的零状态响应为零,则强迫响应也为零。

D. 若激励信号为零,零输入响应就是自由响应。

2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。

2012-2013第二学期信号与系统B答案

2012-2013第二学期信号与系统B答案

《信号与系统》试卷B 卷答案一、单选题(每题2分,共32分)1.( A )2.( B )3.( C )4.( D )5.( A )6.( B )7.( C )8.( D )9.( A )10. ( B ) 11.( C )12.( D )13.( A )14.( B )15.(C )16.( D )二、信号分析题(每题8分,共24分)1.分别指出下列各波形的直流分量等于多少?1、(1))(sin )(2t t f ω= (2))]cos(1[)(t K t f ω+=解:(1)20011()sin ()2wT D w f f t dt wt dt T ππ===⎰⎰(2)K2. (从题图二-2a ,b ,c 中任选两题)用阶跃函数写出波形的函数表达式。

ttt()a ()b c题图二-2解:(a )()()()()()(3)[31]2[11]f t t u t u t u t u t =++-+++-- ()()(3)[13]t u t u t +-+---()()()()()(3)3(1)1(1)1(3)3ft t u t t u t t u t t u t =+++--++-+-+-- (b )()[()(1)]2[(1)(2)]4(2)f t u t u t u t u t u t =--+---+-()()(1)2(2f t u t u t u t =+-+-。

(c )()sin()[()()]tf t K u t u t T Tπ=--3.用傅里叶变换的性质,求下列各信号的频谱。

(1)()()112sin --t t ππ, (2)设()()ωF t f ↔,试用()ωF 表示()[]t t f m 0cos 1ω+ 的频谱。

三、系统分析题(每题14分,共28分) 1.已知系统函数)2)(1(1)(++=s s s H ,起始条件为:2)0(,1)0(='=--y y ,求系统的零输入响应和系统单位冲激响应。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴)2(1-t x ⑵)1(1t x -⑶)22(1+t x⑷)3(2+t x ⑸)22(2-t x ⑹)21(2t x - ⑺)(1t x )(2t x -⑻)1(1t x -)1(2-t x ⑼)22(1t x -)4(2+t x 1-4已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1+n x ⑵)4(1n x -⑶)2(1n x ⑷)2(2n x -⑸)2(2+n x ⑹)1()2(22--++n x n x⑺)2(1+n x )21(2n x -⑻)1(1n x -)4(2+n x ⑼)1(1-n x )3(2-n x1-5已知信号)25(t x -的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-51-6试画出下列信号的波形图:⑴)8sin()sin()(t t t x ΩΩ=⑵)8sin()]sin(211[)(t t t x ΩΩ+= ⑶)8sin()]sin(1[)(t t t x ΩΩ+=⑷)2sin(1)(t tt x = 1-7试画出下列信号的波形图:⑴)(1)(t u e t x t -+=⑵)]2()1([10cos )(---=-t u t u t e t x t π⑶)()2()(t u e t x t --=⑷)()()1(t u e t x t --=⑸)9()(2-=t u t x ⑹)4()(2-=t t x δ1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

⑴)1(1)(2Ω-Ω=Ωj e j X ⑵)(1)(Ω-Ω-Ω=Ωj j e e j X ⑶Ω-Ω---=Ωj j e e j X 11)(4⑷21)(+Ω=Ωj j X 1-9已知信号)]()([sin )(π--=t u t u t t x ,求出下列信号,并画出它们的波形图。

2022年《信号与系统》试卷

2022年《信号与系统》试卷

《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。

2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。

3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。

4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。

今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。

5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。

6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。

7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。

即()F s = 。

8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。

9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。

10.Z 变换能把描述离散系统的 方程变换为代数方程。

11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。

12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。

13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。

14.单位样值函数)(k δ的z 变换是 。

二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。

A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖州师范学院 2016 — 2017 学年第 2 学期 《信号与系统》期末考试试卷(B 卷)答案
一、填空题(每题2分,共计30分) 1.
2. 零输入响应
3. 0
4.
5. 大于零
6. 连续的
7.
8.1 9. 4个 10. 左半平面 11. 不稳定 12.pi /5 13. 1000 14. 4 15.
)
2(4)1(3)(2---+t t t δδδ
二、简单计算题(共计6分)
1. 三、(1)将输入带入方程的右边;(1分)根据方程,推出输出的导数(从高到低)及输
出的函数形式;(1分)将输出的导数及输出带入方程的左边,与方程的右边进行比较,
决定)(t δ的系数;(1分)确定初始条件及输出函数;确定输出函数中的待定系数;求得系统的响应。

(1分)
(2)加法器,标量乘法器和积分器。

(2分) 四、 (6分)

五、(6分)
解 在零状态下对差分方程两边取变换,有
)
()(2)(11z X z z Y z z Y --=+
求得系统函数 2
1
21)()()(11+=+==
--z z z z X z Y z H
六、(6分)
七(16
分)、解
s
s E t u t u t e 4)()(4)()(=
↔= 且0)0(,2)0(='=--e e ,则
2)()0()()(d d
-=-↔-s sE e s sE t e t (2
分)
s
s E s e se s E s t e t
2)()0()0()()(d d 222
2-='--↔--。

(2分)
设)()(s R t r →,则
5
4)()0()()(-
=-→'-s sR r s sR t r s
s R s r sr s R s t r 54)()0()0()()(22-='--→''-
- 系统方程两边同时取单边S 变换有
[])(42)(62)()(1054)(754)(2
2s E s sE s s E s s R s sR s s R s +-+-=+⎥⎦⎤⎢⎣⎡-+-(2分)
1075
32
56107)()46(10753256)()46()(22222++--+++++=++--++=
s s s s s s E s s s s s s E s s s R (2分)
零状态响应计算如下
)
(e 154e 3
858)(5
15
4
23858)107()46(4)(10746)(52zs 22
22
zs t u t r s s s s s s s s s E s s s s s R t t ⎪⎭⎫ ⎝⎛-+=+-
+++=++++=⋅++++=--(2分)
零输入响应计算如下
)
(e 152e 34
)(5
1522341075325
6)(52zi 2zi t u t r s s s s s s R t t ⎪⎭⎫ ⎝⎛+-=+++-
=++--
=--(2分)
完全响应计算如下
)
(e 152e 3458)(5
1522345810753256)46(4)(522
2t u t r s s s s s s s s s s R t t ⎪⎭⎫
⎝⎛-+=+-
+++=++--++=--(4分)
八、,(7分)
(7分)
九、①流的初始状态为解:电容电压和电感电,
,。

相关文档
最新文档