线性代数试题及答案
线性代数试题及答案

04184线性代数(经管类)一、二、单选题1、B:—1 A:—3C:1 D:3做题结果:A 参考答案:D 2、B:dA:abcdC:6 D:0做题结果:A 参考答案:D 3、B:15A:18C:12 D:24做题结果:A 参考答案:B 4、B:—1A:-3C:1 D:3做题结果:A 参考答案:D 6、B:15A:18C:12 D:24做题结果:A 参考答案:B 20、B:kA:k—1C:1 D:k+1做题结果:A 参考答案:B 21、行列式D如果按照第n列展开是【】A。
,B。
,C。
,D。
做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为. 【】A:—3B:—7C:3 D:7做题结果:A 参考答案:A24、A:0B:1C:-2 D:2做题结果:A 参考答案:C25、B:dA:abcdC:6 D:0做题结果:A 参考答案:D26、B:a≠0A:a≠2C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D。
做题结果:B 参考答案:B 28、B:16|A|A:—2|A|C:2|A|D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A。
,B。
,C.,D.做题结果:B 参考答案:B32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁.【】B:A中存在不为0的4阶子式A:A中的4阶子式都不为0C:A中的3阶子式都不为0 D:A中存在不为0的3阶子式做题结果:A 参考答案:D33、B:a=-1,b=3,c=1,d=3A:a=3,b=-1,c=1,d=3C:a=3,b=—1,c=0,d=3 D:a=—1,b=3,c=0,d=3做题结果:A 参考答案:C34、设A是m×n矩阵,B是s×t矩阵,且ABC有意义,则C是▁▁矩阵. 【】B:m×tA:n×sC:t×m D:s×n做题结果:A 参考答案:A35、含有零向量的向量组▁▁▁【】B:必线性相关A:可能线性相关C:可能线性无关D:必线性无关做题结果:A 参考答案:B36、对于齐次线性方程组的系数矩阵化为阶梯形时▁▁▁. 【】B:只能进行列变换A:只能进行行变换C:不能进行行变换D:可以进行行和列变换做题结果:B 参考答案:A37、非齐次线性方程组中,系数矩阵A和增广矩阵(A,b)的秩都等于4,A是()4×6矩阵,则▁▁。
线性代数试题及答案

(试卷一)一、填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________ 5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D)A.s r=B.s r ≤C.r s≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n )(C *-A k n 1 )(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。
答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。
答案:可交换3. 一个向量空间的维数是指该空间的______的个数。
线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。
答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。
答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。
答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。
答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。
答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。
答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。
答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。
(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
大学线性代数试题及答案

线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC=,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()T k 11=α与()T 121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8- C.34D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA)(B *A k n )(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012-2线性代数46学时期末试卷(A)考试方式:闭卷 考试时间:一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
12.设矩阵111111111A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,矩阵X 满足*12A X A X -=+,求X 。
13. 求线性方程组⎪⎪⎩⎪⎪⎨⎧=--+=--+=+-+=+-13413212302432143214321421x x x x x x x x x x x x x x x 的通解。
14.已知()()()()12341,2,2,3,6,6,1,,0,3,0,4,2TTTTαααα====-,求出它的秩及其一个最大无关组。
15.设A 为三阶矩阵,有三个不同特征值123,,,λλλ123,,ααα依次是属于特征值123,,,λλλ的特征向量,令123βααα=++, 若3A A ββ=,求A 的特征值并计算行列式23A E -.四、解答题(10分)16. 已知100032023A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求10A五、证明题(每小题5分,共10分)17.设ξ是非齐次线性方程组AX b =的一个特解,12,,,r ηηη为对应的齐次线性方程组0AX =的一个基础解系,证明:向量组12,,,,r ξηηη线性无关。
18. 已知A 与A E -都是 n 阶正定矩阵,判定1E A --是否为正定矩阵,说明理由.2010-2011-2线性代数期末试卷(本科A)考试方式:闭卷统考 考试时间:2011.5.28一、单项选择题(每小题3分,共15分)1.设,A B 为n 阶矩阵,下列运算正确的是( )。
A. ();k k k AB A B =B. ;A A -=-C. 22()();A B A B A B -=-+D. 若A 可逆,0k ≠,则111()kA k A ---=;2.下列不是向量组12,,,s ααα⋅⋅⋅线性无关的必要条件的是( )。
A .12,,,s ααα⋅⋅⋅都不是零向量;B. 12,,,s ααα⋅⋅⋅中至少有一个向量可由其余向量线性表示;C. 12,,,s ααα⋅⋅⋅中任意两个向量都不成比例;D. 12,,,s ααα⋅⋅⋅中任一部分组线性无关;3. 设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( )。
A .列向量组线性无关; B. 列向量组线性相关; C. 行向量组线性无关; D. 行向量组线性相关;4. 如果( ),则矩阵A 与矩阵B 相似。
A. A B =; B. ()()r A r B =; C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值且n 个特征值各不相同;5.二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( )时,是正定二次型。
A. 1λ>-; B. 0λ>; C. 1λ>; D. 1λ≥。
二、填空题(每小题3分,共15分)6.设300140003A ⎛⎫⎪= ⎪ ⎪⎝⎭,则()12A E --= ;7.设(,1,2)ij A i j = 为行列式2131D =中元素ij a 的代数余子式,则11122122A A A A = ;8.100201100010140001201103010⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭= ;9.已知向量组123,,ααα线性无关,则向量组122313,,αααααα---的秩为 ;10. 设A 为n 阶方阵, A E ≠, 且()()3R A E R A E n ++-=, 则A 的一个特征值λ= ;三、计算题(每小题10分,共50分)11.设()111122220+aa A a nn n n a +⎛⎫⎪+⎪=≠ ⎪⎪⎝⎭,求A 。
12.设三阶方阵A ,B 满足方程2A B A B E --=,试求矩阵B 以及行列式B ,其中102030201A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭。
13.已知111011001A -⎛⎫⎪= ⎪ ⎪-⎝⎭,且满足2A AB E -=,其中E 为单位矩阵,求矩阵B 。
14.λ取何值时,线性方程组1231231232124551x x x x x x x x x λλ+-=⎧⎪-+=⎨⎪+-=-⎩无解,有唯一解或有无穷多解?当有无穷多解时,求通解。
15. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个极大无关组。
四、解答题(10分)16.已知三阶方阵A 的特征值1,2,3对应的特征向量分别为1α,2α,3α。
其中:()11,1,1T α=,()21,2,4T α=,()31,3,9T α=,()1,1,3Tβ=。
(1)将向量β用1α,2α,3α线性表示;(2)求n A β,n 为自然数。
五、证明题(每小题5分,共10分)17.设A 是n 阶方阵,且()()R A R A E n +-=,A E ≠;证明:0Ax =有非零解。
18. 已知向量组(I) 123,,ααα的秩为3,向量组(II) 1234,,,αααα的秩为3,向量组(III)1235,,,αααα的秩为4,证明向量组12354,,,ααααα-的秩为4。
2010-2011-1线性代数期末试卷(本科A)考试方式:闭卷统考 考试时间:2010.12.19一、单项选择题(每小题3分,共15分)1.满足下列条件的行列式不一定为零的是( )。
(A )行列式的某行(列)可以写成两项和的形式;(B )行列式中有两行(列)元素完全相同; (C )行列式中有两行(列)元素成比例; (D )行列式中等于零的个数大于2n n -个.2.下列矩阵中( )不满足2A E =-。
(A )1211-⎛⎫ ⎪-⎝⎭; (B )1211--⎛⎫ ⎪⎝⎭; (C )1211-⎛⎫ ⎪⎝⎭; (D )1121⎛⎫ ⎪--⎝⎭.3. 设,A B 为同阶可逆方阵,则( )。
(A)AB BA =; (B) 存在可逆矩阵1,P P AP B -=使; (C) 存在可逆矩阵,TC C AC B =使; (D) 存在可逆矩阵,,P Q PAQ B =使. 4.向量组错误!未找到引用源。
线性无关的充分必要条件是( ) (A )错误!未找到引用源。
均不为零向量;(B )错误!未找到引用源。
中有一部分向量组线性无关; (C )错误!未找到引用源。
中任意两个向量的分量不对应成比例;(D )错误!未找到引用源。
中任意一个向量都不能由其余错误!未找到引用源。
个向量线性表示。
5.零为方阵A 的特征值是A 不可逆的( )。
(A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件;二、填空题(每小题3分,共15分)6.设⎪⎪⎪⎭⎫⎝⎛=101020101A ,则22A A -= ;7.已知(),,,,,,⎪⎭⎫⎝⎛==31211321βα设,A T βα=则A = ;8.设A 是三阶方阵,且1A =-,则*12A A --= ;9.已知向量组()()()()12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,αααα====则该向量组的秩为 ;10. 已知111242335A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,00020002B λ⎛⎫⎪= ⎪ ⎪⎝⎭,且A 于B 相似,则λ= 。
三、计算题(每小题10分,共50分)11.12312111111111111(0)1111n n na a D a a a a a ++=+≠+12.12.已知3阶非零矩阵B 的每一列都是方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的解.①求λ的值;②证明0B =.13.设3阶矩阵X 满足等式X B AX 2+=,其中311110012,102,004202A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭求矩阵X 。
14.求向量组123411343354,,,,22323342αααα--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭53101α⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭ 的秩及最大无关组。
15. 设212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2. 求A 的特征值和对应的特征向量。