线性调频脉冲雷达信号matlab仿真

合集下载

线性调频信号matlab仿真

线性调频信号matlab仿真

实验一雷达信号波形分析实验报告一、实验目的要求1. 了解雷达常用信号的形式。

2. 学会用仿真软件分析信号的特性。

3了解雷达常用信号的频谱特点和模糊函数。

二、实验参数设置信号参数范围如下:(1)简单脉冲调制信号:(2)载频:85MHz(3)脉冲重复周期:250us(4)脉冲宽度:8us(5)幅度:1V(2)线性调频信号载频:85MHz脉冲重复周期:250us脉冲宽度:20us信号带宽:15MHz幅度:1V三、实验仿真波形1.简单的脉冲调制信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,3.2)./2+0.5;x2=exp(i*2*pi*f0*t);x3=x1.*x2;subplot(3,1,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid;subplot(3,1,2);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz')grid;subplot(3,1,3);plot(t,x3,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('·幅度/v')title('脉冲调制信号')grid;仿真波形:0123x 10-4-101时间/s幅度/v脉冲信号重复周期T=250us 脉冲宽度为8us123x 10-4-11时间/s幅度/v连续正弦波信号载波频率f0=85MHz123x 10-4-101时间/s幅度/v脉冲调制信号2.线性调频信号程序:Fs=10e6;t=0:1/Fs:300e-6;fr=4e3;f0=8.5e7;x1=square(2*pi*fr*t,8)./2+0.5;x2=exp(i*2*pi*f0*t); x3=x1.*x2;subplot(2,2,1);plot(t,x1,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('脉冲信号重复周期T=250US 脉冲宽度为8us ') grid;subplot(223);plot(t,x2,'-');axis([0,310e-6,-1.5,1.5]);xlabel('时间/s')ylabel('幅度/v')title('连续正弦波信号载波频率f0=85MHz ')grid;eps = 0.000001;B = 15.0e6;T = 10.e-6; f0=8.5e7;mu = B / T;delt = linspace(-T/2., T/2., 10001);LFM=exp(i*2*pi*(f0*delt+mu .* delt.^2 / 2.));LFMFFT = fftshift(fft(LFM));freqlimit = 0.5 / 1.e-9;freq = linspace(-freqlimit/1.e6,freqlimit/1.e6,10001); figure(1)subplot(2,2,2)plot(delt*1e6,LFM,'k');axis([-1 1 -1.5 1.5])grid;xlabel('时间/us')ylabel('幅度/v')title('线性调频信号T = 10 mS, B = 15 MHz')subplot(2,2,4)y=20*log10(abs(LFMFFT));y=y-max(y);plot(freq, y,'k');axis([-500 500 -80 10]);grid;%axis tightxlabel('频率/ MHz')ylabel('频谱/dB')title('线性调频信号T = 10 mS, B = 15 MHz') 仿真波形:四、实验成果分析本实验首先利用MTALAB软件得到一个脉冲调制信号,然后再对其线性调频分析,得到上面的波形图。

雷达脉冲压缩matlab仿真

雷达脉冲压缩matlab仿真

雷达发射线性调频信号,载频10GHz,线性调频信号带宽10MHz,脉宽5us,采样率自设,两目标距离雷达5000米和5020米之巴公井开创作(1)(2)模拟两个目标的回波,并进行脉冲压缩(匹配滤波),验证脉冲压缩对改善雷达距离分辨力的作用(3)调整两个目标的间距从1米到20米,观察结果得出结论.①源代码:clear all;close all;fc=10e9;%载频B=10e6;%带宽fs=2*fc;%采样率T=5*10^-6;%雷达脉宽t=0:1/fs:10*T;s1=5000;%目标1距离s2=5020;%目标2距离c=3e8;%光速t1=2*s1/c;%雷达波从目标1回波的延时t2=2*s2/c;%雷达波从目标2回波的延时u=B/T;st=rectpuls(t,T).*exp(j*2*pi*(fc*t+u*t.^2));%发射信号sr1=rectpuls((t-t1),T).*exp(j*2*pi*(fc*(t-t1)+u*(t-t1).^2));%目标1的回波sr2=rectpuls((t-t2),T).*exp(j*2*pi*(fc*(t-t2)+u*(t-t2).^2));%目标2的回波sr=sr1+sr2;%两目标总的回波figure(1);plot(real(sr));%未压缩回波title('未压缩回波');axis([6*10^5,7.4*10^5,-2,2]);F=fftshift(fft(sr));%进行脉冲压缩Ft=F.*conj(F);f=ifft(Ft);figure(2);plot(fftshift(abs(f)));%压缩回波title('压缩回波');axis([4.9*10^5,5.1*10^5,0,2*10^5]);②运行结果:改变相对距离为1米,运行结果如下:两目标不成份辨,直到两目标相对距离为13米时,目标可清晰分辨,如下:结论:当目标的相对距离较近时,目标的未压缩回波已不能分辨出两目标的位置,这时使用脉冲压缩可以增加雷达的分辨力,但其能力也是有限的,当两目标的相对距离太近时,即使脉冲压缩也不能分辨,即脉冲压缩不能使脉宽无限小.。

线性调频(LFM)信号脉冲压缩仿真

线性调频(LFM)信号脉冲压缩仿真

随机信号处理实验————线性调频(LFM)信号脉冲压缩仿真姓名:***学号: **********一、实验目的:1、了解线性FM 信号的产生及其性质;2、熟悉MATLAB 的基本使用方法;3、利用MATLAB 语言编程匹配滤波器。

4、仿真实现FM 信号通过匹配滤波器实现脉压处理,观察前后带宽及增益。

5、步了解雷达中距离分辨率与带宽的对应关系。

二、实验内容:1、线性调频信号线性调频矩形脉冲信号的复数表达式为:()()2001222j f t j f t ut lfmt t u t Arect S e e ππτ⎛⎫+ ⎪⎝⎭⎛⎫== ⎪⎝⎭ ()211,210,2j ut t t t u t Arect rect t e πττττ⎧≤⎪⎪⎛⎫⎛⎫==⎨ ⎪ ⎪⎝⎭⎝⎭⎪>⎪⎩为信号的复包络,其中为矩形函数。

0u f τ式中为脉冲宽度,为信号瞬时频率的变化斜率,为发射频率。

当1B τ≥(即大时宽带宽乘积)时,线性调频信号特性表达式如下:0()LFM f f f B S -⎛⎫=⎪⎝⎭幅频特性: 20()()4LFM f f f u ππφ-=+相频特性:20011222i d f f t ut f ut dt ππ⎡⎤⎛⎫=+=+ ⎪⎢⎥⎝⎭⎣⎦信号瞬时频率:程序如下:%%产生线性调频信号T=10e-6; %脉冲宽度B=400e6; %chirp signal 频带宽度400MHz K=B/T; %斜率Fs=2*B;Ts=1/Fs; %采样频率与采样周期N=T/Ts %N=8000t=linspace(-T/2,T/2,N); %对时间进行设定St=exp(j*pi*K*t.^2) %产生chirp signalfigure;subplot(2,1,1);plot(t*1e6,real(St));xlabel('Time in u sec');title('线性调频信号');grid on;axis tight;subplot(2,1,2)freq=linspace(-Fs/2,Fs/2,N); %对采样频率进行设定plot(freq*1e-6,fftshift(abs(fft(St))));xlabel('Frequency in MHz');title('线性调频信号的幅频特性');grid on;axis tight;Matlab 程序产生chirp 信号,并作出其时域波形和幅频特性,如图:2、匹配滤波器在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为)(t x :)()()(t n t s t x +=其中:)(t s 为确知信号,)(t n 为均值为零的平稳白噪声,其功率谱密度为2/No 。

线性调频信号在雷达中的应用及仿真实现

线性调频信号在雷达中的应用及仿真实现
2.本课题主要研究内容和预期目标
研究目标:
利用Matlab对线性调频信号进行时域、频域及脉冲压缩仿真,并分析调频率,带宽及幅度谱之间的关系,对线性调频信号进行脉冲压缩雷达的测距测速仿真。
研究内容:
1、线性调频信号在雷达应用中的发展背景以及国内外研究现状。
2、线性调频信号相关理论和技术基础。
研究线性调频信号的数学表达式和公式推导,学习线性调频信号时域、频域波形的特性。
4、匹配滤波器的实现方法和加窗处理。
在线性调频信号中,匹配滤波器的设计用于在频域上与信号频谱进行匹配,提高相关性,以此来提升距离分辨率,抑制旁瓣干扰、提高信噪比等。加窗处理可以改善匹配滤波器的性能,其用于减小信号在频谱中的泄露,防止影响距离分辨率。另一方面窗函数还可以用于减小旁瓣幅度、减小主瓣宽度、以此改善匹配滤波器波形。
由于常规雷达采用单一载频的脉冲调制信号,信号时宽和带宽的乘积近似为1,因此用这种信号不能同时得到大的时宽和带宽,雷达距离分辨率、速度分辨率以及作用范围之间存在着不可调和的矛盾,脉冲压缩技术的提出巧妙地解决了这一矛盾问题,发射长脉冲,对回波信号进行脉冲压缩将长脉冲变换为窄脉冲,从而在保证发射功率的情况下提升距离分辨率,采用大时宽带宽积信号,其决定检测能力、距离分辨能力、测距精度的参量可独立选取,且增强了系统抗干扰的能力。
5、脉冲相参积累法同时测距测速的原理。
雷达在进行远距离目标探测工作的时候,通常会遇到目标回波信号较弱被噪声掩盖的问题,可能会导致漏检。因此,采用脉冲相参积累法增强信噪比,提升雷达性能。
6、利用Matlab对线性调频信号脉冲压缩雷达测距测速,并分析误差产生的原因及解决的办法。
3.本课题拟采用的研究方法、步骤
[2]周万幸,胡明春,孙俊等译.雷达系统分析与设计(MATLAB版)(第三版)[M].北京:电子工业出版社,2016年

基于MATLAB的线性调频信号的仿真

基于MATLAB的线性调频信号的仿真

存档编号________基于MATLAB的线性调频信号的仿真教学学院届别专业学号指导教师完成日期内容摘要:线性调频信号是一种大时宽带宽积信号。

线性调频信号的相位谱具有平方律特性,在脉冲压缩过程中可以获得较大的压缩比,其最大优点是所用的匹配滤波器对回波信号的多普勒频移不敏感,即可以用一个匹配滤波器处理具有不同多普勒频移的回波信号,这些都将大大简化雷达信号处理系统,而且线性调频信号有着良好的距离分辨率和径向速度分辨率。

因此线性调频信号是现代高性能雷达体制中经常采用的信号波形之一,并且与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟,因而可在工程中得到广泛的应用。

关键词:MATLAB;线性调频;脉冲压缩;系统仿真Abstract: Linear frequency modulation signal is a big wide bandwidth signal which is studied and widely used. The phase of the linearfrequency modulation signal spectra with square law characteristics, in pulse compression process can acquire larger compression, its biggest advantage is the use of the matched filter of the echo signal doppler frequency is not sensitive, namely can use a matched filter processing with different doppler frequency shift of the echo signal, these will greatly simplified radar signal processing system, and linear frequency modulation signal has a good range resolution and radial velocity resolution. So linear frequency modulation signal is the modern high performance radar system often used in one of the signal waveform, and compared with other pulse pressure signal, it is easy to use digital technologies to produce, and the technology of the more mature, so in engineering can be widely applied.Keywords:MATLAB, LFM, Pulse compression, System simulation目录内容摘要 I关键词 IAbstract IIKeywords II1 绪论 11.1引言 11.2课题研究背景及意义 11.3本文主要工作 22 线性调频基本理论 32.1线性调频原理简介 32.2线性调频信号特点 33 MATLAB简介 53.1 MATLAB的起源 53.2 MATLAB的应用领域 53.3 MATLAB的仿真方法 64 线性调频脉冲压缩原理及实现 104.1线性调频信号的数字脉冲压缩原理 10 4.1.1匹配滤波器原理 104.1.2 LFM信号的脉冲压缩 114.1.3线性调频信号和噪声的生成 124.2线性调频信号的脉冲压缩过程 135 仿真结果分析 146 小结 18参考文献 20致谢 21附录 MATLAB程序代码 221 绪论1.1 引言在非平稳信号的研究过程中,有一种特殊的非平稳信号:chirp 信号,又称线性调频(Liner Frequency Modulation,LFM)信号,研究价值较高。

通过Matlab软件实现对DSP-FPGA线性调频信号仿真

通过Matlab软件实现对DSP-FPGA线性调频信号仿真

通过Matlab软件实现对DSP/FPGA线性调频信号仿真直接数字频率合成(DDS)是近年来得到迅速发展的一种新的频率合成方法,具有频率切换速度快,很容易提高频率分辨率、对硬件要求低等优点。

可编程全数字化便于单片集成、有利于降低成本。

提高可靠性并便于生产等有点。

DDS技术从相位的概念出发进行频率合成,存储了数字采样波形表,可以产生点频、线性调频、ASK、FSK等各种形式的信号。

线性调频信号可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,作为一种常用的脉冲压缩信号,已经广泛应用于高分辨率雷达领域。

Matlab是美国MathWorks公司自20世纪80年代中期推出的数学软件,优秀的数值计算与卓越的数据可视化能力使其很快在同类软件中脱颖而出。

Matlab已经发展成为多学科、多种工作平台的功能强大的大型软件。

本文用Matlab软件建立DDS系统中线性调频信号的仿真模型,对于理解线性调频信号和在FPGA中来实现线性调频信号有借鉴意义。

DDS线性调频信号发生器框图设计图1 DDS技术的基本原理1 DDS技术的基本原理基本模型如图1所示,主要由时钟频率源fclk、相位累加器、波形存储器(ROM)、数/模转换器(D/A)、以及低通滤波器(LPF)组成。

输出信号波形的频率表达式为:(1)式中,fclk为参考时钟频率,ΔΦ为相位增量,N为相位累加器的位数。

只要N足够大,DDS可以得到很小的频率间隔。

要改变DDS的输出信号的频率,只要改变ΔΦ即可。

当参考时钟频率给定后,输出信号的频率取决于频率的控制字,频率分辨率取决于累加器的位数,相位分辨率取决于ROM的地址位数,幅度量化取决于ROM的数据字长和D/A转换器的位数。

2 线性调频信号的实现框图图2 软件编程实现线性调频信号的原理图脉冲压缩雷达最常见的调制信号是线性调频信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。

它的数学表达式如下:式中fe为载波频率,K=B/T是调频斜率,于是,信号的瞬时频率为。

雷达信号处理的MATLAB仿真

雷达信号处理的MATLAB仿真

11目录1. 设计的基本骤 (1)1.1 雷达信号的产生 (1)1.2 噪声和杂波的产生 (1)2. 信号处理系统的仿真 (1)2.1 正交解调模块 (2)2.2 脉冲压缩模块.................................................2.3 回波积累模块.................................................2.4 恒虚警处理(CFAR)模块 (4)结论 (11)1 设计的基本骤雷达是通过发射电磁信号,再从接收信号中检测目标回波来探测目标的。

再接收信号中,不但有目标回波,也会有噪声(天地噪声,接收机噪声);地面、海面和气象环境(如云雨)等散射产生的杂波信号;以及各种干扰信号(如工业干扰,广播电磁干扰和人为干扰)等。

所以,雷达探测目标是在十分复杂的信号背景下进行的,雷达需要通过信号处理来检测目标,并提取目标的各种信息,如距离、角度、运动速度、目标形状和性质等。

图3-6 设计原理图2 信号处理系统的仿真雷达信号处理的目的是消除不需要的信号(如杂波)及干扰,提取或加强由目标所产生的回波信号。

雷达信号处理的功能有很多,不同的雷达采用的功能也有所不同,本文是对某脉冲压缩雷达的信号处理部分进行仿真。

一个典型的脉冲压缩雷达的信号处理部分主要由A/D 采样、正交解调、脉冲压缩、视频积累、恒虚警处理等功能组成。

因此,脉冲压缩雷达信号处理的仿真模型.2.1 正交解调模块雷达中频信号在进行脉冲压缩之前,需要先转换成零中频的I、Q 两路正交信号。

中频信号可表示为:0()()cos(2())IF f t A t f t t πϕ=+ (3.2)式(3.2)中, f 0 为载波频率。

令:00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.3)则00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.4)在仿真中,所有信号都是用离散时间序列表示的,设采样周期为T ,则中频信号为f IF (rT ) ,同样,复本振信号采样后的信号为f local =exp(?j ω 0rT ) (3.5)则数字化后的中频信号和复本振信号相乘解调后,通过低通滤波器后得到的基带信号f BB (r ) 为:11000{()cos()}(){()sin()}()N N BB IF IF n nf f r n r n T h n j f r n r n T h n ωω--==-----∑∑ (3.6)式(3.6)中, h (n ) 是积累长度为N 的低通滤波器的脉冲响应。

雷达线性调频脉冲压缩的原理及其MATLAB仿真

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM )脉冲压缩雷达仿真一. 雷达工作原理雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。

典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。

利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。

现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。

雷达的应用越来越广泛。

图1.1:简单脉冲雷达系统框图雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成:()Rs t C -。

电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()Rs t Cσ⋅-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对电磁波的散射能力。

再经过时间R C 后,被雷达接收天线接收的信号为(2)Rs t C σ⋅-。

如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。

图1.2:雷达等效于LTI 系统等效LTI 系统的冲击响应可写成: 1()()Miii h t t σδτ==-∑ (1.1)M 表示目标的个数,i σ是目标散射特性,i τ是光速在雷达与目标之间往返一次的时间,2ii R cτ=(1.2) 式中,i R 为第i 个目标与雷达的相对距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二〇一年十月课题小论文题目:线性调频(LFM )脉冲压缩雷达仿真学院:专业:学生姓名:刘斌学号:年级:指导教师:线性调频(LFM )脉冲压缩雷达仿真一.雷达工作原理雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。

典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。

利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。

现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。

雷达的应用越来越广泛。

图1.1:简单脉冲雷达系统框图雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成:()Rs t C -。

电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()Rs t Cσ⋅-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对电磁波的散射能力。

再经过时间R 后,被雷达接收天线接收的信号为(2)Rs t C σ⋅-。

如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。

图1.2:雷达等效于LTI 系统等效LTI 系统的冲击响应可写成:1()()Mi i i h t t σδτ==-∑(1.1)M 表示目标的个数,i σ是目标散射特性,i τ是光速在雷达与目标之间往返一次的时间,2i i R cτ=(1.2)式中,i R 为第i 个目标与雷达的相对距离。

雷达发射信号()s t 经过该LTI 系统,得输出信号(即雷达的回波信号)()r s t :11()()*()()*()()M Mr i i i i i i s t s t h t s t t s t σδτστ====-=-∑∑(1.3)那么,怎样从雷达回波信号()r s t 提取出表征目标特性的i τ(表征相对距离)和i σ(表征目标反射特性)呢?常用的方法是让()r s t 通过雷达发射信号()s t 的匹配滤波器,如图1.3。

图1.3:雷达回波信号处理()s t 的匹配滤波器()r h t 为:*()()r h t s t =-(1.4)于是,*()()*()()*()*()o r r s t s t h t s t s t h t ==-(1.5)对上式进行傅立叶变换:*2()()()()|()|()o S jw S jw S jw H jw S jw H jw = =(1.6)如果选取合适的()s t ,使它的幅频特性|()|S jw 为常数,那么1.6式可写为:()()o S jw kH jw =(1.7)其傅立叶反变换为:1()()()Mo i i i s t kh t k t σδτ===-∑(1.8)()o s t 中包含目标的特征信息i τ和i σ。

从()o s t 中可以得到目标的个数M 和每个目标相对雷达的距离:2i icR τ=(1.9)这也是线性调频(LFM )脉冲压缩雷达的工作原理。

二.线性调频(LFM )信号脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。

这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。

脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。

LFM 信号(也称Chirp 信号)的数学表达式为:22()()()c K j f t t t s t rect Te π+=(2.1)式中c f 为载波频率,(t rect T为矩形信号,11(0,t t rect TT elsewise⎧ , ≤⎪=⎨⎪ ⎩(2.2)BK T=,是调频斜率,于是,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图2.1图2.1典型的chirp 信号(a )up-chirp(K>0)(b )down-chirp(K<0)将2.1式中的up-chirp 信号重写为:2()()c j f ts t S t e π=(2.3)式中,2()(j KttS t rect e Tπ=(2.4)是信号s(t)的复包络。

由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab 仿真时,只需考虑S(t)。

以下Matlab 程序产生2.4式的chirp 信号,并作出其时域波形和幅频特性,如图2.2。

%%demo of chirp signalT=10e-6;%pulse duration10usB=30e6;%chirp frequency modulation bandwidth30MHz K=B/T;%chirp slopeFs=2*B;Ts=1/Fs;%sampling frequency and sample spacingN=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2);%generate chirp signalsubplot(211)plot(t*1e6,real(St));xlabel('Time in u sec');title('Real part of chirp signal');grid on;axis tight;subplot(212)freq=linspace(-Fs/2,Fs/2,N);plot(freq*1e-6,fftshift(abs(fft(St))));xlabel('Frequency in MHz');title('Magnitude spectrum of chirp signal');grid on;axis tight;仿真结果显示:图2.2:LFM信号的时域波形和幅频特性三.LFM 脉冲的匹配滤波信号()s t 的匹配滤波器的时域脉冲响应为:*0()()h t s t t =-(3.1)0t 是使滤波器物理可实现所附加的时延。

理论分析时,可令0t =0,重写3.1式,*()()h t s t =-(3.2)将2.1式代入3.2式得:22()()c j f tj Kt th t rect e e Tππ-=⨯(3.3)图3.1:LFM 信号的匹配滤波如图3.1,()s t 经过系统()h t 得输出信号()o s t ,2222()()()()*()()()()()(()c c o j f u j f t u j Ku j K t u s t s t h t s u h t u du h u s t u du u t u e rect e e rect e du T T ππππ∞∞-∞-∞∞----∞= =- =-- =⨯ ⎰⎰⎰当0t T ≤≤时,22222022222()2sin ()TT c c j Kt j Ktu t j Ktu T j f tj Kt T j f ts t ee due e e t j Kt K T t t eKtπππππππππ---==⨯--- =⎰(3.4)当0T t -≤≤时,22222022222()2sin ()T T c c t j Kt j Ktu j Ktu T j f tj Kt T j f t s t e e du t e e e j Kt K T t t eKtπππππππππ+---=+ =⨯--+ =⎰(3.5)合并3.4和3.5两式:20sin (1)()()2c j f ttKT tt T s t Trect e KTt Tπππ-=(3.6)3.6式即为LFM 脉冲信号经匹配滤波器得输出,它是一固定载频c f 的信号。

当t T ≤时,包络近似为辛克(sinc )函数。

0()()()()()22t tS t TSa KTt rect TSa Bt rect T Tππ==(3.7)图3.2:匹配滤波的输出信号如图3.2,当Bt ππ=±时,1t B =±为其第一零点坐标;当2Bt ππ=±时,12t B=±,习惯上,将此时的脉冲宽度定义为压缩脉冲宽度。

1122B B τ=⨯=(3.8)LFM 信号的压缩前脉冲宽度T 和压缩后的脉冲宽度τ之比通常称为压缩比D ,T D TBτ==(3.9)3.9式表明,压缩比也就是LFM 信号的时宽频宽积。

由2.1,3.3,3.6式,s(t),h(t),so(t)均为复信号形式,Matab 仿真时,只需考虑它们的复包络S(t),H(t),So(t)。

以下Matlab 程序段仿真了图3.1所示的过程,并将仿真结果和理论进行对照。

%%demo of chirp signal after matched filter T=10e-6;%pulse duration10us B=30e6;%chirp frequency modulation bandwidth 30MHz K=B/T;%chirp slope Fs=10*B;Ts=1/Fs;%sampling frequency and sample spacing N=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2);%chirp signal Ht=exp(-j*pi*K*t.^2);%matched filter Sot=conv(St,Ht);%chirp signal after matched filtersubplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z);%normalizeZ=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1));%sinc functionZ1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('emulational','sinc');xlabel('Time in sec\times\itB');ylabel('Amplitude,dB');title('Chirp signal after matched filter');subplot(212)%zoomN0=3*Fs/B;t2=-N0*Ts:Ts:N0*Ts;t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('Time in sec\times\itB');ylabel('Amplitude,dB');title('Chirp signal after matched filter(Zoom)');仿真结果如图3.3:图3.3:Chirp 信号的匹配滤波图3.3中,时间轴进行了归一化,(/(1/)t B t B =⨯)。

相关文档
最新文档