冻干制剂经验谈
冻干经验总结

1、文献资料查阅。
包括:其它剂型的质量标准;相关专利;欧洲药典及美国药典;期刊杂志中关于化学稳定性、水溶性等基础研究报道,等等。
2、参照该主药的其它剂型,确定冻干制剂的pH值。
1)如pH值在3~10之间,且允许波动2个以上的pH值,例如pH 值为3~5,并且,原料的pH值能稳定地在限定的pH值范围内,可以不调节pH 值;例如:曲克芦丁。
2)但如果允许波动的范围小于2个pH值,则要考虑通过缓冲溶液来控制,常用的缓冲对参照有关工具书;例如:盐酸纳洛酮。
3)如果缺乏相关资料,得做不同pH值溶液的稳定性试验及pH值对主药在水中的溶解度影响试验,根据试验结果确定pH值。
例如:黄芩苷葡甲胺。
3、考察主药在水中的溶解度。
主要考察主药冻干剂规格量能否在1~2ml水中很好的溶解;可以考虑通过对pH值的调节,在保证稳定性前提下,提高其在水中的溶解度。
例如:泮妥拉唑(pH值为12)。
4、初步稳定性试验,影响因素包括:pH值、温度、抗氧剂、EDTA-2Na、通氮气或二氧化碳等。
最好通过正交试验完成。
根据试验结果确定冻干剂的各因素值。
5、测定共晶点。
包括不加辅料、加不同辅料及不同用量辅料等。
6、辅料的选择。
包括不同的辅料及不同用量的辅料。
选择指标:成型性及复水性。
7、除菌除热原条件筛选。
因素包括:活性碳用量、温度、时间等。
8、考察辅料对含量测定的影响。
支撑剂、缓冲剂、抗氧剂等辅料是否影响主药的含量测定及相关物质的限度检查。
9、中试设计。
中试条件与小试不完全一样,充分考虑各步骤的可操作性,确定中试工艺。
中试注意事项:1)投料。
为确保含量符合要求,常规是按105%投料;2)配液完成,在灌装前,最好取样检测中间体溶液,重点是pH 值、含量、澄明度;如果结果不符合要求,pH值可以直接调节,澄明度可以考虑多过滤一次,至于含量,如果低于90%或者高于110%,按操作失败处理,必须仔细查找原因;3)灌装时,考虑到流动性的差异,实际装样量必须测定,不能以标示为准。
冻干粉针剂冻干工艺研究经验汇总

一、冷冻干燥过程研究真空冷冻干燥是先将制品冻结到共晶点温度以下,使水分变成固态的冰,然后在适当的温度和真将水蒸气冷凝,从而获得干燥制品的水汽凝结器)空度下,使冰升华为水蒸气。
再用真空系统的冷凝器(、二次干燥(解吸干燥)和密封保技术。
该过程主要可分为:制品准备、预冻、一次干燥(升华干燥)存五个步骤。
1 产品预冻制品的玻璃化1.1玻璃化的作用。
近年来,人们已经逐渐地认识到,凡是成功的低温保存,细胞的水均以玻璃态的分子玻璃化是指物质以非晶态形式存在的一种状态,其粘度极大,形式被固化,在胞不出现晶态的冰。
故在这种结构中分子运动和分子变性反应非的能动性几乎为零,由于这种非晶体结构的扩散系数很低,常微弱,不利的化学反应能够被抑制,从而提高被保存物质的稳定性。
玻璃化的获得。
在产品预冻时,只要降温速率足够快,且达到足够低的温度,大部分材料都能从指“足够快”的意思是在降温过程中迅速通过结晶区而不发生晶化,“足够低”液体过冷到玻璃态固体。
Tg 以下。
的是必须把温度降到玻璃化转变温度第一步是以一般速对于具有一定初始浓度的细菌制品,其预冻过程一般通过“两步法”来完成。
第胞溶液的浓度逐渐提高;,让细胞外的溶液中产生冰,率进行降温细胞的水分通过细胞膜渗向胞外,,以实现胞溶液的玻璃化。
此法又称“部分玻璃化法”。
二步是以较高速率进行降温点后将开BA当初始浓度为A的溶液(点)从室温开始冷却时,随着温度的下降,溶液过冷到冰晶周围溶液将沿着平衡的熔融线不断析出冰晶,始析出冰,结晶潜热的释放又使溶液局部温度升高。
(D的交点(Ta)与玻璃化转变曲线(Tg)剩余的未冻溶液随温度下降,浓度不断升高,一直下降到熔融线,此时的溶液达到最大冻结浓缩状,浓度较高,)时,溶液中剩余的水分将不再结晶(称为不可冻水点) 以非晶态的形式包围在冰晶周围,形成镶嵌着冰晶的玻璃体。
降温速率与预冻温度1.2其速度可控制在每分钟降形状和成品最初晶格及其微孔的特性,预冻速度决定了制品体积大小、1℃左右。
冻干技术指导原则

冻干技术指导原则一、引言冻干技术是一种将生物制剂在低温下冻结并通过减压脱水的方法,将水分从冻结状态直接转变为气态,从而实现制剂的干燥和保鲜的方法。
本文将介绍冻干技术的原则和指导,以帮助读者更好地理解和应用该技术。
二、冻干技术的原则1. 冻结阶段冻结是冻干技术的第一步,其目的是将制剂中的水分冻结成固态。
在冻结阶段,需要控制冷冻速率和冷冻温度。
较慢的冷冻速率有助于形成较大的冰晶,减少冰晶对生物制剂的损伤。
常用的冷冻温度为-40℃至-80℃。
2. 脱水阶段脱水是冻干技术的关键步骤,其目的是将冻结的水分从固态转变为气态,通过减压脱水的方法进行。
在脱水阶段,需要控制脱水速率和脱水温度。
较慢的脱水速率有助于保持制剂的结构完整性和活性,常用的脱水温度为-20℃至-50℃。
3. 干燥阶段干燥是冻干技术的最后一步,其目的是将脱水后的制剂彻底干燥,以防止水分重新吸收。
在干燥阶段,需要控制干燥温度和干燥时间。
较低的干燥温度有助于保持制剂的活性和稳定性,常用的干燥温度为-20℃至-50℃。
4. 辅助措施除了上述三个阶段,还可以采取一些辅助措施来提高冻干技术的效果。
例如,可以在冻结和脱水阶段添加保护剂,以减少制剂的损伤;可以在干燥阶段使用辅助干燥剂,以加快干燥速度;还可以在整个过程中进行监测和控制,以确保冻干过程的稳定性和一致性。
三、冻干技术的应用冻干技术在生物制药、食品工业、化妆品等领域有着广泛的应用。
以下是一些冻干技术的应用案例:1. 生物制药冻干技术被广泛应用于生物制药领域,用于制备蛋白质药物、疫苗、抗体等生物制剂。
通过冻干技术,可以将生物制剂制备成干粉状,便于储存、运输和使用,同时保持制剂的活性和稳定性。
2. 食品工业冻干技术在食品工业中用于制备冻干食品,例如冻干蔬菜、水果和咖啡等。
通过冻干技术,可以将食品中的水分脱除,延长食品的保质期,同时保持食品的营养成分和口感。
3. 化妆品冻干技术在化妆品领域中用于制备冻干粉状化妆品,例如冻干面膜和冻干粉底等。
冻干制剂常见的质量问题及解决办法 汇总

冻干问题诊断及对策冻干良好的产品应有良好的物理形态,外观无缺损,表面平整,体积与冻结时的体积基本相等,颜色均匀一致,内部疏松多孔,复水迅速而完全,残余水分含量合格,效价高,能长期存放。
1.产品抽空时有喷发现象:这是由于产品还没有冻实时就抽真空的缘故,预冻温度还没有低于共晶点温度,或者已低于共晶点温度,但时间还不够,产品的冻结还未完成。
解决方法是降低预冻温度和延长预冻时间。
2.产品有干缩和鼓泡现象:这是由于在升华干燥过程中出现了局部熔化,由液体蒸发为汽体,造成体积缩小,或者干燥产品溶入液体之中,造成体积缩小,严重的熔化会产生鼓泡现象,原因是加热太高或局部真空不良使产品温度超过了共晶点或崩解点温度。
解决方法是降低加热温度和提高冻干箱的真空度,应控制产品温度,使它低于共晶点或崩解点温度5℃。
3.无固定形状:这是由于产品中的干物质太少,产品浓度太低,没有形成骨架,甚至已干燥的产品被升华汽流带到容器的外边。
解决方法是增加产品浓度或添加赋形剂。
4.产品未干完:产品中还有冻结冰存在时就结束冻干,出箱后冻结部分熔化成液体,少量的液体被干燥产品吸走,形成一个“空缺”,液体量大时,干燥产品全部溶解到液体之中,成为浓缩的液体。
这种产品出箱时若触摸容器的底部,有冰凉的感觉,即使看起来产品良好,但残水含量也不会合格。
解决方法是增加热量供应,提高板层温度或采用真空调节,也可能是干燥时间不够,需要延长升华干燥或解吸干燥的时间。
5.产品颜色不均匀:产品有结晶花纹,这是由于冷冻速率缓慢引起的,解决方法是提高冷冻速率,不在0℃左在的温度停留,使产品冻结成较小的晶体。
有时产品中能看到一圈颜色较深的分层线,这往往是升华中短时间真空不良造成的,短暂停电会产生这种现象。
6.产品上层好,下层不好:升华阶段尚未结束,提前进入解吸阶段,这等于提前升高板层温度,结果下层产品受热过多而熔化,解决方法是延长升华阶段的时间;有些产品由于装载厚度太大,或干燥产品的阻力太大,当产品干燥到下层时,升华阻力增加,局部真空变坏也会引起下层产品的熔化。
冷冻干燥中冻干制剂的一些问题综述讲解

冷冻⼲燥中冻⼲制剂的⼀些问题综述讲解冷冻⼲燥中冻⼲制剂的⼀些问题综述综述2013.6 陈亚飞摘要:冷冻⼲燥技术是⽣物制剂的主要⽣产⼯艺,采⽤冷冻⼲燥⼯艺可保持产品原有的理化性质和⽣物活性,且有效成分损失极少。
⼲燥后的产品形状、体积、晶型等理化指标均⼀性好。
产品因含⽔量低⽽易于长期保存, 因疏松多孔⽽使得加⽔后可迅速完全溶解。
但在冻⼲制剂的⽣产或实验中我们总会有⼀些冻⼲上的问题,下⽂就是我们在冻⼲制剂上的主要问题的分析。
关键词:制剂预冻共晶温度玻璃态转化崩解温度⼲燥稳定性⽔分保护剂⼀冷冻⼲燥技术1 冷冻⼲燥技术的发展随着真空泵和制冷机的出现,冷冻和⼲燥理念的结合,近些年来冷冻⼲燥技术在全世界发展迅速,应⽤⾮常⼴泛。
冷冻⼲燥技术的发展史已经百年有余,从最初发现冷冻⼲燥技术,以及真空条件下⽔的饱和蒸汽压于⽔的温度关系,到采⽤主动加热⽅法减短⼲燥时间并⽤于⽣产化。
1958年的第⼀届冷冻⼲燥会议促进了冻⼲的发展,在⾷品、药品、建材等⾏业得到⼴泛应⽤。
近些年来,伴随着电⼦计算机和传感测量技术在冻⼲领域的应⽤,冻⼲技术已加⼊⾼新技术领域⾏列。
⼈体器官的保存和再植的研究,营养保健⾷品的追求,超轻隔热陶瓷在航天飞机的应⽤,以及低温超导材料等纳⽶级超细微粉材料的制备,都需要真空冷冻⼲燥技术和设备。
在医药领域中,真空冷冻⼲燥技术对药品和医疗事业都有重要应⽤。
药品⽅⾯上包括⽣物制品(活菌菌苗、活毒疫苗、⼀些⽣物制品和⽣化药品等)、化药⽣产(多位注射剂:抗⽣素药、循环器官⽤药、中枢神经⽤药、维⽣素类和肿瘤⽤药等)、中药⽣产(中草药、中成药);医疗事业上对保存⾎液、动脉、⾻骼、⽪肤、⾓膜和神经组织等各种器官上效果良好。
2 冷冻⼲燥的定义及优缺点简述冷冻⼲燥是指将被⼲燥含⽔物料冷冻成固体,在低温减压条件下利⽤⽔的升华性能,使物料低温脱⽔⽽达到⼲燥⽬的的⼀种⼲燥⽅法。
是将热能通过与物料接触的壁⾯以传导⽅式传给物料,使物料中的湿分⽓化并由周围空⽓⽓流带⾛⽽⼲燥的操作。
冻干制剂经验前辈谈

冻干制剂经验前辈谈对于冻干制剂,我在学习过程中累积了一些心得。
然而篇幅有限,在此仅择其要义,概而述之。
一、冻干制剂并不难冻干机体积硕大,动辄充栋盈屋。
庞然如斯,总不免让人产生难以驾驭的错觉。
其实,从冻干机理来看,冻干机无非就是一种两台大冰箱加一个真空泵的结构。
其中一个冰箱首先负责把药品冻成冰块,然后开动真空泵营造一种低真空的环境。
在此减压环境下,物体的沸点、熔点等热常数都相应降低,因而,箱内的药品轻微受热后即能在低温条件下从固体升华为气体。
这些气体随即流向另外一个大冰箱,被捕捉下来重新凝结成冰块。
当药品的水分完全抽干以后,便完成了一个冻干过程。
冻干操作中最为关键的环节当数对制品共熔点(或共晶点)温度的把握。
如果能够在制品温度上升到共熔点之前把大部分的水分抽去,那么成功也就为期不远了。
所谓共熔点,就是溶液全部凝结的温度。
常用的共晶点测量仪器主要是基于相变过程中电阻率突变的原理来制作的。
但不少品种对共熔点(或共晶点)温度的要求并不需要过于精确,一般来说,我们可以在预冻阶段通过视窗来观察制品性状的变化来获得。
当制品开始结冰的时候,浸入制品中的电热偶所探测到的温度会突然回升,这是因为结冰过程的放热现象所造成的。
这时候,我们录得的温度就大致接近于共熔点(或共晶点)温度。
在共熔点(或共晶点)之前抽去90%以上的水分的过程在专业术语上称为一次干燥期。
判断一次干燥结束的时间也是比较重要的。
过早或过晚判断,都会造成冻干品质的降低与能耗。
最直观的方法,是根据制品的形状来判断。
一次干燥后期,大部分水分被抽去。
就好象随着洪水退去,墙面的水线不断下降一样,我们可以观测到制品上面也有一条水线不断下降,直至消失。
水线消失,也就意味着一次干燥即将结束了。
第二种方法,可以根据箱内压力的变化趋势来加以判断,当大部分被抽去以后,箱内的压力将不断下降,直至呈现线形。
第三种方法,可以根据制品温度的变化来判断。
当大部分被抽去以后,我们会发现,制品的温度与搁板的温度会越来越接近。
中药行业工作的中药冻干剂制剂生产质量控制与管理

中药行业工作的中药冻干剂制剂生产质量控制与管理中药冻干剂是一种应用广泛的中药制品形式。
其制剂生产的质量控制和管理是中药行业工作中的重要环节。
本文将从质量控制和管理两个方面,探讨中药冻干剂制剂的生产过程,并提出提高质量控制和管理水平的方法。
一、质量控制1. 原材料选择:中药冻干剂的制剂质量与原材料的质量密切相关。
因此,在选择原材料时,必须严格按照相关标准进行检验和筛选。
包括对药材的采购渠道进行评估,对每个批次的药材进行外观、性状、含量和杂质等方面的检验。
2. 新鲜度保持:中药冻干剂的质量往往取决于原材料的新鲜度。
因此,在采收原材料后,应尽快进行初步处理,并采用低温保存方式,以保持其天然属性。
同时,在制剂过程中,应注意控制加热和蒸馏等操作,以减少药材的损耗。
3. 加工标准化:中药冻干剂的制剂过程应符合标准化操作规程。
生产过程中应精确控制各个环节的温度、时间和压力等参数,确保产品质量的稳定性和可重复性。
此外,对于机械设备和仪器的使用,也应严格按照操作说明书进行操作。
二、质量管理1. GMP认证:中药冻干剂的生产企业应积极争取国家药品监管部门颁发的GMP认证。
GMP认证是药品生产企业质量管理的基本要求,只有通过GMP认证,企业才能获得相应的生产许可证。
通过GMP认证的企业,具备了规范的生产管理体系和质量控制体系,能够有效提高产品的质量和安全性,并提高企业的竞争力。
2. 药材追溯体系:为了保证中药冻干剂的质量和安全,建立药材追溯体系是必要的。
该体系可以追踪到每个药材的采购、贮存、加工和销售等环节,确保每个环节的合规性。
同时,药材追溯体系也能够及时发现药材来源的问题,以及批次药材的差异,为质量控制提供有力支持。
3. 过程控制和检验:中药冻干剂的生产过程中需要进行过程控制和检验。
通过设立严格的质量控制点,根据相关规范和标准对原材料、中间过程和成品进行检验。
同时,在生产过程中建立向上级进行质量报告的制度,确保产品质量的可追溯性和连续性。
冻干制剂经验总结

冻干制剂经验总结1、文献资料查阅。
包括:其它剂型的质量标准;相关专利;欧洲药典及美国药典;期刊杂志中关于化学稳定性、水溶性等基础研究报道,等等。
2、参照该主药的其它剂型,确定冻干制剂的pH值。
1)如pH值在3~10之间,且允许波动2个以上的pH值,例如pH值为3~5,并且,原料的pH值能稳定地在限定的pH值范围内,可以不调节pH值;例如:曲克芦丁。
2)但如果允许波动的范围小于2个pH值,则要考虑通过缓冲溶液来控制,常用的缓冲对参照有关工具书;例如:盐酸纳洛酮。
3)如果缺乏相关资料,得做不同pH值溶液的稳定性试验及pH值对主药在水中的溶解度影响试验,根据试验结果确定pH值。
例如:黄芩苷葡甲胺。
3、考察主药在水中的溶解度。
主要考察主药冻干剂规格量能否在1~2ml水中很好的溶解;可以考虑通过对pH值的调节,在保证稳定性前提下,提高其在水中的溶解度。
例如:泮妥拉唑(pH值为12)。
4、初步稳定性试验,影响因素包括:pH值、温度、抗氧剂、EDTA-2Na、通氮气或二氧化碳等。
最好通过正交试验完成。
根据试验结果确定冻干剂的各因素值。
5、测定共晶点。
包括不加辅料、加不同辅料及不同用量辅料等。
6、辅料的选择。
包括不同的辅料及不同用量的辅料。
选择指标:成型性及复水性。
7、除菌除热原条件筛选。
因素包括:活性碳用量、温度、时间等。
8、考察辅料对含量测定的影响。
支撑剂、缓冲剂、抗氧剂等辅料是否影响主药的含量测定及相关物质的限度检查。
9、中试设计。
中试条件与小试不完全一样,充分考虑各步骤的可操作性,确定中试工艺。
中试注意事项:1)投料。
为确保含量符合要求,常规是按105%投料;2)配液完成,在灌装前,最好取样检测中间体溶液,重点是pH值、含量、澄明度;如果结果不符合要求,pH值可以直接调节,澄明度可以考虑多过滤一次,至于含量,如果低于90%或者高于110%,按操作失败处理,必须仔细查找原因;3)灌装时,考虑到流动性的差异,实际装样量必须测定,不能以标示为准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冻干制剂经验谈对于冻干制剂,我在学习过程中累积了一些心得。
然而篇幅有限,在此仅择其要义,概而述之。
一、冻干制剂并不难冻干机体积硕大,动辄充栋盈屋。
庞然如斯,总不免让人产生难以驾驭的错觉。
其实,从冻干机理来看,冻干机无非就是一种两台大冰箱加一个真空泵的结构。
其中一个冰箱首先负责把药品冻成冰块,然后开动真空泵营造一种低真空的环境。
在此减压环境下,物体的沸点、熔点等热常数都相应降低,因而,箱的药品轻微受热后即能在低温条件下从固体升华为气体。
这些气体随即流向另外一个大冰箱,被捕捉下来重新凝结成冰块。
当药品的水分完全抽干以后,便完成了一个冻干过程。
冻干操作中最为关键的环节当数对制品共熔点(或共晶点)温度的把握。
如果能够在制品温度上升到共熔点之前把大部分的水分抽去,那么成功也就为期不远了。
所谓共熔点,就是溶液全部凝结的温度。
常用的共晶点测量仪器主要是基于相变过程中电阻率突变的原理来制作的。
但不少品种对共熔点(或共晶点)温度的要求并不需要过于精确,一般来说,我们可以在预冻阶段通过视窗来观察制品性状的变化来获得。
当制品开始结冰的时候,浸入制品中的电热偶所探测到的温度会突然回升,这是因为结冰过程的放热现象所造成的。
这时候,我们录得的温度就大致接近于共熔点(或共晶点)温度。
在共熔点(或共晶点)之前抽去90%以上的水分的过程在专业术语上称为一次干燥期。
判断一次干燥结束的时间也是比较重要的。
过早或过晚判断,都会造成冻感、干品质的降低或能量和时间的消耗。
最直观的方法,是根据制品的形状来判断。
一次干燥后期,大部分水分被抽去。
就好象随着洪水退去,墙面的水线不断下降一样,我们可以观测到制品上面也有一条水线不断下降,直至消失。
水线消失,也就意味着一次干燥即将结束了。
第二种方法,可以根据箱压力的变化趋势来加以判断,当大部分被抽去以后,箱的压力将不断下降,直至呈现线形。
第三种方法,可以根据制品温度的变化来判断。
当大部分被抽去以后,我们会发现,制品的温度与搁板的温度会越来越接近。
为了缩短干燥时间,除了可在预冻阶段的晶形做文章以外,还可以在升华阶段适当地掺入气体,使真空值在一定围波动(一般不宜超过30Pa)。
这种办法使热传递方式不再是靠热传导来主打,还增强了热对流的方式,加快了水分解析的速度,每每奏效。
二、预冻速率我服膺于这样一种说法,即,预冻过程在很大程度上决定了干燥过程的快慢和冻干产品的质量。
通常介绍冻干理论的书籍都会提到,降温速率越大,溶液的过冷度和过饱和度愈大,临界结晶的粒度则愈小,成核速度越快,容易形成颗粒较多尺寸较小的细晶。
因而冰晶升华后,物料形成的孔隙尺寸较小,干燥速率低,但干后复水性好;相反,慢速冻结容易形成大颗粒的冰晶,冰晶升华后形成的水气逸出通道尺寸较大,有利于提高干燥速率,但干后复水性差。
这样说当然没有错,可是不要忘记,这种理论是在受热均匀的前提下得出来的,然而我们厂里的医药冻干机所提供的冻干条件却没有这么理想,所谓快冻慢冻,可不是导热油降温快慢一句话可以了得的。
相对而言,我还是比较赞成医药网络论坛丁香园战友tinybayonet的提法。
他把快冻慢冻分为以下几类:1、板温降得较快,且板温比品温低很多,则制品底部先冻结产生结晶,但上部液体仍较热,所以不至于瞬间全部结晶,结晶会缓慢生长,就得到了慢冻的效果。
2、板温降得较慢,板温与品温相差不大,则制品整体均匀降温,并形成过冷,当能量积累足够时,瞬间全部结晶,得到了快冻的效果。
3、板温降得很慢,并在低于共熔点的适宜温度保持(或缓慢降温),则制品形成较小的过冷度,液体中先出现少量结晶,继续降温结晶生长,得到大结晶,这即是真正的慢冻。
4、制品浸入超低温环境(如液氮),整体瞬间结晶,形成极细小的晶体(或处于无定形态),这即是真正的快冻。
对于tinybayonet提到的这几种现象,我都在试验过程中发现过,因此,我还是比较赞成这种划分方法的。
更何况,企业大多数情况下还是采用瓶冻的冻干方法的,瓶冻的受热不均匀现象就更明显了。
根据对瓶装制品搁板预冻过程的研究,样品初温越高,样料液上下部分的温度梯度越大,冰晶生长速度越慢。
溶液若慢速降温,则形成冰晶比较粗大,冰界面由下向上推进的速度慢,溶液中溶质迁移时间充足,溶液表面冻结层溶质积聚也就多。
因而导致上表层的溶质往往较多,密度较高,而下底层密度较小,结构疏松。
同时,在不同的预冻温度下冻结的样品,干燥后支架孔径人小有明显差异。
预冻温度愈低,支架孔隙直径愈小。
这种分层现象,在骨架差的制品上体现得最为明显,或者底部萎缩,或者中间断层,或者顶部突起,或者顶部脱落一层硬壳,不一而足。
为了瓶冻分层的现象,在实践中,有人提倡使用三步法,即将样品从室温先冷却至样品的初始冻结温度;停止降温过程,使样品温度自动平衡,消除其的温度梯度;然后再迅速降温,由于此时样品整体温度离结晶温度较近,且样品在冻结过程中,样品温度下降较慢,故样品在冻结过程中温度梯度会相对较小,冰晶生长速度必相对较快。
如此,便提高了预冻速率,解决了溶质聚集在上层的问题。
不过,并不是所有的品种使用了三步法后都能取得明显效果的。
三、溶媒结晶品和冻干品的优劣商务部有位同事曾经问我,溶媒结晶品和冻干品,孰优孰劣?我当时都不知道如何回答。
在我看来,很难一言以蔽之。
理论上,冻干品中的活性成分以结晶态或无定形态(非晶态)的形式存在。
一般对于抗生素来讲,以晶态存在时,具有更高的稳定性。
在储存过程中,无定形态总有向晶态转变的趋势。
因此,我只能说在许多情况下溶媒结晶的抗生素类稳定性可能要好一些。
不过,这种差别有时候不是特别大,而且溶媒结晶品的价格可能数倍冻干品,两相权衡,有些人还是会选择冻干品的。
只是,我有一点困惑。
理论上,晶态结构的溶解性要比无定形态差,可是有人研究发现,对于某些抗生素药物,溶媒结晶品的溶解性优于冻干品。
关于这种现象,我一时间找不到理论支持,甚为困惑。
至于生物类制品就不一定欢迎结晶态了,因为冻结过程中冰晶的生长会对组织和结构造成损坏。
顺便提一下,非晶态材料主要有金属、无机物和有机物三类。
玻璃态原来专指硅酸盐类的无定形态,可是后来泛而用之,所有的无定形态(非晶态)也称为玻璃态了。
四、关于澄清度和可见异物有位第四军医大的网友包老师,很喜欢跟人切磋冻干问题。
他认为,浑浊、乳光或可见异物的出现与不溶性微粒的大小有关。
小于10nm的微粒才是清澈透明的;当微粒大于100nm时,微粒出现在溶液中,可以引起浑浊;在10-100nm围,产生光散射,就可以观察到乳光、浑浊;微粒再大一些,就有沉淀和结晶析出了,这就是μm级的了。
我不知道他这种说法出处在哪,可是根据我自己的体会,我是赞成的。
至于形成微粒的原因,林林总总。
聊举数例,点到即止。
1、配料工艺。
如配料的水温、加料的顺序、活性炭的吸附时间和温度、料液放置时间,等。
2、物料稳定性有的原料存在多晶型,不同晶型的稳定性是不一样的;有的原料对温度敏感;有的原料对pH敏感;有的原料对氧化敏感,等。
不稳定性物质的分解物很可能就是异物的来源。
3、料液性质料液的浓度是个很重要的因素,这个恐怕不需要强调了。
此外,对于料液的 pH稳定性也要给予足够的重视。
比如,使用缓冲对时,分析课本上的三大原则要谨记:pka尽量接近于pH,尽量使缓冲比接近于1,浓度适当地大。
4、辅料性质(如挥发性等)最明显的就是盐酸、碳酸氢钠等例子。
5、预冻关于快冻、慢冻等老生常谈的话题不提也罢,倒是反复预冻有点意思。
反复预冻可以减小由于成核温度差异造成的冰晶尺寸差异及干燥速率的不均匀性,提高干燥效率和制品均匀性;强化结晶,使结晶成分和未冻结水的结晶率提高。
大家可以在实践中揣摩一下它的妙处。
6、升华升华速度和温度对澄清度会有影响,我了解到的情况主要有以下两点。
第一,主要是一次升华期。
如果率先干燥的上层物料温度上升得过快,达到坍塌温度时,多孔性骨架刚度降低,干燥层的颗粒出现脱落,会封闭已干燥部分的微孔通道,阻止升华的进行,使升华速率减慢,甚至使下层部分略微萎缩,影响制品残留水分的含量,导致复水性、稳定性和澄清度同时变差。
第二,主要是二次升华期。
小晶体由于具有很高的表面能,在热力学上是不稳定的,尤其是快速冷却过程中形成的小冰晶,在加热时有可能会发生再结晶,小冰晶之间相互结合形成大冰晶,使其表面积与体积之比达到最小,而大冰晶使冻干品外观不好,复水性差。
因此,过高温度或过长时间地升华或保温,有时候会对某些品种不利,最明显的例子就是澄清度不合格。
7、制品成型性、残留水有的品种,不怕空气,就是怕温度或水分。
一旦获得了水和温度,变化就很迅速了。
8、真空、充氮有没有抽真空,有没有充氮,能否将制品与氧气彻底隔离起来,避免缓慢氧化,有时候显得格外重要的。
9、包材。
最常见的例子就是胶塞。
胶塞不仅可能吸附主药,还可能含有许多助剂,比如硫化剂。
丁基橡胶药用瓶塞的生产过程中少不了硫化。
在其硫化过程中,不同的硫化体系,其生成的交联键型和可迁移物质的不同,这样胶塞在储存、高温消毒、药品封装中,低聚物的迁移性分子键联的稳定性均不同,从而影响药物的相容性。
此外,在瓶塞的生产、加工,包装、储运等过程中,均不可避免地会发生瓶塞与设备之间,瓶塞与瓶塞之同曲摩擦,这些摩擦不可避免地产生了微粒。
因此,作为制剂企业,如何避免胶塞清洗过程中的过多摩擦,也是车间技术人员需要注意的地方。
还有瓶塞的透气性,透水性易造成对水份敏感的制剂吸潮变质。
作为制剂厂,我们至少要保证清洗以后的胶塞能得到良好的烘干。
10、结晶原理无论是小水针还是冻干品,都经常听见谁在求助某某品种出现澄清度或可见异物不合格。
我猜想,有一部分原因可能与结晶有关。
一般来说,浓度较高的料液中的可溶性粒子都具有成为结晶理论中的核前缔结物的可能,当具备一定的形成结晶的条件时,这些核前缔结物就会不断合并,形成晶核。
晶核一旦产生,晶体就生长起来了。
结晶原理告诉我们,无论是晶体生长线速率,或是晶体生长的质量速率,都取决于溶液的过饱和度或熔体的过冷度,取决于温度、压力、液相的搅拌强度及特性、杂质的存在等。
(1)搅拌能促进扩散加速晶体生长,但同时也能加速晶核的形成。
(2)温度升高有利于扩散,也有利于表面化学反应速度提高,因而使结晶速度增快。
(3)过饱和度增高一般会使结晶速度增大,但同时引起黏度增加,结晶速度受阻。
(4)至于杂质,其作用机理则是比较复杂的。
下面重点阐述:无机的和有机的可溶性杂质,可以对过饱和度、新相晶核形成以及晶体生长产生很大的影响。
这些作用的机理也许是不同的,它既取决于杂质和结晶物质的性质,也取决于结晶的条件。
当杂质存在时,物质的溶解度可能发生变化,因而最终导致溶液的过饱和度发生变化。
溶解度变化的原因可能不同,既可能是出现盐析效应,溶液的离子力作用,也可能出现化学相互作用。