(完整版)集合知识点点总结

合集下载

集合的全部知识点总结

集合的全部知识点总结

集合的全部知识点总结集合是数学中的一个基本概念,它是由确定的元素组成的整体。

在数学中,集合论是一个独立的分支,它研究集合的性质、运算和关系。

本文将对集合的基本概念、运算和性质进行总结。

一、集合的基本概念1. 集合符号:集合常用大写字母表示,如A、B、C。

元素通常用小写字母表示,如a、b、c。

2. 集合的表示方法:集合可以通过列举元素的方式表示,例如A={1, 2, 3};也可以用描述性的方式表示,例如B={x | x是自然数,且x<5}。

3. 空集:不包含任何元素的集合被称为空集,用符号∅表示。

二、集合的运算1. 并集:若A和B是两个集合,它们的并集是由两个集合中的所有元素组成的集合,用符号∪表示,即A∪B。

2. 交集:若A和B是两个集合,它们的交集是同时属于A和B的元素组成的集合,用符号∩表示,即A∩B。

3. 差集:若A和B是两个集合,它们的差集是属于A而不属于B的元素组成的集合,用符号A-B表示。

4. 互斥:若A∩B=∅,即A和B的交集为空集,称A和B是互斥的。

三、集合的性质1. 子集:若集合A中的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。

2. 包含关系:若A是B的子集,且B不等于A,则称B包含A,用符号B⊇A表示。

3. 相等关系:当A⊆B且B⊆A时,称A和B相等,用符号A=B表示。

4. 幂集:集合A的所有子集构成的集合被称为A的幂集,用符号P(A)表示。

5. 交换律:并集和交集满足交换律,即A∪B=B∪A,A∩B=B∩A。

6. 结合律:并集和交集满足结合律,即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

7. 分配律:并集和交集满足分配律,即A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。

四、常用集合1. 自然数集:包括0、1、2、3......的集合,用符号N表示。

2. 整数集:包括负整数、0、正整数的集合,用符号Z表示。

集合的全部知识点总结

集合的全部知识点总结

集合的全部知识点总结集合是数学中的重要概念之一,广泛应用于各个领域。

在本篇文章中,将对集合的定义、运算、性质以及常见的集合类型进行总结和归纳。

一、集合的基本定义集合是由不同元素组成的整体。

通常用大写字母表示集合,用大括号{}表示,元素之间用逗号分隔。

例如,集合A可以表示为A={a, b, c}。

二、集合的运算1. 并集(Union)并集是指将两个或多个集合中的所有元素合并在一起形成的新集合。

记作A∪B,其中A和B是待操作的集合。

并集包含了A和B中的所有元素,不重复计数。

2. 交集(Intersection)交集是指两个或多个集合中共有的元素所组成的集合。

记作A∩B,其中A和B是待操作的集合。

交集只包含A和B中共有的元素,重复计数一次。

3. 差集(Difference)差集是指一个集合中除去与另一个集合共有的元素后所剩下的元素。

记作A-B,其中A和B是待操作的集合。

差集包含了属于A但不属于B的元素。

4. 补集(Complement)补集是指集合在某个全集中的补集合。

一般情况下,全集为给定环境中的所有元素。

记作A的补集为A'或A^c。

补集包含了全集中属于但不属于A的元素。

三、集合的性质1. 包含关系集合A包含集合B,当且仅当B中的每个元素都属于A。

记作A⊇B。

如果A包含B且B包含A,那么A和B是相等的集合,记作A=B。

2. 互斥关系集合A和集合B互斥,当且仅当两个集合没有共同的元素,即A∩B=∅。

3. 子集关系集合A是集合B的子集,当且仅当A中的每个元素都属于B。

记作A⊆B。

空集∅是任何集合的子集。

4. 幂集幂集是指一个集合的所有子集所组成的集合。

假设集合A={a, b},那么A的幂集为P(A)={{},{a},{b},{a,b}}。

四、常见的集合类型1. 自然数集合(N)自然数集合包含了从1开始的所有正整数。

即N={1, 2, 3, …}。

2. 整数集合(Z)整数集合包含了正整数、负整数和零。

数学集合知识点总结

数学集合知识点总结

数学集合知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:①.元素的确定性;②.元素的互异性;③.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}4、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA2.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

集合的全部知识点总结

集合的全部知识点总结

集合的全部知识点总结在数学中,集合是一种用来描述事物的概念。

它由一组称为元素的对象组成,没有重复的元素,并且元素之间没有明确的顺序。

集合的概念在数学中非常重要,它被广泛应用于各个领域。

本文将对集合的基本概念、运算、性质以及常见的应用进行总结和探讨。

一、集合的基本概念:1. 元素:集合中的对象称为元素。

用小写字母表示,例如集合A={a,b,c},a,b,c就是A的元素。

2. 空集:不包含任何元素的集合称为空集,用符号∅表示。

3. 相等关系:两个集合A和B相等,当且仅当A中的所有元素都属于B,且B中的所有元素都属于A。

4. 子集:若A的所有元素都属于集合B,则称A是B的子集,用符号A⊆B表示。

5. 真子集:若A是B的子集且A≠B,则称A是B的真子集,用符号A⊂B表示。

二、集合的运算:1. 并集:将两个集合中的所有元素进行合并得到的新集合,用符号∪表示。

例如A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集:两个集合中共有的元素构成的新集合,用符号∩表示。

例如A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集:从一个集合中减去另一个集合中相同的元素所得到的新集合,用符号-表示。

例如A={1,2,3},B={3,4,5},则A-B={1,2}。

4. 补集:对于给定的全集U,集合A相对于全集U中的元素不在集合A中的元素所构成的新集合,用符号A'表示。

三、集合的性质:1. 交换律:对于任意两个集合A和B,A∪B=B∪A;A∩B=B∩A。

2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C)。

3. 分配律:对于任意三个集合A、B和C,A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C)。

4. 同一律:对于任意集合A,A∪∅=A;A∩U=A(其中U为全集)。

5. 非空律:任何一个集合与非空集合的并集等于非空集合本身。

(完整版)《集合》知识点总结

(完整版)《集合》知识点总结

《集合》知识点总结一、集合有关概念1.集合的含义一般地,把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集) 2.集合中元素的三个特性:确定性 互异性 无序性3.集合的表示:{}⋅⋅⋅如:{}我校的篮球队员,{}太平洋,大西洋,印度洋,北冰洋用拉丁字母表示集合:A ={}我校的篮球队员,B ={}1,2,3,4,5 集合的表示方法:列举法与描述法。

列举法:{,}a b ⋅⋅⋅,c,d,描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{|32}x x ->语言描述法:例:{}不是直角三角形的三角形Venn 图:注:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 *N N +或 整数集Z 有理数集Q 实数集R4.集合的分类:有限集 含有有限个元素的集合 无限集 含有无限个元素的集合空集 不含任何元素的集合 例:2{|5}x x =-二、集合间的基本关系1.“包含”关系—子集 注意:A B ⊆有两种可能(1)A 是B 的一部分;(2)A 与B 是同一集合。

反之,集合A 不包含于集合B,或集合B 不包含集合A,记作A ⊆/B 或B ⊇/A 2. “相等”关系:A=B (5≥5,且5≤5,则5=5)例:设A={x|210x -=} B={-1,1} “元素相同则两集合相等”① 任何一个集合是它本身的子集. A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作B A ⊆ (或B ⊇/A) ③如果A ⊆B, B ⊆C ,那么 A ⊆C④如果A ⊆B 同时 B ⊆A 那么A=B3.不含任何元素的集合叫做空集,记为∅规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

结论:有n 个元素的集合,含有2n 个子集,12n -个真子集(2)交、并、补集的混合运算①集合交换律 A B B A ⋂=⋂ A B B A ⋃=⋃②集合结合律 ()()A B C A B C ⋂⋂=⋂⋂ ()()A B C A B C ⋃⋃=⋃⋃③集合分配律 ()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃ (3)容斥定理()()()()card A B card A card B card A B ⋃=+-⋂()()()()()card A B C card A card B card C card A B ⋃⋃=++-⋂()()()card A B card B C card A B C -⋂-⋂+⋂⋂card 表示有限集合A 中元素的个数。

集合知识点及题型总结

集合知识点及题型总结

1.1集合的含义与表示1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2、集合的中元素的三个特性:确定性、互异性、无序性 2、“属于”的概念:我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素;元素在集合A 中,称属于A ,记为,否则称不属于A ,记作。

3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或 N+ ;整数集记作:Z ;有理数集记作:Q ;实数集记作:R 4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x -3>2的解集是{x∈R| x -3>2}或{x| x -3>2} (3)图示法(Venn 图)1.2 集合间的基本关系 【知识要点】1、“包含”关系——子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为,例如。

子集的个数为2n (n 为集合中元素个数)2、“相等”关系:如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

3、真子集(个数怎么算):如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

真子集的个数为2n -1(n 为集合中元素个数)。

4、空集:不含任何元素的集合称为空集,用来表示。

空集∅是任何集合的子集,是任何非空集合的真子集。

1.3 集合的基本运算 【知识要点】1、交集的定义:即A ∩B={x| x ∈A ,且x ∈B}.2、并集的定义:即A ∪B={x | x ∈A ,或x ∈B}.3、交集与并集的性质A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A 4、全集与补集(1)全集:通常用U 来表示。

(完整版)集合知识点归纳

(完整版)集合知识点归纳

集合的基础知识一、重点知识归纳及讲解1.集合的有关概念一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素⑴集合中的元素具有以下的特性①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素;而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的.②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}.③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合.(2)集合的元素某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a 是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ.(3)集合的分类:有限集与无限集.(4)集合的表示法:列举法、描述法和图示法.列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集.描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集.使用描述法时,应注意六点:①写清集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”;⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切.图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示.如:A={1,2,3,4}例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值.分析:欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况.解析:(1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但c=1时,B中的三个元素也相同,舍去c=1,此时无解.(2)a+b= ac2且a+2b=ac,消去b得:2ac2-ac-a=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴2c2-c-1=0,即c=1或,但c=1时,B中的三个元素也相同,舍去c=1,∴.点评:两集合相等的意义是两集合中的元素都相同,在求集合中元素字母的值时,可能产生与互异性相矛盾的增解,这需要解题后进行检验,去伪存真.(5)常用数集及专用记号(1)非负整数集(或自然数集)N={0,1,2,……}(2)正整数集N*(或N+)={1,2,3,……}(3)整数集Z={0,?1,?2,……}(4)有理数集Q={整数与分数}(5)实数集R={数轴上的点所对应的数}.强调:实数集不可记为{R}或{实数集},0≠≠{} ,≠{0},≠{空集}.强调:排除0和负数的数集也可表示为R*、Z*、Q*或R+、Z+、Q+.2.基本运算1. 交集(1)定义:由所有属于集合A且属于集合B的元素所组合的集合叫A与B的交集.记作,即{,且}(2)交集的图示上图阴影部分表示集合A与B的交集.(3)交集的运算律,,,2. 并集(1)定义:由所有属于集合A或属于集合B的元素所组成的集合,记作,即{,或}(2)并集的图示以上阴影部分表示集合A与B的并集.(3)并集的运算律,,,3、补集(1)定义:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集).记作,即C S A=(2)补集的图示4、常用性质A A=A,AΦ=Φ,A B=B A,A B A,A B B.A A=A,AΦ=A,A B=B A,A B A,A B B.,,例2、集合{,且},A U,B U,且{4,5},{1,2,3},{6,7,8},求集合A和B.分析:利用集合图示较为直观.解:由{4,5},则将4,5写在中,由{1,2,3},则将1,2,3写在集A中,由{6,7,8},则将6,7,8写在A、B之外,由与中均无9,10,则9,10在B中,故A={1,2,3,4,5},B={4,5,9,10}.5、容斥原理:有限集A的元素个数记作card(A).对于两个有限集A,B,有card(A∪B)= card(A)+card(B)- card(A∩B).二、难点知识剖析1、要注意区分一些容易混淆的符号(1)与的区别:表示元素与集合之间的关系,例如1N,-1N等;表示集合与集合之间的关系,例如N R,等.(2)a与{a}的区别:一般在,a表示一个元素,{a}而表示只有一个元素a的集合.例如,0{0},{1}{1,2,3}等,不能写成0={0},{1}{1,2,3},1{1,2,3}.(3){0}与Φ的区别:是含有一个元素0的集合,Φ是不含任何元素的集合,因此Φ{0}但不能写成Φ={0},Φ{0}.例3、已知集合M={x|x≤3},集合P={x|x<2},设,则下列关系式中正确的一个是()A、P∈MB、a∈MC、P MD、{a-3}P解析:集合M、P都是部分实数组成的集合,而a是一个具体的实数,故M、P间的关系应用“包含”,“不包含”来确定,而对a与集合M、P的关系只能用“属于”,“不属于”来确定,比较实数的大小,易判断C正确.小结:正确使用集合的符号是正确分析、解答问题的关键.2.理解集合所表示的意义(1)对由条件给出的集合,要明白它所表示的意义,即元素指什么,是什么范围.如{y R|y=}表示的为函数y=中y的取值范围,故{y R|y=}={y R|y};而{x R|y=}表示y=的x的取值范围,故{x R|y=}=R.(2)用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或韦恩图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用韦恩图表示,容易被忽视,如在关系式B A中,易漏掉B=Φ的情况.例4、设A=,B=(1)若A B=B,求的值;(2)若A B=B,求的值.分析:明确A B=B和A B=B的含义,根据问题的需要,将A B=B和A B=B转化为等价的关系式:和,是解决本题的关键.解析:首先化简集合A,得A={-4,0}(1)由于A B=B,则有可知集合B或为空集Φ,或只含有根0或-4.①若B=Φ,由得②若,代入得:,当时,B=,合题意.当时,B=,也符合题意.③若,代入得:,当时,②中已讨论,合题意当时,B=不合题意.由①、②、③得,.(2)因为A B=B,所以,又A={-4,0},而B至多只有两个根,因此应有A=B.由(1)知,【点评】:一般对于A B=B和A B=B这种类型的问题,都要注意转化为等价的关系式:和,且在包含关系中,注意不要漏掉B=的情况.并且当A、B中的元素的个数相同时,还存在或的情况时,只有A=B这一种情况.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

集合部分的知识点总结

集合部分的知识点总结

集合部分的知识点总结1. 集合的基本概念集合的基本概念包括元素、子集、空集、全集等。

元素:集合中的每一个对象都称为该集合的元素。

在数学中,我们通常用小写字母表示元素,如$a\in A$表示元素$a$属于集合$A$。

子集:若集合$A$中的每一个元素都属于集合$B$,则称$A$是$B$的子集。

表示为$A\subseteq B$。

空集:不包含任何元素的集合称为空集,用符号$\emptyset$表示。

全集:包含所有可能元素的集合称为全集。

在特定的问题中,全集的具体取值可能会有所不同。

2. 集合的运算集合的运算包括并集、交集、补集、差集等。

并集:集合$A$和集合$B$的并集,表示为$A\cup B$,是所有属于$A$或者属于$B$的元素的集合。

交集:集合$A$和集合$B$的交集,表示为$A\cap B$,是所有既属于$A$又属于$B$的元素的集合。

补集:集合$A$相对于全集的补集,表示为$A^c$或$\overline{A}$,是所有属于全集但不属于$A$的元素的集合。

差集:集合$A$和集合$B$的差集,表示为$A-B$或$A\backslash B$,是所有属于$A$但不属于$B$的元素的集合。

并集、交集、补集和差集是集合运算的基本操作,它们在集合论中有着重要的应用。

3. 集合的性质集合具有一些基本的性质,如交换律、结合律、分配律等。

交换律:对于任意两个集合$A$和$B$,$A\cup B=B\cup A$,$A\cap B=B\cap A$。

结合律:对于任意三个集合$A$、$B$、$C$,$(A\cup B)\cup C=A\cup (B\cup C)$,$(A\cap B)\cap C=A\cap (B\cap C)$。

分配律:对于任意三个集合$A$、$B$、$C$,$(A\cup B)\cap C=(A\cap C)\cup (B\cap C)$,$(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合概念
一:集合有关概念
1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,
并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:
(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合
例:{a,b,c}和{a,c,b}是表示同一个集合
3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}
2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}
①语言描述法:例:{不是直角三角形的三角形}
4、集合的分类:
(1)有限集:含有有限个元素的集合
(2)无限集:含有无限个元素的集合
(3)空集:不含任何元素的集合例:{x|x2=-5}
5、元素与集合的关系:
(1)元素在集合里,则元素属于集合,即:a∈A
(2)元素不在集合里,则元素不属于集合,即:a A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集 N*或 N+
整数集Z
有理数集Q
实数集R
二、集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有
A⊆(或B⊇A)
包含关系,称集合A是集合B的子集。

记作:B
A⊆有两种可能(1)A是B的一部分,;
注意:B
(2)A与B是同一集合。

⊆/B或B⊇/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:①任何一个集合是它本身的子集。

A⊆A
②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)
或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果 A⊆B, B⊆C ,那么 A⊆C
④如果A⊆B 同时 B⊆A 那么A=B
3. 不含任何元素的集合叫做空集,记为Φ
规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非空真子集
三、集合的运算。

相关文档
最新文档